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ANALYSIS OF QU1CKSELECT:
AN ALGORITHM FOR ORDER STATISTICS (*)

by Hosam M. MAHMOUD (*) î, Reza MODARRES (*)
and Robert T. SMYTHE C1) f

Communicated by P. FLAJOLET

Abstract. - We study QUICKSELECT, a one-sided version of QUICKSORT suited for finding
the order statistics of a sample. We identify procedures by which the moments of the number of
comparisons can be found exactly under both assumptions thaï the order statistic in question is
randomly chosen orfixed. The procedure is illustrated by finding the exact mean and variance for
a randomly selected order statistic as well as the first few in the fixed case. The existence of an
absolutely continuons infinitely divisible limit law with asymmetrie left and right tails is demonstrated
in the case of a randomly chosen order statistic. Some of these distributional properties carry over
to the case of a very small fixed order statistic.

Keywords: Sorting, limit law, order statistics.

Résumé. -Nous étudions QUICKSELECT, une version latéralisée de QUICKSORT adaptée à la
recherche de statistique de rang sur un échantillon. Nous identifions les procédures qui permettent
de trouver exactement les moments du nombre de comparaisons, lorsque la statistique de rang ,en
question est aléatoire ou qu 'elle est fixe. La procédure est illustrée en trouvant la moyenne et la
variance exactes pour une statistique aléatoire ainsi que les premiers moments dans le cas d'une
statistique fixe. L'existence d'une loi limite absolument continue et infiniment divisible avec des
queues gauche et droite asymétriques est démontrée dans le cas d'une statistique de rang aléatoire.
Certaines de ces propriétés de distribution s'étendent au cas d'une statistique de rang fixe très petite.

1. INTRODUCTION

QUICKSORT is the fastest known in situ sorting algorithm. The algorithm
was invented by Hoare [10] in 1962. Since then the method has enjoyed
high popularity and now appears in most standard textbooks on algorithms
(see [1, 11, 21], for example), and several implementations are in opération
as the sorting method of choice as in the UNIX operating System.
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Performing on n distinct keys forming a random permutation on
{1, 2 , . . . , n}, QUICKSORT is known to possess a benign O(nlogn)
average time behavior with only O(logn) average extra space for a
supporting stack. The algorithm and several of its variants have been
thoroughly analyzed in [6, 8, 11, 16-20] under the random permutation
model, where ail permutations of { 1 , . . . , n} are considered equally likely
input lists. The random permutation model represents a wide variety of real
life situations as it is equivalent to sampling n keys from any continuous
distribution ([14]; Section 2.3).

QUICKSORT is a divide-and-conquer algorithm that works as follows.
A list of n distinct keys is given. We select an element, called the pivot,
and locate its position in the final sorted list by comparing it to all the
other éléments in the list. In the process, the remaining n — 1 éléments are
classified into two groups: Those that are less than the pivot are moved to
the left of the pivot's final position, and those that are greater than the pivot
are moved to the right of the pivot's final position. The pivot itself is then
moved between the two groups to its correct and final position. This stage of
the algorithm is called the partitioning stage. QUICKSORT is then applied
recursively to the left and right sublists until small lists of size 1 or less are
reached; these are left intact as they are already sorted.

Simple modifications can be introduced to handle lists with key répétitions,
a case that occurs with probability zero in a sample from a continuous
distribution (Le. when the random permutation model applies). We shall
therefore assume for the rest of this paper that all n keys in the list are
distinct and their actual values are assimilated by a random permutation
of { l , . . . , n } .

Obviously, the partitioning stage takes at least n — 1 comparisons; some
implementations that actually take n — 1 comparisons exist (see [12]; p. 259).
We shall assume a partitioning procedure implementation PARTITION
(£, u, k) that takes in £ and u, the lower and upper limits of the sublist
being sorted, and returns k, the final position of the pivot,

Some authors prefer a fixed pivot, e, g. the first or the last in the list.
Some implement QUICKSORT with a random choice of the pivot (ail n keys
in the list are equally likely). For a systematic development of récurrence
relations, we shall assume that the pivot is always the first in the list. Also,
the assumption that the partitioning stage preserves the randomness in the
sublists is common in the analysis of QUICKSORT (see [8]) and we shall
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assume that the chosen implementation of PARTITION together with our
choice of the pivot are consistent with this hypothesis,

A modified one-sided version of QUICKSQRT, to be called QUICKSE^
LECT (QS for short), may be used for finding the order statistics of a given
list. This modification was introduced in Hoare [9] and several of its variants
also appear in some books (e. g. [1, 7]), Qbviously, if we are only interested
in finding the mth order statistic in a list, we need not sort the two sublists
as in QUICKSORT; we need only identify the sublist containing the mth
order statistic and proceed recursively with that sublist. More precisely, QS
opérâtes as follows. It is a programming funcüon that takes in the parameters
£ and u identifying respectively the lower and upper limits of the sublist
being considered and returns the actual value of the mth order statistic; the
initial exteraal call is, of course, QS (1, n), Within QS, m and the list itself
are accessed globally. At the stage when the search has been narrowed down
to the sublist extending between positions £ and u, QS flrst goes through
t h e ^ a i ^ o n k i ^ r o e e s s r ^ ^
moving the chosen pivot to its final position fc, If k — m, we are done; the
element at position k is our mth order statistic, If k > m, the mth order
statistic must be in the left sublist; we apply QS recursively on the left
sublist, i.e, the situation is handled by the cal! QS (i, k - 1); otherwise, the
mth order statistic must be in the right sublist and it is now the (m - fe)th
smallest among the keys of the right sublist. This situation is handled by
the call QS(fc + 1, u).

One would not normally use QS for a particular order statistic as other
algorithms are known to be more efficient for this task, For example, if we
are interested in the first order statistic, QS consumes an average number of
comparisons asymptotically equivalent to 2n, whereas a simple linear scan
of the list accomplishes the task in only n - 1 comparisons, Ho we ver, these
more efficient algorithms are very spécifie to a particular order statistic and
cannot be easily modified to handle other orders, Thus, QS is particularly
useful when at different times we désire to çompute different order statistics
as is common in nonparametric statistics such as finding one-sided (semi-
infinité) confidence intervals for distribution quantiles or such as finding
distribution-free one-sided confidence intervals for the shift parameter in a
shift model ([13], Chapter 2). Our analysis pertains to the situation where
a single order statistic is to be computed when QS is applied only once to
a random list. That is, by using the algorithm at diffferent times we mean
starting with a fresh random list at each time,

vol. 29, n° 4, 1995
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The speed of QUICKSORT can be made insensitive to the distribution of
the data, for data with no duplicates (as in sampling without replacement
from a discrete distribution, for example), if the data are first subjected to an
initial randomizing shuffle so that their ranks become a random permutation.
An initial stage to randomize the data may serve as a way of guaranteeing the
same uniform average speed for all possible distributions of lists with distinct
items. Our analysis thus also applies to QUICKSELECT that performs this
randomization prior to sorting, for data with no duplicates even if the ranks
do not follow the random permutation probability model.

Let Cn be the number of comparisons between list éléments in QS
when applied to a random list of size n to find the list's mth order statistic,
1 < m < n. We shall consider the situation when the order statistic is
a random variable that is discrete uniform [1 • • n] (uniformly distributed
over the set { 1 , . . . , n}). When the order statistic is random, we shall refer
to the situation as the case of random sélection and dénote QS's number
of comparisons for it by Cn

2 , and when the order statistic is fixed we
shall refer to it as the case of fixed sélection and dénote QS's number of
comparisons for it by Un •

Ideally, we would like to analyze the distributional properties of Cn,
both exactly and asymptotically as n —> oo; with particular interest in the
asymptotic case when m/n —>• a, 0 < a < 1, as n —> oo. This appears to
be a formidable problem, except for the case m <C n, that is, a = 0 in the
above limit (see the discussion of Section 4).

A much more tractable problem is the analysis of Cn . The analysis of
Cn n ' pro vides information about the number of comparisons involved in
Computing an "average" order statistic in random sélection, and distributional
properties of Cn may then be regarded as an average measure of the
performance of QS for all order statistics. An example is given in Section 5,
where the "average second moment" is computed.

We identify a procedure for finding the moments of Cn n ' and use it to
find the exact mean and variance of Cn

2 . The weak convergence to a
limit law for a normalized version of Cn is established in the Wasserstein
metric on the space of distribution fonctions with bounded second moments
[2], This is done by adapting an elegant technique due to Rosier [17].
Unlike the case of QUICKSORT where only the existence of the limit law
was proved, we are fortunately able to explicitly characterize the limiting
distribution of QS in the case of random sélection. The limit law is shown
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to be absolutely continuous and infinitely divisible, and consequently with
unbounded support, with asymmetrie left and right tails.

As a by-product of our procedure for the moments of Cn , we also
obtain a procedure for the moments of Cn

m - The procedure becomes
computationally very tedious as m becomes larger, but can still be handled
by symbolic computation. We illustrate our procedure for the exact mean
and variance of Cn

m \ for m = 1, 2, 3. Furthermore, several analyses for the
limit of Cn carry over to the case of a very small fixed order statistic, that
is, the case m — o (n), as n —* oo, revealing similar distributional properties
for the limit law of Cn

m* in this range of m.

For fixed m, Knuth ([11]; Exercise 5.2.2.32) analyzes the average number
of comparisons in a version of QS that uses a partitioning stage with n + 1
comparisons. A QUICKSELECT that uses a partitioning state with only
n — 1 comparisons "steals" two comparisons away from Knuth's average
at each level of recursion. Since there are about Iog2 n levels of recursion
on average, we end up with an average that differs by about 21og2 n from
Knuth's. Devroye [6] identified some upper bounds on E [{Cn )p] for any
m and for all p > 1. We shown by an example in Section 5 that the bounds
for the average second moment are much smaller than the bounds in [6].

2. EXACT MOMENTS

We start with a récurrence for the probabilities. The probability distribution
for Cn (recalling that m is fixed in this notation) satisfies

p [dm) = j]
(0, j = 0,l,...,n-2;

, j ; ;

n
2
— , j — n— 1; m = l o r m =
n

m - 1

otherwise,
fe=i

—1 \

= i '

vol. 29, n° 4, 1995
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valid for n > 1, j > 0, and 1 < m < n. The first relation follows from the
fact that PARTITION (1, n, k) takes n - 1 comparisons; the second from
the fact that for 1 < m < n, the first element in a random permutation on
{1, . -.. , n} could bê 1, 2 , . . , , n with equal probability. The third follows
fröm the samê fact and thê observation that if the pivot's final position is
2 (or n - 1 ) , the reeursivê application of QS consumes zero extra comparisons
to fîttd the flfSt (last) order stâtistic (the resulting sublists have size 1). The
last relation follöws fröm the fact that PARTITION (1, n, k) takes n - 1
compârisofis and QS proceeds with either locating the mth smallest among
the éléments öf thê left sublist ör the (m -k)th smallest among the éléments
öf the right sublist, âll positions being equally likely landing positions for
thê pivot,

We next try tô solve the récurrence using generating functions. Differencing
a version of the récurrence with n ând j from a version with n + 1 and
j + 1 replacing n and j , respectively, gives

m - 1

tel

~ J l P [Cl^kk) = j - n + ï\, (2.1)
tel

valid for j > 0 and n > m > 1. Let us rewrite this récurrence as
a-b^c + d — e. Definê

and

Am (a?, y) ^"
>i m=l

Note that
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Multiplying (2.1) by xn yJ zm and stroming over n > l, j > 09

1 < m < n, the five terms involved in (24) yield the follawing, Fir

_ 1 ïdA(x,y, z) _ dA\{m, y)
y [ dx d%

where the term dA\ (xz, y)/dx appears to adjust for the boundary
conditions; similarly

d A {x, y, z)
x dx • ~ ~ ;

c = yA{xy} y, z),

For the term d, one obtains

n m—1

>i m = l Jb=l

= è E (̂ «)* E
y k=l ™>2 r = l

>

E ^ [̂ r) - j

. / oo

= 3 E
X2/ \

y

w h e r e w e u s e d t h e s y m m e t r y b e t w e e n Cn a n d G n .

x%A{xyy y, z)
1 - xyz
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Putting these terms together and simplifying, one obtains the partial
differential équation

dA(x, y,z)_ 1 + z- 2xyz A , , , / 1 \dA1 (xz, y)
dx (l~xy)(l-xyz) v"»>»>"' ' \l - xy J dx

(1 - xy) (1 - xyz)

Our concern is to find the moments of Cn nK As we shall see shortly,
differential équations for the moments of Cn in volve generating functions
Gfc ' (x) that are the generating functions of the kth factorial moments of
the first order statistic, Le. they are defined by

n=l

Thus, we need to develop the latter generating functions first. In what
)llows Hn

of order n.

(2)
follows Hn and Hn dénote the first- and second-order harmonie numbers

LEMMA 1: The generating function for the mean and the second factorial
moments of Cn are:

1 8 i ( l \ 2 8

, , 1 \ . 19
• I n

Proof: Observe that

and that

dk M (x, i) _ (i) ( ,
Qyk ~Gk M'
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Differentiate (2.2) once with respect to z at z — 0 to obtain

dA1 (g, y) = Ai {xy, y) + 1

9x 1 — xy 1 — xy

Now differentiate (2.3) once with respect to y at y = 1 to obtain

3 )

dx 1 — x (1 — o;)3 *

Solving this differential équation under the obvious initial condition
Gj ' (0) = 0 we get Gy (x) as in the lemma. Similarly, differentiating
(2.3) twice with respect to y at y = 1, we obtain G\ (ar) as in the lemma
after some lengthy calculations. D

Extracting the coefficients of xn from G\ * (x) and G\ * (x) leads to:

THEOREM 1: The mean and variance of the number of comparisons in QS
forfinding the minimum (orthe maximum, by symmetry) in a list are given by;

E [Cd1}] = 2n - 2Hn

~ 2n, as n —> oo,

and

1 2

- n , as n —> oo.

We now return to analyzing Cn n . Toward this end, let B (x, y) be the
nerating functiongenerating function

This generating function is related to A (x, y, 2;) as follows:

n

P [dM^ = k}=Y, ? ldMn) = k\Mn = m]P [Mn = m]
m=l

n
TO=1

vol. 29, n° 4, 1995
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or

. M S A ( l l ï l l ) . (2.4)

Usitig (2Â\ one can détermine, from (2.2), a partial differential équation
for B (#, y), First evaluate (2.2) àt z = 1, then use (2.4) to obtain

+ Çl&v).
dx

dA\ (x, y)f 1 \
\l-xy) 'K * ;

\ f
ï-xy) dx \l-xy) dx (1 - xy)2

The last partial differential équation does not seem to be tractable but
we may develop tractable ordinary differential équation for the moments
as föllows. Let

Note that Lj (x) is a generating function for the jth factorial moments
of OiMn). Ciearly,

Differentiàtiîig (2.5) once with respect to y at y = 1, we obtain

dx ( 1 - x ) 2 '

the generating function G\ ' (x) is given in Lemma 1. This is an ordinary
differential équation whose solution under the obvious boundary conditions
Lt (0) - 0 and Ux (0) = E [CÎMl)j ~ 0 is

! - 3 10 8 v ( 1 \
yL **" X J 1 ^ 3> L ^* X \^ X iJ™* X y
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where dilog is the dilogarithm function defined by

fx 1 ( 1 \
dilog (x) — ƒ — In f -—— du.

Jö u \l-uj

For Var [Cn ] we first need to develop a differential équation for Li (x).
Differentiating (2.5) twice with respect to y at y — 1, one obtains

10 100 230 120

(1-rc)5

96 ( l \ 9 6 i

) 3 l n v r ^ ; ~ { i y
Solving this differential équation we obtain L^ (x). The coefficients in the

generating functions L\ (x) and L2 {%) provide us with exact expressions
for the mean and variance of C^ .

THEOREM 2: The mean and variance of QS when it pèrforms a random
sélection are given by:

Tb

00,

and

Tv

204Hn J2) %

•2

Var [dMn)] = n2 - 10n - lQH2
n + 108Hn - 47 - 4 8 ^ 2 ) - 8 0 ^

T

9

~ n2, as n ^^ oo.

We conclude this section with an illustration of the use of the above in
finding the exact means and variances for the fixed order statistics. The
generating functions for factoriâl moments of C?A s for different values of
m, satisfy a récurrence relation.

vol. 29, n° 4, Î995
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Differentiating (2.2) first m times with respect to z at z = 0 and then j
times with respect to y, at y — 1, yields the récurrence

A l = _1_ G (x) + g x, G (x) +
(XX J. . Ju , i A. X )

3 = 1
xm~l ((3m2 - l l m + 6) x + (m - 1) (m - 2))

m - 1

It is interesting to note that the last differential équation bears some
resemblance to differential équations connected with QUICKSORT [8] and
m-ary search trees [14-15]. Thus, for example,

from which it follows that

E [C£2)] = 2n - 4 + -
n

~ 2n, as n —>• oo, (2.6)

and

1 \ 25 25 13ar 2ar2

3(l-x) 3 3 3 '

and

E [ C (3) i = 2 n , 2H 25 , 2
3 n - 1

~ 2n, as n —» oo.
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Also,

r®)( ^ 9 31 2
G { ) l

1 - x

1—x \1 — xj \1 - x

from which, together with (2.6) we have

II n n nL

1 2
— n , as n —> oo,

and similarly we obtain

Var [CW] = £ + " „ - 1MÏ + ( f + i - " W
z z \ 3 n n — 1

85 172 4 6 _8
+ 1" ~ 3 (n - 1) + (n - l ) 2 ~ n ~ n

1 2~ - n , as n —> oo.

It should be clear that we can continue in this fashion to obtain exact
higher order moments for m — 1, 2, 3 as well as exact moments for other
fixed order statistics. But is should also be clear that we have an explosion
of computational complexity. However, the procedure may still be useful
with a symbolic manipulation System.

3. THE LIMIT LAW FOR RANDOM SELECTION

In this section we shall use the following standard notation from probability
c c

theory. The symbol = will dénote equality in law, whereas the symbol —>
will dénote convergence in law. The law of a random variable X will be
denoted by C(X). The indicator lg of an event £ assumes the value 1 if
the event £ occurs and is zero otherwise.
vol. 29, n° 4, 1995
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Following Rosier [17] we can develop a functional relation for the limit
law of

v_ckE[<À]
n

The functional for QUICKSORT in [17] was not tractable and was used
only in an existential proof of a limit law. Fortunately the functional we obtain
below for random sélection is tractable and the limit law is characterized
explicitly.

Let Zn be the position to which the chosen pivot moves. As the starting
list is assimilated to a random permutation, Zn is discrete uniform [1 • • n].
We have the conditional behavior (given Zn and Mn)'-

- l + Cgf-r0. if Zn>Mn;
= { n - l , if Zn^Mn-

- l + < 7 ^ ; z J , if Zn<Mn.

Thus Yn satisfïes the following conditional relation (given Zn):

Zn-1 n- Zn v*
yZn-l + l{Zn<Mn]

 Yn-Zn
tb

(

AfB} Z n l {Zn<Mn]
f v tb

n - l E

n n

(3.1)

where Y* = Y{. Note that Y%, Y*, Zn, and Mn are mutually independent,
1 < i < n. Theorem 2 states that

$o that

Informatique théorique et Applicatiöns/Theoretieal Informaties and Applications
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and

E [C^zT^Zn] = 3 (n - Zn) - 8Hn_Zn + O (1),

and we may write

ft

THEOREM 3:

where Y satisfies the relation

Y = X {Y + 3) - 2,

where X and Y are independent and X has the density

0, elsewhere.

Before proving the theorem, we specify the limit Y in terms of its
characteristic function:

LEMMA 2: If

with X and Y as in Theorem 3, the characteristic function of Y is

<f)y (t) = exp ( 2 ƒ — du ) .

\ Jo u )
Proof: Let Y — Y + 2, so that Y é X (Y + 1). The characteristic function

e* of ?

^ (tx) à* = f

vol, 29, np 4,
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Differentiating (which is permissible in view of Theorem 3) gives the
équation

dt

with the solution

4>Y (t) = exp 2 / du

Hence Y has the given characteristic function. D

Proof of Theorem 3: We proceed in the manner of Rosier [17] to show that
G?2 [£(Yn), £(y)\ converges to 0 as n —» oo, where d2 is the Wasserstein
metric on the space of zero-mean distribution functions (see [2] for a
discussion of this metric):

<h(F, G) = mf\\X-Y\\2,

where || • ||2 dénotes the Z/2-norm and the infimum is over all random
variables X with distribution function F and ail random variables Y with
distribution function G.

Let Y and F* be independent with the distribution of Lemma 2. Let
Qi and Q* be independent copies of a random variable with law C(Yi),
1 < i < n — 1, with

1

Let fln be the sample space of Yn (that is the set of all permutations
of { 1 , . . . , n}). Let F , F : fin x [0, 1) - • R, with F(- , x) - Vx, and
Vr(-, x) = VX9 be given by

and

Informatique théorique et Applications/Theoretical Informaties and Applications
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Writing Q{ = Qi + 3, F = Y + 3, and using (3.1), one has

Z — 1 n — Z *
= Q + ! Qn-Z„ - 2 + Op (1),Q z n 1 {Z.<M.}

where op (1) dénotes a quantity tending to zero in probability. For purposes
of convergence we can, and therefore will, ignore the op (1) term.

To get a suitable coupling, let T and W be independent uniform on (0, 1),
and independent of Qi, Q*9 0 < i < n - 1. It is easily checked that

k MT>W , (Mlzi) vT + i{r<r, ( ^ 1 ) F r - 2.

Also, from the intégral représentation of the characteristic function of Y
in Lemma 2, it is straightforward to show that

1 - T) Y - 2.

Thus

d2[C(Qn),C(Y)}

+ E 1

vol. 29, n° 4, 1995
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I E
—)

Letting a» = d*i [£(Qi), C(Y)], we thus have

1 n / ' i \ 2

&TI 2l / \ I &i ~T~ O l 1 J .

n ^ ^ \ n J

It follows as in proposition 3.3 of Rösler [17] that an —> 0, •

4. PROPERTIES OF THE LIMIT LAW

Some of the properties of the limiting variable Y may be deduced
immediately from its characteristic function, given in Lemma 2.

LEMMA 3: Y has an infinitely divisible distribution; i.e., for every positive
integer k, there exist i.i.d. random variables S^fc,..., Sk.k such that

c
Y = Si^k + . • * + $ktk'

Proof: The characteristic function (j)y (t), by an obvious change of variable*
may be written

4>y (t) - exp f 2 / — dx J ,

which is in the form of an infinitely divisible distribution with finite variance
(see Chow and Teicher [4], p. 420]), •

COROLLARY 1: The support ofY is unbounded.

Proof: This is true of any infinitely divisible distribution {see Chow and
Teicher [4], p. 413]), D

LEMMA 4: The distribution of Y is absôlutely continuons,
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Proof: It is not difficult to show that \(j)y (t)\ ~ \t\~l, as |t| —> oo; thus
(f)y is square integrable, and the result follows from Plancherel's theorem
(see Chung [5], p. 159]). •

Information on the tail behavior of Y can be derived from its moment
generating function, using Chernoff s approach [3]. An argument similar to
that of Lemma 4 shows that the moment generating function of Y is

An easy argument based on a Taylor expansion shows that for t > 0,

f(t)<exp(et-t).

With the aid of the last inequality, a large déviation result for Y can be
easily derived.

PROPOSITION 1: For À > 0,

F[F>A]<exp(—

Proof:

P [Y > X] = P[tY > tX], for t > 0

< exp(ef - t - Xt).

Minimizing the exponent in t, we get the result. D

Using the bound

for „ > 0 , (4.1)

we have the follöwing result for the left tail.

PROPOSITION 2: For À > 0,
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Proof:

P [Y < -A] = P [-tY > Àt], for t > 0

E [e~*y]

< exp I — - A* I.

Minimizing the exponent, again, gives the resuit. D

According to Lemma 3, <f>y (t) has an nth root for any positive integer n.
The next theorem reveals the interesting resuit that the square root, Le.

exp f f e X iu du\ , (4.2)

is the characteristic function of the limit of Y^ , the normalized number of
comparisons needed to find the mth order statistic using QS, for m fixed.

THEOREM 4:

v(m) £ v(m)

where Y^ = U (Y^ + 2) - 1, with U independent ofY^ and uniform
on (0, 1). The characteristic function ofY^ is given in (4.2) above.

Proof: The proof is very similar to that of Theorem 3, noting that from
(3.1) and Knuth ([11]; Exercise 5.2.2.32)

D
Ti

The characteristic function (4.2) gives the curious resuit that Y of
Theorem 3 (the limit of the variable ( C J i ^ - E [ciM^])/n) is stochastically
equal to the sum of two independent copies of y(m ) , the limit of
(dm)-E[cim>])/n).

Clearly, the distribution of y(m) is also infinitely divisible of unbounded
support, and absolutely continuous. Bounds on the tails of y(m) can be
derived in the same fashion as those for Y\ they are slightly tighter, since
the moment generating function of y(m) has no factor of 2 multiplying
the intégral.
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5. USING RANDOM SELECTION AS AN AVERAGE MEASURE

We mentioned in the introduction that the analysis of random sélection
may be used to provide average measures for fixed sélection. We show in
this section an example of this by deriving an upper bound for the average
second moment of Cn, 1 < m < n, when n > 3.

To illustrate the use of Cn as a measure of average performance,
note that

E [(dM^)2] = £ E ï(C{nMn))2\Mn = m]P [Mn = m]
m = l

m=l

which is the average of the second moments for the random variables Cn K
1 < m < n.

Then trivially,

v a r [T^ j = —2" -^ H.̂ 'w ) J — —ö" l*-^ J

m = l

Since E[Cn
Mn)}/n -+ 3, as n -> oo, and Var[yn

(Mri)] -> 1 {cf.
Theorem 2),

n
m=l

In f act, it is easily seen from Theorem 2 that, for all n > 3,

Thus, for n > 3, the average value of E [(Cn
m^)2]/n2, 1 < m < n is < 10

and hence considerably smaller than the bound 32/(3 In (4/3)) « 37.078
given by Devroye [6].
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