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NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS (")

by Viliam GEFFERT (%)

Abstract. — Some new normal forms for the phrase-structure grammars are presented. Each
phrase-structure grammar can be replaced by an equivalent grammar with all of the context free
rules being of the from S — v, where S is the initial nonterminal, what concerns non context free
rules five different situations may occur: either two extra rules of the form AB—¢, CD — ¢, or
two extra rules AB— g, CC — €, or two extra rules AA — &, BBB — ¢, or even a single extra rule
ABBBA — &, or a single extra rule ABC — €. In all cases, no additional nonterminal symbols are
required.

Résumé. — Quelques nouvelles formes normales pour grammaires de type 0 sont présentées.
Chaque langage récursivement énumérable peut étre engendré par une grammaire ou les régles
« context-free » sont de forme S — v, ou S est le symbole initial non terminal. En ce qui concerne
les régles « non context-free », on a l'une des cing situations suivantes :ou bien deux régles du type
AB—¢g, CD—>¢, ou deux régles du type AB—¢, CC—¢g, ou deux régles du type AA— ¢,
BBB — ¢, ou une régle du type ABBBA — ¢, ou régle du type ABC — €. Dans tous les cas aucun
symbole non terminal additionnel n’est nécessaire.

1. INTRODUCTION

Problems concerning normal forms of various devices generating or recog-
nizing languages have turned out to be of crucial importance in the develop-
ment of the formal language theory. Using normal forms, we shall obtain a
mentally simpler manipulation with the phrase-structure grammars, while
preserving their generative power. In spite of the fact that much research has
been done on the comparison of many different models of grammars and
automata, the central position of the context-free languages (and grammars)
remains. One of the important advantages in dealing with the context-free
grammars is the fact that each derivation can be represented by a derivation
tree, in contrast to more powerful types of grammars. A similar characteriza-
tion of the recursively enumerable languages would also be useful. It was
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474 V. GEFFERT

shown in [13], that each phrase-structure grammar is equivalent to a grammar
with rules in one of the following forms:

(i) A >, (i) or AB—&.

Some similar results can also be found in [6], and [12]. We are going to
establish a stronger result; namely, that the context-free rules can be of the
form S — v, where S is the initial nonterminal, using only two extra non-
context-free rules AB—¢, CD —¢g. Clearly, S, 4, B, C, D are the only
nonterminal symbols used by this type of grammar. Then we shall show that
each recursively enumerable language may also be generated by a grammar
having all of its rules context-free, of the form S — v, and two extra rules
AB—g, CC—g, or AA—¢, BBB—¢g, or even a single extra rule; either
ABBBA — ¢, or ABC —¢. In all cases, no additional nonterminal symbols
are used. These normal forms have already been announced in [2] and [3].
Problems concerning grammars with a single extra non-context-free rule of
the form AB — ¢ (but using a slightly different approach, so-called Dyck,-
reductions of the context-free languages) can be found in [8].

The paper is organized as follows: We begin in the Section 2 by giving
some basic definitions. This section also gives some auxiliary theorems con-
ceerning a characterization of the recursively enumerable languages by a pair
of homomorphisms presented in [1], which is necessary to prove the main
results. Section 3 proves the main theorem — the representation of the recursi-
vely enumerable languages by a grammar with only two non-context-free
rules AB — ¢, CD — ¢. Section 4 concerns the other types of normal forms
and Section 5 discusses the time and space complexities of grammars in these
normal forms.

2. THE HOMOMORPHIC REPRESENTATION — A VARIANT OF THE POST CORRES-
PONDENCE PROBLEM

We are going to define the main notions here. (The reader is assumed to
be familiar with the basic definitions and notation of formal language theo-
ry — this may be found in [5] or [7].) Then we shall establish a characterization
of the recursively enumerable languages by a pair of homomorphisms [1],
which is necessary to prove the main results. It is based on the notion of a
g-system, introduced by Rovan [10, 11} in order to unify the theory of
grammars. The g-system is a generalization of the notion of grammar, it is
an iterated rewriting of the sentential form by a nondeterministic finite
state 1-a-transducer [4]. (We could use the classical definition of the phrase-
structure grammar as well, but using the g-systems, we shall obtain better
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NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 475

time and space complexities for the resulting phrase-structure grammars in
normal form, since the g-systems give us a more natural correspondence
between various types of devices and the phrase-structure grammar in normal
form.)

DEerFINITION: A generative system (g-system, for short) is a 4-tuple
G=(N, T, P, S), where N and T are finite aplhabets of nonterminal and
terminal symbols, S in N is an initial symbol, and P represents a binary
relation over V* X V* (where V=N1{J T). P is given in the form of a 1-a-
transducer [4] (from V" to V*), i.e., P=(K, V, V,H, q,, qr), where K is a
finite set of states, ¢;, g in K are initial and final states, respectively, and H
is a finite subset of KX V'x V* x K (the set of transitions, or edges).

ueV* is said to directly generate v, written u = v, if P is able to rewrite u
to v, i.e., there exists a path of transitions

(qI: 515 V1 ql) (ql’ S25 U2, q2) . ‘(qn—l’ Sns Uns qF)€H+,

such that s,...s,=u, and v, .. .v,=7.

Finally, the language genrated by G is the set L(G)={weT* S=*w},
where =* is the transitive and reflexive closure of the relation =.

As is usual in the theory of grammars, G is said to be of time complexity
T(n) if, for each we L(G) of length n, there exists a derivation of at most
T (n) steps generating w. Similarly, G is of space complexity S (n) if, for each
we L(G) of length n, there is some derivation of w in which each sentential
form is of length at most S{(n).

It can be easily seen that for each phrase-structure grammar G there exists
a g-system G’ such that L(G")=L(G). Intuitively, each rule 4,...4,— v in
G will be replaced by a path of transitions in the 1-a-transducer of G’ (from
q; to qy), rewriting A4, . . . A, to v. (See [1] for the detailled proof.)

We shall now establish a characterization of the recursively enumerable
languages by a pair of homomorphisms and a quotient [1]. (The quotient is
understood as an operation inverse to concatenation, i. e., u \uv=1v for each
u, v. This implies that ¥\ v is defined only if u is a prefix of v.) The pair of
homomorphisms 4,, 4,: % — X} can be used to generate a language L&Xf
(where X, £, and Z, are some alphabets, X, £ %) as follows: For each
string aeXy, check if 4, (0)\ A, (o) is defined [i.e., if A, (o) is a prefix of
hy ()], and then if A, (0)\/, (@) is in ZF. If this is the case, then generate
w=h, ()\ /2, () to the output, it is a word in L.

vol. 25, n® 5, 1991



476 V. GEFFERT

THEOREM 1: For each effectively given recursively enumerable language L
one can effectively construct a pair of homomorphisms hy, h,: 2% —> 3} such
that

L={weZf; w=h, () \ /4, () for some o€} }.

(Where X ,, Xy are some alphabets, 232%;.) Thus, weX¥ is a word in L if
and only if there exists some o€ X} such that h, ()= h, (&) w.

Construction and informal idea of the proof: The proof is based on the fact
that g-systems are capable of generating any recursively enumerable language.
The construction is similar to the construction of the Post Correspondence
Problem imitating the computation of a Turing machine (and its halting
problem). [9] But, instead of a Turing machine, we shall rather simulate the
derivation of a word by a g-system generating the language L:

Let L= L(G) for some g-system G=(N, £,, P, S), where P is a l-a-trans-
ducer, i.e. P=(K, V, V, H, q;, q5), where V=N Z,. Define

2, ={ao, a1, a,, a3} UKxVUH,
Zp={bo, by, b, } UKUVUKXV,

where a,, a,, a,, as, by, by, b, are new symbols. We now define 42, and 4,:

TABLE
xeX, hy (x) h, (x) Remark
a, be by b, S
a, b, b,
a; byq; ar by
a; b, €
(g. 4) 4 q(g, 4) for (g, e K*x V
(9, 4,9, 9) (9 g v (g, 4,v,9)eH

First, we shall briefly show that if S=}%v then there exists aeX} such
that

hy()=h, ()b, v, @2.n

by induction on the length of a derivation in G:
A: If v=S (the length of derivation is zero), then (2. 1) holds for a=a,:

hy ()=b,
hy()=byb, S

Informatique théorique et Applications/Theoretical Informatics and Applications



NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 477

B: Now assume (2.1) holds for derivations of length k. Let S=&u=>;v

be the derivation of length k+ 1. We have, by induction, &, e X} such that
hl (al):y (2‘2)
h2 (a'l):ybl u,

for some yeX}. Since u=>;v, there exists a path of transitions
(kyy S1, v1,kY). . . (kyy S, Vs ky) in HY such that

k,=4q, 2.3)
k.o ,1=ki, for i=1,...,n—-1
k.= qg-

We can construct o by appending certain symbols to a,. First, let o, =0, a;.
From (2.2) and (2.3) we have

a,=a, a;
hy (02)=yb,
hy (@) =ybysy. . .5, b,
Now we extend a, by (ky, 7). . .(k, s,):
oy =ay a,(ky, 5y)- . . (kp, $,)
hy(ay)=yb;s,...s,
hy (03)=yby sy . .8,byky (ky, 51). . Ky (K, S,)
Next, we append the symbol a,:
oy =0y ay (ky, 51). . . (ky, 5,) 4,
hy(a)=ybysy. . .5,bsq;
hy () =ybysy. . .s,byky (ky, 81). . Ky (ks 5,) g by

h, (a,) remains a prefix of 4, (a,), because g,=k,, by (2.3). Finally, let us
append (kh S15 Vg kll) . '(km Sus U k,):

n’ n.

as=0y a, (ky, 8y). . .(k,, sp)ay(ky, 8y, v, k7). (ks Sps vy K)

hy(as)=...byqr(ky, sp) ki (K, 52)K5. . (K, ) Ky
hy(as)= .. .byky(ky, s)ky(ky, 53). -k, (Ky, 5.)grbivi 05 -0,

vol. 25, n® 5, 1991



478 V. GEFFERT

By (2.3) we have ki=k;,, for i=1,...,n—1, k,=¢;, and also v=v,...9,.
Then the strings a=0o5 and v=v,...v, again satisfy (2.1) and the claim is
verified.
Thus, for each v such that S=>*v we have o'eX; such that
hy(@y=h, () by v. Let a=aay. Clearly h, () =h, () v, i. e. v=hy () \ /1, ().
Moreover, we have also shown that, having a derivation
S=wy=>w, =...=w,=>w, a can always be chosen in the form

ao( I:[ (@, (Kx V)ia, H"')) as,

where n;=|w;|. Therefore, we can always find ana satisfying
w=hy (o) \\/1, (o) such that

|2+ 2(2+2|wi|)60<2|wi|>. 2.9
i=0

i=0
We shall not detail the long technical verification showing that this is the
only way of forming an « with the desired properties, since the complete
formal proof can be found in {1]. O
Now, by suitably encoding the alphabet X into a two-letter alphabet, we

shall establish a different version of Theorem 1 —a representation of recursi-

vely enumerable languages by a modification of the Post Correspondence
Problem:

Dermvirion: Let £,={a,,...,a, } be an alphabet. The Extended Post
Correspondence (EPC, for short) is

P=({ (uli vl)’ ] (uﬂ vr) }: (Zala ] Za,,L)):

where u;, v, 2,€{0, 1}* foreach i=1, ..., r, and cach aeZ;.
The language represented by P in £}, written L (P), is the set:

L(P)={x,...x,€ZF; 35y, ..., 5¢€{l,...,r},

I21 such that v, . . .o =u, .. .UgZ,, .. .2 }.

Note, that the classical Post Correspondence Problem [9] is to determine
whether or not g€ L (P), where Pis an EPCfor L, = [i.e. L(P)= @*={e}].

THEOREM 2: For each recursively enumerable language L there exists an
Extended Post Correspondence P such that L(P)=L.

Informatique théorique et Applications/Theoretical Informatics and Applications



NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 479

Proof: By the use of Theorem 1, weX¥ is a word in L if and only if there
exists an a€ X such that 4, (x)=h, () w. (Where k,, h, are some homomor-
phisms from X% to £, £;2X%,))

Isz={eli L) enA}i 2L={a1’ <. ey anL}s a'nd ZB:{al’ L) anB}, ntnL’
then w=x,...x,€{ay, ..., a, }* is a word in L if and only if there exists
an a=e, ...e,€{e;, ..., ¢, }" such that

h2 (esl)' . ’h2 (es,):hl (esl)' . 'hl (esl)xl R, (2' 5)

Our next task is now to encode the symbols of X; into the strings over a
two-letter alphabet, i.e. to define a homomorphism c¢: £} — {0, 1}*. Let
k=[log, (ng) |+ 1, and

c(a)=b;...b,, foreachi=1,..., ng

where b . . . b is the number i written in binary notation (with leading zeroes
if needed). This encoding is unambiguous, i.e. ¢ (#)=c (v) if and only if u=o,
for each u, ve Z}. Now we define

P=({ (ul’ ‘Ul), R ] (u,,A, DHA)}, (Zala st za,,L))’
where

u;=c(hy (&),
v;=c(hy(e)),

z,=c(a), foreach q;ex, ={a,,...,q, }.

foreach i=1,..., n,

Now, since ¢ is unambiguous, the condition (2.5) is satisfied if and only if
c(hy(e))- - -clha(e))=c(hy(e))- - -c(hy(e))c(xy). . .c(x,),
and hence if and only if

Vg v v Vg T U o o UG Z

SR A (2.6)

Thus, w=x;...x,eXf is a word in L if and only if there exist
sy se{l, ..., n,}, 121 satisfying (2.6), which proves the theorem. [J

We also have, by (2.4), the correspondence between time/space complexi-
ties of g-system and the extended Post correspondence: If we L (G)= L (P) is
generated by a derivation S=wy=>g;...=>sw,=;w, then we can find a

vol. 25, n° §, 1991



480 V. GEFFERT

solution of P for w of length

k

1c. ¥ |w, @.7)

i=0

for some constant ¢. Before passing to our main results, we need two more
technical lemmas which will be applied later.

LemMA 1: Let hy, hy: % > 2} be a pair of homomorphisms representing a
language L (as it was shown in Theorem 1). Then, for any aeZ¥ if h, (o) is a
prefix of h,(ar), then hy () \\}, (0) does not contain a substring xh, (t), where
xeX,, and teX , such that h, ()=¢.

Proof: Suppose lemma does not hold for A, &, of Theorem 1. Then, there
exists an ae X% such that A, («) is a prefix of A, (o), and w=/h, (0)\ %, (%)
does contain a substring x#, (¢), for some xeX, and for some teX, such
that 4, (H)==e.

Since A, (&) = h, (o) w, we may conclude that 4, (o) also contains a substring
xh, (£). If h,(f)=¢g, then either t=a, or t=(q, 4, &, ¢')e H, by Table in
Theorem 1. Therefore h, (£)y=by, or h, ()=(q, A)q'.

But this implies that A, (o) contains a substring xb,, or x(g, 4) g', for some
xeX, V. A contradiction in either case, since the symbol b, must be
preceded either by b, or by g in h,(x), but never by xe ¥V (see Table).
Similarly, (g, 4) € KX ¥V must be preceded by ge K, but never by xe V. O

LEMMA 2: Let P=({(uy,vy), - .., (4, v,) }, (Za,s - - 124, )) be an EPC repre-
senting a language L. Then, there is no loss of generality in assuming that for

any sy, ...s€{l,...,r} if u,...u, is a prefix of v, ...v,, then
Ug, - .. Uy \Ds, - - - V5, does not contain a substring z,u,, where x€Z;, and
te{l,...,r} such that v,=¢.

Proof: We may assume, without loss of generality, that an EPC representing
a language L has been designed by the use of Theorem 1 and 2. Now, the
argument merely mirrors the proof of Lemma 1, since the symbols of X,
were unambiguously encoded by strings in {0,1}*. O

3. THE MAIN RESULT

We can now state and prove the main theorem. We shall show that any
recursively enumerable language may be generated by a grammar having all
of its rules context-free, of the form § — v, where S is the initial nonterminal,
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but two extra rules 4B — g, CD — &. The proof is based on the representation
by an extended Post correspondence: We have shown that for each recursively
enumerable language L there exists an EPC

P=({(u1’ vl)’ . *’(ur’ 'U,)}, (zap . ')Za,,L))

such that L(P)=L,i.e. w=x, ... x,eXf is a word in L if and only if there
exists sy, . ..,5€{1,...,r}, /21 such that

Vg v o Vg =Ug oo UgZy Ty
Since u;, v;, z,€{0,1}* for each i=1, .. .,r, and for each ae X;, we can use

the following way of generating w=2x, ... X,:

1st stage:
‘R /R 'R
S = zg8x, = zZ z,  Sx,_.x, =
/R 'R 'R 'R
= Zy oy SXy X, = I .. Zg AXxp .. Xx,
2nd stage:
IR ‘R _ R 1
= Zi .. Zg g Avgx, ... X,
/R 'R 'R 'R 17 "
= Zy gy Uy Avg vgXy ... X, = ...
'R 'R, 'R 'R ’” "
= Zg e Zg U Uy AV L Vg Xy L X,
'R 'R, /R IR 11 "
= Zyg e Zg Mg o UGV Vg Xy Xy,

where z, u;, v, denote strings over some new alphabets {0, 1"}, and
{0”, 1"} corresponding to z,, ug, Vg, respectively. Formally, define two
auxiliary homomorphisms &', 4" by b (0)=0', b'(1)=1", b"(0)=0",
b (1)=1". Then u,=¥"(uy), v{ =b" (vy), and z,=0b'(z,), for each s=1, .. .,r,
xeZX,. [Similarly, ¢, ¢" will be simplified notations for &’ (¢), b” (¢), respec-
tively, for each ge{0,1}*]

Note that, the only thing we should be able to do in the 1st stage of
derivation is to rewrite the symbol S to z:X Sx, for each xe X, (and also to
A in the last step). Similarly, the 2nd stage will be just repeated rewriting of
A to uR A2, for each s=1,...,r (and to /® v} in the last step). It should
be clear that, for the first two stages, we need context-free rules only.

vol. 25, n° §, 1991



482 V. GEFFERT

3rd stage:
R 'R 'R IR 11 re
VALY At AN Vil AL AP TN A
=(u U,z Ry " x X,
g U Zyy e Zg) (g e 0g) Xy Xy,

— 'R 173 %
=07V @y X ... X, =% x;...Xx

if and only if ¢, = @,.

Now we have to check, whether or not our EPC has a solution for x, ... x,
(or, more exactly, whether the sentential form we have generated represents
a solution to P for x, ... x,), and, if and only if we have found a solution
(i.e. ©,=9,), we have to erase @;f¢5, which gives the terminal string
w=x,...X, The 3rd stage is therefore a cancellation of substrings 00",
11" (by rules 0'0"” > ¢, and 1’1" - ¢). Clearly, the only place where we can
apply these rules is the “frontier” between ¢ and @3, since e {0, 1"}*,
07e{0”,1”}* and x, ... x,eZ}. It now follows easily that ¢ @j w="*w
if and only if @, =¢,. It is obvious, that this way of rewriting generates
exactly the language L(P), and we can now construct a phrase-structure
grammar with six nonterminal symbols, namely S, 4, 0’, 0", 1’, 1" and
with only two non-context-free rules 0'0” — ¢, 1’1" — ¢, for each recursively
enumerable language L.

‘We are now going to eliminate the symbol “A4”, and to replace it everywhere
by “S”. The only thing causing problems is that we can now use a 2nd stage
rule (i. e. S— uX S9!, for some s=1, .. .,r) before applying the last rule of
the 1st stage (S — 2z} Sx,). In the next theorem, it will be seen that if we
violate the correct ordering, then we shall not be able to derive a terminal
string in the 3rd stage of derivation, because the extended Post correspon-
dence, constructed in Theorem 2, has some “nice” technical properties such
that the condition ¢, =@, cannot be satisfied in this case. We are now ready
for the main theorem:

THEOREM 3: Each recursively enumerable language L can be generated by a
phrase-structure grammar with 5 nonterminal symbols, using only context-free
rules of the form S — v, where S is the initial symbol, but two extra rules
AB—¢g, CD > &.

Proof: Let
P=({(uy,v)), - .-, (u,v)}, (zq,> - - -+ Z4,)

Informatique théorique et Applications/Theoretical Informatics and Applications



NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 483

be an EPC such that L(P)=L. We may also assume that P satisfies the
conditions of Lemma 2. Define a grammar G=(T, Z,, P, S), by

N={5,0,1,0",1"},
P=GEN\J EPC\JTEST,

where

GEN={S—>z}Sx;xeZ.},
/generating terminal symbols in the 1st stage,

EPC={S->uRSv/;s=1,...,r}

/generating a solution of P in the 2nd stage,

U{S—>ufv;s=1,...,r},
/terminating the 2nd stage,

TEST={0'0">¢, 1'l" >&},

/checking and erasing the solution of P in the 3rd stage of derivation.

(Recall that u, v}', z, are simplified notations for the strings over {0',1"},
{0”,1"}, corresponding to u, v, z,, respectively.) Let x; ... x,eL. Since
L=L(P), then there exist s, ...,5€{l,...,r}, =1 such that
gy v V= Uy e UgZy o Z

Then

v

S1 Xn®

S =¢ zX. . Z88x, ... x,

Xn

Jusing S — 2R S x,e GEN, for i=n, ...,1,
g xi

3 'R 'R /R 'R " 1’
=S¢ Ze - Zg Uy o U, SUG L Vg Xy X,
R /R, R IR _t 1
=5 an...leusl ...uslvsl...vslxl...xn

Jusing S — uX Sv'e EPC, for i=1,...,2,and S - uX v e EPC,
i i 1 1

— tR 11 3
= Oreyx; ... X, =F X;...X,

Jusing 00" — ¢, 1’1" - £e TEST, since ¢, = Q,,
hence it follows that x, ... x,e L(G).

vol. 25, n® 5, 1991



484 V. GEFFERT

Conversely, let S=&x, ... x,eXZf. There are three ways of rewriting the
symbol S in the sentential form:

S=zRSx,
for each xe X, using rules in GEN,

'R "
S=u Svy,

IR _ 11
S=ul"v/,

for each s=1, .. .,r, using rules in EPC.

Thus if S=*p Sq, then pe{0’,1'}*, and ge({0”,1”} U Z,)*. Using any
rule in TEST is disabled until the symbol S disappears, since the sentential
form does not contain any substring of the form 0’0", or 1’1”. On the other
hand, after using some S — u® ) € EPC, there is no possibility to use any
rule in GEN or EPC, since the sentential form does not contain the symbol
S and the rules in TEST are not capable of generating it.

Then the derivation S=%x, ... x, is of the form
S =* pSq

/by rules in GEN \J EPC,

IR 11
= PUs; U5, 4

/the symbol S is annihilated by an EPC rule, for some s, €{1, .. .,r},

=* Xx;...X,

/by rules in TEST.

Since pu;Re{0°,1'}*, vy ge({0”,1"} U X,)*, and the rules in TEST are
able only to cancel the substrings 0'0”, 1'1”, we have pu;X=¢'%, and
%, ¢=¢"x; . .. x,, for some pe{0,1}*: -

If there were a substring x;0” in v{; ¢, for some i=1, .. .,n, then we would
not be able to generate a terminal string, since there is no possibility to
cancel the symbol 0" because we cannot generate the symbol 0’ between x;
and 0. The same argument holds for x;1”. This implies that, before using
S—zRSx,, we cannot apply any EPC rule rewriting S to #*Sv,’, for
v," #¢&. Then the derivation must be of the form:

Ist stage:

S =* o®Sx,...x,
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Jusing S — zX Sx;e GEN, or S — u® Sv;"e EPC, for v}’ =¢,
2nd stage:

* ‘R _. 'R 'R 1 2
=% 0 Uy U, Svg VXX,
‘R . 'R ‘R 12 1
= QT Uy . USTUG VgXy X,

fusing  S—>uXSv,eEPC, and S-—uXv eEPC, for  some
L 2 5 PR & Sy >

3rd stage:
=* X;...x

Jusing 00" — ¢, 1’1" > e TEST.

Now we are going to elimate the use of EPC rules in the 1st stage. It is
easy to verify that v, ... v =u, ... u, @, or, equivalently,

(p S]_"' s,\vsl"' sp

since we were able to derive a terminal string in the 3rd stage. If, in the first
stage before applying S —»zX S xl € GEN, we rewrote S to u,RS v, for v;'=¢
(and hence also v,=¢), then ¢® would contain a substring #* zX, for some
ie{1,...,n}. But then ¢ would contain a substring z,, u,

Then we would have s, .. .,s,€{1, .. .,r} such that
Q= ... U\, - - - Vg

would contain a substring z, u, for some x;eX;, and some te{l,...,r}
such that »,=¢. But that would contradict our assumption that the EPC P
we have used satisfies the conditions of Lemma 2. Consequently, using an
EPC rule in the 1st stage of derivation, we obtain a sentential form from
which we are not able to derive any terminal string in the 3rd stage. It thence
appears that each derivation generating a terminal string must be of the
form:

Ist stage:

S =% X . Z88x ... x,

Xn

/by rules S — z.X S'x;€ GEN,
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2nd stage:
* 'R 'R . /R 'R rr 1"
=%z Lz Uy U, ST U Xy X,
'R 'R /R tR_1t 1
= Zi T Ug o UGV Vg X Xy

/oy rules S-oulSv eEPC, and S-—uv, €EPC, for some
Sps .- se{l, ..}, 121,

3rd stage:
=* x, ...x,

/by rules 0'0” —» ¢, 1'1” —> e TEST.

Then, since we were able to derive a terminal string in the 3rd stage, we
get

Vg vv s U= Uy oo UgZy oo 2y

and hence we have s; ... s;e{1,...,r}, /=1 such thats, ... s, is a solution
of P for x, ... x,, but this holds only if x; ... x,e L(P)=L. O

It can be easily seen that several known results are simple consequences of
this theorem. For example, any recursively enumerable set can be recognized
by a nondeterministic 1-state machine having two 1-turn pushdown stores.
We also obtain that each recursively enumerable language L can be expressed
in the form L=p(L,), where L, is a deterministic linear language, and p is a
cancellation of well-balanced parentheses subwords over alphabet consisting
of two pairs of parentheses. We can use a cancellation of a palindrome prefix
over two-letter alphabet as well. If we restrict p to be a polynomially-bounded
erasing then we shall obtain a characterization of the class of NP-languages
by deterministic linear (and hence also by context-free) languages.

4. SOME OTHER NORMAL FORMS

In this section, we shall be interested in a number of other normal forms
which generate all the recursively enumerable languages. We shall consider
several normal forms, but constructions will be given uniformly, by showing
the transformations for putting the grammar exhibited in Theorem 3 into
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these forms, Firstly, we. present an “improved” version of Theorem 3, reduc-
ing the number of nonterminals by one, and simplifying: one of the non-
context-free rules:

THEOREM 4: Each recursively, enumerable language L can be generated by a
phrase-structure grammar with 4 nonterminal symbols, using only context-free
rules of the form S — v, where S is -the initial symbol, and two extra rules
AB—¢g, CC —&.

Proof: We may use Theorem 3 to construct a phrase-structure grammar
G=(N, T, P, S) generating a language L and then to encode the symbols
0, I, 0", 1”eN by symbols 1, 0, 0. Formally, define a homomorphism
h:{0, 1,07, 1"} = {1,0, 0}*, where:

h(0)=100,  h(0")=001,
h(1)=19, h(1")=0L.

But then we have to modify also the grammar G, which gives
G'=(N', T, P, S), where

N'={S,1,0,0},
/instead of N={S,0",1',0",1" },
P'=GEN \JEPC'\JTEST’,
the rules are changed as follows:
| GEN'={S8- h(z]) Sx; xeZ_},
finstead of S — 2k Sx,

EPC'={S - h@®) Sh(2)); s=1, ..., r}
US> h@®h@); s=1, ..., r},

/instead of S — uXSv., §— uXv].

The cancellation of substrings 0°0”, 1’1" in the 3rd stage of the derivation
will now correspond to the cancellation of 100001, and 1001, respectively.
But

TEST' ={00—¢, 11 > ¢}
will do as well.

vol. 25, n° 5, 1991



488 V. GEFFERT

A: The first two stages of the derivation: If G rewrites the symbol S to
z'® Sx by a rule in GEN, or to u;® Sv) by a rule in EPC, then G’ can rewrite
S to h(z®)Sx, or to h(u®) Sh(v.), by the corresponding rule in GEN' or
EPC’, respectively.

On the other hand, neither TEST rules in G, nor TEST' rules in G’ are
applicable, since the sentential forms contain the symbol S: In G, the sentential
form structure is S =% pSqwe {0, 1" }*S{0”1” }* =¥, there are no substrings
00", 1’1" in pSgw. This corresponds to S=-¥%, h(p)Sh(g)we {100, 19}*
S{001, 01 }*Z} in G’, the sentential form does not contain any substrings
@0, or 11.

Hence, by a straightforward induction on the length of the derivation, we
have that S=¥%p Sqw if and only if S=¥%, 4 (p) Sh(g) w. Similarly, the annihi-
lation of the symbol S itself will be carried out by rewriting S to
AR h(v), instead of wR v

B: The third stage of the derivation: It is obvious that if @R @ w=%w,
then @;=@,, and also A(e*) h(0y)w =}, w. The cancellation of zeroes by
the rule 0’0" — & (or cancellation of ones by 1’1" — ¢) corresponds to the
cancellation of 100001 (or 1001), respectively, by the use of 00— g,
11 > e TEST'.

Now, consider the case in which no terminal string can be generated from
o' R oy w in G, because @, #@,. We shall show that neither can we derive a
terminal string from A (o) A (¢5)w in G'.

Bl: If @, and o, differ in at least one bit (at the same position) then the
derivation will be blocked after some steps, because we shall obtain different
symbols at the “frontier” between {0, 1'}* and {0”, 1" }*:

Either
oRosw = VRO w,
or
O pTw =E VIO w.
There i1s only one possible derivation here, since there is always at most one
substring that can be modified, by at most one rule. From now on, the

derivation cannot continue (in either case), since there are no substrings 0’0",
1’1", or S in the sentential form.

In G’, this corresponds to the only possible derivation, i.e.,
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either
RO R w =5 hWR)109 01AW;)w,
or
h(@F) h(e)w =% AT 10 001 AWT)w,

respectively. There is possibility to continue, but the only possible step is
either

ROED 10001 W =¢, AW 101 AT w
6{100, IQ}* 101 {001, 01 }*Zf,
or

W) 100012 (Y)W =g, h(UF) 101 AV w
e {109, 10}*101{001, 01 }* =}

The derivation is blocked in both cases, there is no substring to be modified.
Hence, no terminal string can be derived in G’ either.

B2: If ¢, #®,, but there is no position with different bits, then o, is a
proper prefix of ¢@,, or vice versa. The derivation in G will then produce
either

PRoyw =5 YRwe{0,1'}*xF,
or

ofeyw =% Y we{0”, 17} IF,
corresponding to

h(YRywe {109, 10}* =¥,
or to
h(y"ywe {001, 01}* =7,

respectively. Neither here can we derive a terminal string.

Thus, we have shown that ofoyw=%w if and only if
h(@®) h(9y)w =%, w, which completes the proof. [J
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We shall now present a normal form using only three nonterminals, but a
little longer non-context-free rules:

THEOREM 5: Each recursively enumerable language L can be generated by a
phrase-structure grammar with 3 nonterminal symbols, using only context-free
rules of the form S — v, where S is the initial symbol, but two extra rules
AA— ¢, BBB— .

Proof: We shall again simulate the phrase-structure grammar
G=(N, T, P, S) of Theorem 3, but now a homomorphism 4 will be defined
by

R(0)=100,  K(0")=0l,
a(1)=10, A (1”)=001.
Define a grammar G'=(N', T, P', S) by N'={S, 0, 1},
P'=GEN'\J EPC'\J TEST',
where
GEN’' = { S—>h(zZ®)Sx; xeX, },
EPC'={S—>h@®Sh@),s=1, ..., r}
U{S=>h@®hr@); s=1, ..., r}
Cancellation of 0’0", and 1’1" will now correspond to

TEST'={000-—>8, 11 —>s}.

A: For the first two stages, we can state the exact correspondence between
derivations in G and in G":

S =% oARSPIw = oNoBy By W= oy w
will correspond to
S =& h)ShEB)w
=g hF) AR B) B w=h(eT) h(e3)w.

The TEST’ rules of G’ are not applicable, since the sentential form is in
{100, 10 }*S{01, 001 }*X¥, and hence there are no substrings of the form
000, or 11.

B: In the third stage of the derivation, we have A(Q{)h(0y)w
e{100, 10 }* {01, 001 }* =¥, so the only place we can modify is at the frontier
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between 4 (¢®) and 4 (@}), by TEST' rules. The argument is therefore similar
to the proof of Theorem 4, there are the same cases to consider.

Both cancellation of zeroes and ones correspond to the cancellation of
10001:

ROYVAO)=10001 =g 11 = &
R(IYA(1)=10001 =g 11 =g &,

by the rules 000 »¢, 11 »¢ e TEST'. Therefore, if @@y w=%w, then
©;=9,, and also A (@) h(ey) w=5, w.

B1: If @, #¢, and we get a “prohibited”” combination of different frontier
symbols, i.e.,
either

ooz w =% V0w,
or
ofoiw =% YRO1 YW,
then either
(@ (e w =§ hET)1001AW)w,
or
h(@Fh(@)w =%, h(Yi*)100001 A (Y3)w,

respectively. The derivation has already been blocked in the first case, since
the sentential form is in {100, 10 }* 1001 {01, 001 }*X}. In the second case,
the derivation can continue, but the only possible step is

R 100001 W)W =¢ AT 101 A W5 w
{100, 10}* 101 {01, 001 }*=}.

No further steps are possible and therefore the derivation is blocked.

B2: If ¢, #©, because @, is a proper prefix of @,, or vice versa, then we
get a sentential form in {0, 1'}* Z¥, or in {07, 1”}* £¥. In G, this corres-
ponds to sentential forms in {100, 10}* =¥, or {01, 001 }* =}, respectively.
No terminal string can be generated in either case. [

vol. 25, n® 5, 1991



492 V. GEFFERT

Now, we shall show a grammar with a single extra rule:

THEOREM 6: Each recursively enumerable language L can be generated by a
grammar with 3 nonterminal symbols, using only context-free rules of the form
S — v, where S is the initial symbol, and a single extra rule ABBBA — &.

Proof: The phrase-structure grammar of the previous theorem used two
extra rules, namely 000 — ¢, and 11 — ¢. A careful study of the proof reveals
that, in each derivation generating a terminal string, these rules were always
applied in pairs, rewriting by 000 — £ was immediately followed by the use
of 11 — &. Furthermore, they were always applied at the same place, i.e.

= o 10001B8"w = o'lIf"w = o'Bf'w =...

Therefore, a single extra rule 10001 — ¢ will do as well. O

Finally, we are going to present another normal form using only a single
non-context-free rule:

THEOREM 7: Each recursively enumerable language L can be generated by a
phrase-structure grammar with 4 nonterminal symbols, using only context-free
rules of the form S — v, where S is the initial symbol, and a single extra rule
ABC — &.

Proof: The idea is again to imitate the phrase-structure grammar of Theo-
rem 3. The detailed proof is very similar to the previous ones, so we content
ourselves with a construction. Define a homomorphism 4 as follows:

h(0)=AB,  h(0")=C,
n(1=4, h(1")=BC.

Next, construct a grammar G'=(N', T, P, S) by N'={S, 4, B, C},
P'=GEN'\J EPC'\ TEST', where

GEN'={S->h(z}Sx; xeZ },
EPC'={S—huF)Sh@)s=1, ..., r}

U{S->h®h@));s=1,...,r},
TEST' ={ABC—¢}. O
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5. TIME AND SPACE COMPLEXITY

First, we shall briefly review the time and space complexities of grammars
constructed in Section 3 and 4. Then we shall show that the simulation of
nondeterministic k-tape Turing machine by a grammar in normal form is
quadratic, i. e. it is not less time efficient than the simulation by an arbitrary
phrase-structure grammar.

Let L be a recursively enumerable language generated by some g-system
G. By Theorems 1 and 2, we can construct an extended Post correspondence
P such that L(P)=L(G). If a word w=x,...x,e L(G) is generated by a
derivation

S=wo =g Wy =g ... g W =g W =W

then, by (2.7), there exists a solution of P for w, i.e. there exist

S, - se{l, ...}, 121 satisfying v, . ..o =u, .. .ugyz,, ...z, such
k

that /<c¢ ) |w;|. It can be shown that the simulation of P by a phrase-
i=0
structure grammar of Theorem 3 is linear: The first stage of its derivation

consists of n steps, n=|w|=|w,,,|, the second stage requires / steps,
k

I<c w; |. The third one requires @5 | ste S, since each step cancels exactly
= i 2 1Y
i=0

one symbol of @3, together with one symbol of ¢;f. Note that
l 1

=Y |vi|=), |v,|SM.l, where M=max|v;| (a constant dependent

i=1 i=1 i=1

only on P). Thus the total number of steps is at most

| o3

k+1

n+l+M.ILd 1<d ) |w,],

i=0

for suitable constants d', d. The space complexity is also bounded by
OQ.|w;.

All other grammars, constructed in Section 4, simulated the grammar of
Theorem 3. Each nonterminal symbol was encoded by a string of length at
most three, similarly, each derivation step was imitated by at most three
steps. Thus all these grammars have the same time and space bound
0| wi).

In order to establish our normal forms, we could use the classical definition
of the phrase-structure grammar as well, instead of introducting a notion of
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a g-system. However, an iterated rewriting of the sentential form by a
nondeterministic 1-a-transducer (i.e. g-system) makes manipulation much
easier and mentally simpler. For example, we have shown in [1] that every
regular set can be generated by logarithmically time-bounded g-system having
>'|w;|€ O (n), which gives a linear time-bound for the phrase-structure gram-
mar in our normal form, for each regular set. We are now going to show that,
if a language L is recognized by a k-pushdown non-deterministic automaton 4
of time complexity 7, (n) and space complexity S, (n), then L is also generated
by a g-system of the same time and space complexity (for each k). From this
we shall obtain a phrase-structureTgra;mmar in normal form with the time
A
and space complexity bounded by ), p,, where p, is the number of symbols
t=0
saved onto the pushdown stores of A at time ¢.

The proof is quite intuitive: Let x,...x, be an input of 4. To describe
the computational history of A4 at any given time we need to know three
things; the state g it is in, what has been scanned on the input tape, i.e.
X;...x; and what is on its pushdown stores, i.e. strings A4;B; (with the
symbol A4; on top, for each j=1, ..., k). In g-system this will correspond to
the sentential form

Xy...%9A,B,BA, B, B... A BB,

where B is a new symbol, used as a bottom-of-the-stack marker. 4 move by
a particular transition (q', v,, .- ., Y, €0(q, a, 4,, . .., 4;,)—theautomaton
changes its state from g to ¢’ and replaces the topmost symbol A4; by the
string y; on its j-th pushdown (for each j=1, ..., k), providing the input
head scans the symbol a-will be imitated by rewriting the above sentential
form to

Xy...x;09' v By BY, By B. . v By B.
(Where a=x;, {, or a=¢.) The following edges in G are needed:

=/x) x/x(?) z/x(2)

vaq’ ~41/8 ¥ p/p ~Ao/? B/B

qar q4 q L) 92
0 2/x(®
A
e . k/ : ‘ B/B @
U Gy UG

(1) - for each erL
(2) - for each x#B
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(For each transition of A, we use some new distinct states gy, ..., g,
q1 - - - g SO the only states shared by different paths are ¢q;, and gr.) The
derivation will be initiated by rewriting S to g, (Z; B)*, which corresponds to
the initial computational history of A4, and terminated by a path of edges
from g to gy erasing gp B*. (q;, gz, and Z; denote the initial and final states
of A4, and its initial pushdown symbol, respectively.) It should be clear that
A and G represent the same language, and that their time and space complexi-
ties are asymptotically equal.

Since k tapes can be easily replaced by 2 k pushdowns, it follows immedi-
ately that each k-tape nondeterministic Turing machine can be replaced by a
phrase-structure grammar in normal form of time complexity
O(T4(n).S,(m)<= O (T%(n). This simulation result can be extended up to
the multihead multidimensional multitape machines, to the L-systems with
interactions, and so forth.

We would like to conclude this paper by an interesting question concerning
a phrase-structure grammar having all of its rules context-free, but one pair
of canceled parentheses, i.e., one extra rule of the form ( ) — &, which was
presented in [2]. [The two extra rules of Theorem 3 can be viewed as a
cancellation of two pairs of parentheses, i.e., ( ) —¢, { »—¢&] This gram-
mar is equivalent to a grammar with context dependency restricted to syn-
chronization, a monotonic variant of this grammar corresponds to an abstract
family of languages (not full) lying between the context-free and the context-
sensitive languages. The same class of languages was obtained independently
in [8], by the use of the Dyck,-reductions on the context-free languages.
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