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by M. Maponia (%), S. SaLemi (*) and T. SporTELLI (%)

Communicated by J.-E. PIN

Abstract. — This paper deals with z-submonoids and z-codes. It is shown that the z-submonoid
generated by a z-code is free. Moreover, a generalization to the z-codes of the Schiitzenberger’s
theorem regarding maximal and complete codes is given: a recognizable z-code is a z-code maximal
if it is z-complete.

Résumé. — On montre que le z-sousmonoide engendré par un z-code est libre. En outre, on
- prouve une généralisation du théoréme de Schiitzenberger sur les codes maximaux et complets : un
z-code reconnaissable est un z-code maximal si il est z-complet.

1. INTRODUCTION

In the framework of automata theory, recent studies [1, 3, 4, 5], have
examined the relationship between the languages that are recognized by a
two-way automaton and the languages that it is possible to obtain by the
closure of a new “‘zigzag product” on words.

Indeed, in [1], the notions of “‘zigzag factorization” and ‘“‘zigzag code”
have been introduced and an algorithm to verify if a set of words is a z-code
has been given.

In this paper, we have preferred to change the terminology and, for short,
the previous terms have been modified in “z-factorization” and “z-code”
respectively.

Based on these concepts the paper is organized as follows.

First the point of view is very close to that used in [1].

(*) Received September 1989, revised February 1990.
(*) Universita di Palermo, Dipartimento di Matematica ed Applicazioni, via Archirafi, 34,
90123 Palermo, Italy.
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306 M. MADONIA, S. SALEMI, T. SPORTELLI

In section 2, given a subset X of 4*, we define the set X' and we introduce
some basic notations.

Afterwards, we define a ternary partial operation in A*, which we denote
by 1, and, based on this operation, we define the z-submonoids of A*, as
the subsets of A* which are stable with respect to T operation.

Then we show that X' is a z-submonoid of 4* and, in particular, that it is
the smallest z-submonoid of 4* that contains X.

Moreover we characterize the class of the z-submonoids of 4* and we
show that this class is properly included in the class of the submonoids of A*.

It is also stated that any z-submonoid N of A4* has only one minimal
generating system with respect to the 1 operation and such a system is
denoted by ZG (V). This approach leads to discover that ZG(N) is always
included or equal to the minimal generating system of N with respect to the
well known * operation.

By using results previously developed in [1], the section 3 deals with the
concept of z-code and introduces the definition of trivial z-code.

It is shown that not always ZG(N) is a z-code also when N is a free
submonoid of A*; conversely, it is proved that if ZG(N) is a z-code, then N
results also free with respect to * operation.

In the section 4 the definitions of maximal z-code and of z-complete set
are given. Using these notions, we obtain a generalization of the well known
Shiitzenberger’s theorem regarding maximal and complete codes.

At last, the measure of a z-code is considered in the section 5, and it is
shown that there exist some z-complete (or maximal) z-codes which have
measure less than 1.

To conclude some open problems are given.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let 4 be a finite alphabet and A* the free monoid generated by 4. As
usual, the elements of A* are called words and the empty word is denoted
by 1. Let X< A4*.

It is possible to define in A* X 4* an equivalence relation generated by the
set T={ ((ux, v), (u, xv)):u, ve A*, xe X}.

If ((u, v), (', v"))e T or (', v"), (u, v))e T, then we say that (u, v) produces
in only one step (u', v"), and we denote this fact by (u, v) - (¢, ).

Informatique théorique et Applications/Theoretical Informatics and Applications
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We call “step to the right on x” a step as follows: (u, xv) - (ux, v); in the
same way (ux, v) — (u, xv) is called a “step to the left on x”. A path is a
sequence of steps.

With u® v we denote the equivalence class of the pair (u, v).

DEerFINITION 1: Given a set X< 4*, X7 denotes the set:
X'={wed*: 1®@w=w®1}.

This means that a word we A* belongs to X7 if there exists at least one finite
path between the pairs (1, w) and (w, 1). Clearly the first and the last step in
the path must be “steps to the right”.

The following theorem has been proved in [1]:

THEOREM 1: For any recognizable X € A* there exists an effectively compu-
table deterministic automaton that recognizes X'.

Thus we obtain from the previous theorem that X' e Rec (4*) and therefore
that X' is a rational set.

Example 1: Let A={a,b} and let X={a’ba*, a®b, b, ba }.
The word w=aaba¢ X* but we X'. Indeed, it suffices to consider the path:

1, w)=(1, aaba) — (aab, a) - (aa, ba) — (aaba, 1)=(w, 1).

This path can be visualized as follows:

a a a

Remark 1: For any X< A* we have X*<X'. In fact, if weX*, then
W=Xx,X,...x, with x;e X for i=1,2,...,n Therefore, there exists a path
(given by a sequence of steps to the right), as follows:

Aw)=,x;...x,) > (X1, x5 ... xX)—> ...

(X X X)) 2 (XL x,, D)=(w, 1).
The converse is not always true, as it has been shown in the example 1.

DErINITION 2: Given a word we X', a z-factorization of w over X, of length
m, is a sequence of steps (u;, v;) = (U;4 1, v;44) fori=1,2, ..., m which verifies
the following conditions:

Loty =v,=1;

2. 0y =Upy = W;

vol. 25, n° 4, 1991
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3. (uy, v) #(uy, v) for h#k.

The condition 3 is necessary to exclude the presence of “cycles” in the
z-factorization. In fact, since these cycles should be repeated an arbitrary
number of times, they should generate an infinity of different paths from
(1, w) to (w, 1), corresponding, indeed, to the same z-factorization of w
over X.

DEeFinNtTION 3: Given we X', I(w, X) denotes the minimal length of a
z-factorization of w over X.

DEerFINITION 4: A z-factorization of we A* is trivial iff its length is equal
to 1.

Let us recall the following classical definitions (see [2]):

DEeFINITION 5: A submonoid of 4A* is a subset M which is stable under the
concatenation and which contains the neutral element of 4*.

DEFINITION 6: Let M be a submonoid of 4* and let YS A*. Y is a minimal
generating system of M (with respect to the * operation) if:

— Y*=M

— for any Z< A* such that Z*= M it holds Y= Z.

It is well known that any submonoid M of 4* admits an unique minimal
generating system (see [2]), which, from now on, we denote by G(M). In
particular: G(M)=(M—1)—(M—1)>.

Let us define a new ternary partial operation “1” in A*.

Given u, v, we A* we define:

' ow' if u=u'v and w=ow’ with ', w'e 4*

undefined otherwise

T(u,v,w)={

DEFINITION 7: A z-submonoid of 4* is a subset N which is stable under
the T operation and which contains the neutral element of A*.

Remark 2: Any z-submonoid of 4* is a submonoid of A*. In fact it suffices
to remark that for any u, we A*, uw=1(u, 1, w). Therefore the T operation
coincides to the concatenation whenever we set v=1.

The converse is not always true: there exist submonoids of A* that are
not z-submonoids of 4*. For example let M= {q, aba }*. Of course M is a
submonoid of 4*, but it is not a z-submonoid of 4*. In fact if we consider
1 (aba, a, aba)= ababa¢ M and thus M is not stable under T operation.

Informatique théorique et Applications/Theoretical Informatics and Applications
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Remark 3: For any X< A*, X' is trivially a z-submonoid of 4*.
Moreover:

ProposITION 1: For any X< A*, X' is the smallest z-submonoid of A* that
contains X.

Proof: We have just remarked that X' is a z-submonoid of A* and that
X*< X', so X< X'; in order to complete the proof, it suffices to show that,
if N is a z-submonoid of A* that contains X, then X'< N.

We set C, (X')={weX", such that /(w, X)=h}.

So we have to prove that C,(X")S N for every positive integer . We
proceed by induction on A.

For h=1 C,(X")=X< N and the proposition is trivially true.

Now we suppose that C, (X")SN for every k<h and we show that
G(XHeN.

In fact, let we X' such that /(w, X)=h. Then there exists a z-factorization
of w over X of length 4, as follows:

(la W)=(1, Wy w" wm) - (wh w' wm) ..
- (Wl W”, wm) - (wl w' Wi 1)= (W, 1)

with w,, w", w, e 4*.
We set

L,,={x,€A*, such that the pair (x,, y,) appears in the z-factorization of w}
and
R, ={y,€A*, such that the pair (x,, y,) appears in the z-factorization of w}.

Then let x be the shortest element of L,, that is prefix of w, and let y be the
shortest element of R, that is suffix of w,. With these notations we have:

w=1{(xw, w, w,y) with w, € A*,

such that w=xw,y (see fig. 1).

Figure 1

vol. 25, n° 4, 1991
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But w;e X'. In fact, in the z-factorization of w over X, there is the subpath

2w ) o (X y) o 2 (X Y) o owpy) >
such that:
— (% wy) = (xy, y1) and (x,, y,) = (xw;, y) are steps to the right
— x is prefix of any x; for i=1,...,¢
— yis suffix of any y, for i=1, ...t

From analogous considerations we have that xw,, w;ye X'.

Since I(xw;, X)<h, [(w;, X)<h and I(w;y, X)<h, we have that xw, w,
w; ¥y €N, by inductive hypothesis. Therefore, since N is stable under the
operation, we N and this completes the proof.

The following proposition 2 characterizes the submonoids of 4* that are
also z-submonoids of A*:

ProposITION 2: Let M be a submonoid of A* and let Y=G (M). Then M is
a z-submonoid of A* iff Y*=1Y1.

Proof: We first show that if Y*= Y, then M is a z-submonoid of 4*.

From Y=G (M) we have Y*=M, But Y*=Y' thus it follows that M= Y!
and trivially M is a z-submonoid of 4*.

Conversely, let M be a z-submonoid of 4*, M= Y*. Since YS Y*=M, we
have that M is a z-submonoid of A* that contains Y. From the proposition 1,
we know that Y' is the smallest z-submonoid of 4* that contains Y and so
Y'c M= Y*. The inclusion Y*< Y is trivially true and therefore we have
Y=Y

Example 2: Let Y= { aab, ab, abb, aabb} and let us consider the submonoid
of A*, M=Y* It is possible to verify that Y=G(M) and that Y*=Y'.
Therefore M is a z-submonoid of 4*.

Given a z-submonoid N of A*, let us now define a minimal generating
system of N, with respect to the 1 operation; from now on, it is called a
minimal z-generating system.

DEeFINITION 8: Let N be a z-submonoid of 4* and let X< 4*. X is a minimal
z-generating system of N if:

— X'=N

— for any Z< A* such that Z'=N it holds X< Z.

Therefore, let X be a subset of A*; if we consider the z-submonoid X' of
A*, not always X is a minimal z-generating system of X.

Informatique théorique et Applications/Theoretical Informatics and Applications
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Example 3 Let
X={a* ab, aba®, aba®b, aba® ba?, aba® ba, aba® ba®, aba® b*, aba® b* o, b, ba*}.

X isn’t a minimal z-generating system of the z-submonoid X' of 4*. In fact
there exists

Z={a* ab,aba® ba, aba® ba®, b, ba* }

such that: Z& ¥ and Z'=X".

The following proposition 3 shows the relationship between a minimal
z-generating system of a z-submonoid N and G (N).

ProrosiTioN 3. Let N be a z-submonoid of A* and suppose that X is a
minimal z-generating system of N. Let Y=G(N), it follows that X< Y.

Proof: Since Y=G(N) and X is a minimal z-generating system of N, we
have 7*=N=X" Let we X. Since X< X'= Y*, w admits a factorization over
Y, let it be w=y, ...y, with y;e Y i=1,...,n and suppose n>1. On the
other hand, Y< ¥*= X" and, therefore, any word belonging to Y admits a
z-factorization over X. This implies that w should admit a non trivial
z-factorization over X contradicting the hypothesis that X is a minimal
z-generating system. Thus n=1 and we 7.

We now show that any z-submonoid N of 4* has a minimal z-generating
system; indeed, we prove that such a system is unique and it is effectively
deduced from G (N).

Prorosition 4: Let N be a z-submonoid of A* and let Y= A*, Y=G(N).
Then the minimal z-generating system of N is unique and it is (Y— Ty) with
Ty={yeY:l(y, Y—y)>1}.

Prooff: First we show that (Y — Ty) is a z-generating system of N, namely
that N=(Y—Ty)'. First we show that N (Y — Ty)'. It suffices to verify that
any we N has a z-factorization over (Y —Ty). In fact, since Y=G () then
Y*=N. Thus if we N then we Y*,i. e. w=y,y, ..y, with €Y, i=1,...,n.
Suppose that at least one among y; belongs to Ty, let it be y,. Therefore, it
should exist a non trivial z-factorization of y, over Y, i. e. it should exist a
path:

Ly)-Ouy)— ... 201
with

1

W= and  y,y'ed*.

vol. 25, n® 4, 1991
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Therefore, it is possible to derive the z-factorization of w over (Y- Ty) as
foliows:

Aw)=y1ys e V)= o= (Ya V)
0775 ZINS ENYS 5 VIPENIINS 7 R O 2 ZYNINN SN 95 M TARPENIINS U B
O I N N A e V2D - o O L (AR O X

On the other hand (Y- Ty)' S N. In fact (Y—Ty)S Y<S Y*=N. Therefore N
is a z-submonoid that contains (¥ — Ty) and, since (Y —Ty)' is the smallest
z-submonoid that contains (¥ —T}), we have that (Y—Ty)'S N=(Y—Ty)".

Now we can prove that (Y — Ty) is a minimal z-generating system. Suppose
that there exists Z< A* such that Z"=N. We show that (Y — T,) is contained
in Z.

Let ye(Y—T,) then ye(Y—T,)'=N=2Z"; therefore there exists a
z-factorization of y over Z. But Zc Z'=(Y—T,)" and this implies that exists
also a z-factorization of y over (Y- Ty). Since y ¢ Ty, such a z-factorization
has only one step and this step is to the right; it follows that also the
z-factorization over Z has only one step and this step is to the right; according
to the previous observations it follows that there exists ze Z such that y=z
and yeZ.

From now on, ZG(N) denotes the minimal z-generating system of N,
where N is a z-submonoid of 4*.

Remark 4: Given N z-submonoid of A*, the proposition 4 shows that
ZG (N)< G(N). This points out that the T operation is more powerful than
the * operation in the class of the z-submonoids of 4*.

Example 4: Let Y= { aab, ab, abb, aabb } , as in the example 2, and consider
M=7Y* We have seen that G(M)=Y and M=Y*=7Y" is a z-submonoid of
A*. Then it is possible to find the minimal z-generating system of M; in
particular ZG (M)={ aab, ab, abb} . In fact Ty={aabb}, since:

(1) I(aabb, Y—aabb)>1; in fact, it suffices to consider the following
z-factorization:

(1, aabb) — (aab, b) — (a, abb) — (aabb, 1);

(ii) any other word of Y belongs to Ty.
In this case ZG (M) £ G (M).

Informatique théorique et Applications/Theoretical Informatics and Applications
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3. z-CODES AND FREE SUBMONOIDS

An algorithm for testing if a set X is a z-code or not is given in [1]. This
test is based on some properties that must be verified by the non-deterministic
automaton which recognizes X'.

This section concerns the relationships between z-codes and minimal
z-generating systems. Some examples and new results on z-codes and trivial
z-codes are presented.

Moreover, it is shown that the minimal z-generating system of a z-sub-
monoid of A%, free with respect to * operation, is not always a z-code.

Nevertheless, the theorem 3 states that any z-submonoid, which admits as
minimal z-generating system a z-code, is free and therefore it has also a
minimal generating system that is a code.

DermiTioN 9: 4 set XS A4* is a z-code iff any word we A* has at most
one z-factorization over X.

Remark 5: If X< A* is a z-code, trivially it must be also a code.

Remark 6: If X is prefix or suffix it is easy to see that X is also a z-code;
in fact, any word weA* admits at most one z-factorization and this
z-factorization is equal to the factorization of w over X. In this case X*=XT,

Example 5: Let X={a, aba} be a code.

It is easy to see that X is also a z-code. In fact, if we consider the words
of A* which admit a z-factorization with at least one step to the left, they
must be as follows:

u a b (a b a Y with u,ve A*

On the other hand, the word w=ababa hasn’t any other z-factorization.

Example 6: Let X={a®ba*, a*b, ba}. X is a code and it is also a z-code.
A formal proof that X is a z-code is based on some properties regarding the
non-deterministic automaton which recognizes X' (see [1]).

On the other hand, it is not easy to verify, as we have done in the previous
example, that X is a z-code, by simple considerations on the words of X.

Example 1: Let X={abb,abba,ba,babb}. X is a code, but it isn’t a
z-code. In fact, the word w=abbabb has two different z-factorizations:

(1, abbabb) — (abb, abb) — (abbabb, 1)
(1, abbabb) — (abba, bb) — (ab, babb) — (abbabb, 1).

vol. 25, n° 4, 1991
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Remark 7: Let X be a z-code. Then X=ZG (X"). In fact, suppose that X
isn’t the minimal z-generating system of X'; then there exists Z< 4* such
that Z"— X" and Z<¢ X. This implies that there exists xe X such that x¢ Z.
Since X<X'=2Z', x admits a non trivial z-factorization over Z (this
z-factorization is not trivial because x¢ Z). But Z< Z'= X", therefore such a
z-factorization over Z gives a non trivial z-factorization of x over X and this
is a contradiction being X a z-code.

DerFiNiTION 10: Let X be a z-code. X is a trivial z-code iff X' = X*.

Prefix or suffix codes give some examples of trivial z-codes. The code
X= { a, aabbb, bb} , although it is neither prefix nor suffix, is a trivial z-code.

COROLLARY 1: Let X be a z-code and let Y=G (X"). Then X< Y. Moreover
X is a non trivial z-code iff X£ Y.

Proof: It immediately follows from remark 7 and from proposition 3.
In the theory of codes the following theorem is well known (see [2]):

THEOREM 2: If M is a free submonoid of A*, then G (M) is a code. Conversely
if YS A* is a code, then the submonoid Y* of A* is free and Y is its minimal
generating system.

As regards to z-codes, the following problem rises:

ProBrLEM: Let YE A* be a code. By the theorem 2 we have that Y* is a
free submonoid of 4* and G (Y*)= Y. Suppose that ¥* is also a z-submonoid
of A*. By the proposition 4, ZG(Y*)=Y~—T,. A question obviously rises:
such a ZG (Y*) is always a z-code?

The answer is negative. In fact, it suffices to consider the following example.

Example 8: Let Y={ aa, aab, ab, abb, bb}. Y is a code then Y* is free. It
is possible to verify that Y*=Y' and therefore Y* is a z-submonoid of A4*.
Moreover Y=ZG(Y*) since T,=. But Y isn’t a z-code (for instance,
w=aabb is a word which has two distinct z-factorizations over Y).

Nevertheless, the following theorem holds:

THEOREM 3: Let N be a z-submonoid of A*. Let Y=G(N) and X=ZG (N).
If X is a z-code then Y is a code.

Proof: Trivially Y*=N= X",

In order to prove that Y is a code, it suffices to prove that u, vw, uv, xe N
imply ve N.

Informatique théorique et Applications/Theoretical Informatics and Applications
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Since Y*=N=X", there exist f;, f,, f3 and f, z-factorizations over X of u,
ow, uv, w respectively.

Let us suppose

o (Lw = (ug, uy) = o = (W %) = (Uyys U )=, 1)

Lo (Lww) = (2, 2) = o =2 (2, 2) = (241 2o ) = (0w, 1)
fat(Luw)— (ty, 1) > oo 2 (U 1) = (g, Toa )= (o, 1)

Jat (Lw) = (wy, wil > oo 2 (W, W) = (Wi 1, Wi 1) =W, 1)

and let us consider the word uvwe N.

If we opportunely combine the z-factorization f; with f,, and f; with f,
we can obtain two z-factorizations over X, f} and /%, of the word uow

S0 (L wow) > (uy, uyow) > oo o (U, ty, 0W) = (g g, Uy g g VW)
=(u, vw) = (uzy, z3) > ... > (U2, 2) > (UZ,44, Zp44) = (oW, 1)
Fa o (L uow) > (8, (Ew) > oL o (8, (W) > (Tei g, Ly W)
=(uv, w) = (uowy, wy) - ... = (ow,, w,,) = oW, 4 1, Wy, 4 1) = (uow, 1).

Since X is a z-code, f| must be equal to f5. Then, suppose (u, vw)=(t,, 1, w)
with 1 <h<s+1, and, therefore, (uz,, z))=(t,1 1, th41 W)

Let us consider in f7, the sequence of steps
(th9 t;x W) - (th+ 1 t;x+1 W) AR (ts3 t; W) - (ts+ 1> t;+1 W)=(u‘0, W)

We have that u is prefix of #; and that ¢; is a prefix of uv for i=h, ..., s+1.
Thus we can conclude that

(1:« v)=(u_1tha v)_>(u=l th+1’ t;1+1)_') tr _>(u_1 ts: t;)
_)(u—1 ts+ 1> t;+1)=(’0, 1)

is a z-factorization of v over X.

Therefore, ve X' =N and the theorem is proved.

4. MAXIMAL Z-CODES AND Z-COMPLETE SETS

The definitions of maximal z-code and of z-complete set are introduced in
this section. An interesting result is given in the theorem 5, which establishes
the relationship between maximal z-codes and z-complete z-codes. Indeed,
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this theorem is analogous to the well known Schiitzenberger’s theorem regard-
ing the codes in.

For a more clear exposition, the theorem 5 is preceded by a lemma stating
that if X is a z-code such that G (X') is a maximal code, then X is surely a
maximal z-code.

DEerFINITION 11: Let X< A* be a z-code. X is a maximal z-code over A4 if it
is not properly contained in any other z-code over A. In other words X is a
maximal z-code iff X< Z and Z z-code imply X=Z.

DeriNiTION 12: Let X< A* and we A*. The word w is completable in X7 if
there exist two words u, ve A* such that uwve X'.

The set of the words of 4* that are completable in X' is denoted by F(XT1).

DerINITION 13: Let XS A*. X is z-complete in 4* if any word we 4* is
completable in XT.

In other words, X is z-complete in A* iff F(X")=A*.

Remark 8: Let X be a z-complete set and let Y=G(X'). Then Y is
complete. In fact, since X is z-complete, F(X')=A* But X'= Y*, therefore
A*=F(X")=F(Y*) and then the thesis.

LemMA 1: Let X be a z-code and let Y=G(X"). If Y is a maximal code,
then X is a maximal z-code.

Proof: Since Y=G(X"), Y*=X". Suppose that X isn’t a maximal z-code.
Therefore there exists xe 4* such that x¢ X and X'=XU) {x} is a z-code.
Note that x¢ Y. Indeed, if x should belong to Y, from Y< Y*, it follows
that xe Y*=X"; in other words this means that there exists a z-factorization
of x over X and such a z-factorization isn’t trivial since x¢ X. Then x has
two distinct z-factorizations over X'\ { x } (one is the non trivial z-factoriza-
tion over X and the other is trivial and it consists of a single step to the
right on x) and this is in contradiction with the hypothesis that X\ {x} is
a z-code.

Let N=(X")' be the z-submonoid generated by X’. From the remark 7,
we have that ZG (N)=X". Let us show that YU {x} =G (N).

The contradiction will follow: by theorem 3, G (N) is a code and, therefore
YU {x} is a code which is impossible.

First, xe G(N) since, from proposition4, X'=ZG(N)<G(N). Then let
ye Y and suppose y¢ G (N). Then y=uv where u, ve N— 1. The words u and
v have exactly one z-factorization over X' and in one of them a step on x
must occur, otherwise y¢G(X")=G(Y*)=Y. On the other hand, as
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yeYS Y*=X', y has another z-factorization over X’ but without steps on x.
This is impossible since X' is a z-code. It follows that Y= G () and the
lemma has been proved.

Let YeRec(4*) and suppose that Y is a code. The following theorem is
well know in the theory of codes (see [2]):

THEOREM 4: Y is a complete code iff Y is a maximal code.

We can prove a theorem analogous to the previous one, holding for the
family of the recognizable z-codes:

THEOREM 5: Let XS A* be a recognizable z-code. X is z-complete iff X is a
maximal z-code.

In order to prove the theorem we give a lemma.

LeMMA 2: Let XS A*. Suppose that X isn’t a z-code and that we A* has
two distinct z-factorizations over X. Then, there exists a suffix of w which has
two distinct z-factorizations over X, f, and f,, such that the first step of f; is
different from the first step of f,.

Proof: Consider f; and f, and suppose that the first steps of the two
z-factorizations of w are both steps on xeX. We can suppose that there
exists, in f; or f,, a step (4, v) such that u is a proper prefix of x.

Let L,={u;eA™, such that the pair (4, v) appears in f;} and
L,={u;eA*, such that the pair (4}, v}) appears in f, }. Then, let u, be the
shortest element of L, that is prefix of x and let u;, be the shortest element
of L, that is prefix of x. Suppose |u;|<|u,|, then v is a suffix of w which
has two z-factorizations over X with distint first steps (see fig. 2).

X
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™ ¢
)
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v
'
f
2
a3
£ d
[T VA
<o
N

Vik " T

Figure 2

In figure 2, the two distinct z-factorizations of v, over X are denoted one
by the dotted line and the other one by continuous line.

Proof of the theorem 5. — First we prove that if X is z-complete, then X is
a maximal z-code.
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Let us consider X7 and lef ¥=F(X1). From remark § it follows that ¥ is
complete and from theorem 3 we know that ¥ is a code. Moreovel, since
XTeRec(A¥), also 7" eRec(4¥). From previous remarks on Y.and from
theorem 4 it foilows thal ¥ is 2 maximal code Therefore by lemma |, ¥'isa
maximal z-code,.

‘We now show the converse: it ¥ 15 a maximal z-code; then X is 7-complete.

If Card (A)==1 this :s itivially true. Suppose Card (4)> 1 and suppose that
20Casn’t z-complete. Thus there exists ue A* such that u¢ F(X') Lef a be the
fist letter of the word u and ict beA—a. Let us consider x=gab!*! and
y=ux. Trivially, y¢ F(XT) [otherwise it should be ae# (X" in contiadiction
with the hypothesis] and y is “uvnbordeied”; this means that any proper
prefix of y 1sn’t a sulfix of y itseif, Moreover, y isn’t either prefix, or suffix,
ot factor of any slement of X [otherwise ye F (X))

The set X\ { v} s not & z-cods since X is a maximal z-code

Then there exists weA™ having two distinct z-factorizations, f, and f5,
over XU { v} By the lemma 2, we can choose w such that the fist steps of
the two z-factorizations are different.

It 1s useful to remark that

— both the two z-factorizations must include at least a step on y and this
step may be to the left

(wiy’ w" — (wI) ywll)
or to the right
(w,? ywll) —§ (W, y; w" ,

In fact, if any of the previous two z-factorizations of w over XU {»}
shouldn’t include at least one step on y, then there should exist iwo distinct
z-factonzations of w over X and this leads to 2 conifradiclion since X is a
z-code. Otherwise, if only one of the two z-factorizations should contain a
step on y {dossn’t matter il it is io the r'ght or to the left), it shoulc follow
ye F{X") since w' yw" e X7; bul this is in contradiction with the fact that y is
not completable in X7,

— the occurrences of the factor y in the two distinct z-factorizations
can’t have “overlap”, because y is unbordered. Indeed, if we consider the z-
factorizations of w over XU {y}, they contain a step on y and such a step
must be to the right: otherwise y should be completable in X7.

From the previous considerations it follows that for any step to the right
on y in one of the two z-factorizations of w [for instance, for the step
(w', yw'") = (W' y, w'')] there exists, in the same way, a step to the right on y
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in the other z-factorization of w [for instance (v, yv') » (¥' y, v"") with v'=n’
andv” = w"|,

In other words, the occurrences of y as a factor in f] and £, must be “to
the right” and “in the same position”.

Consider the first oggurrences of the factor y in /) and f,: since they must
be “to the right” and “m the same position”, they don’t correspond to the
first sieps of the two z-factorizations and we have that the step to the right

(“17 y2‘2>—>(l‘1)75 ZZ) (*)

with ¢,e A% and /,€ 4%, occurs in f| and f,.

Let us Lake into account the sequence of steps that precede the first step
on yin f;

(Zli Zfl) - (225 ZIZ) .. T (Zmi Ztln) - ([1) }11’2) - (riy: t2)

with z;, z2;e A™* for i=1, ..., m and the sequence of steps that precede the
first step on y in f,

(83, 51 = {52, $5) = - .. = (5, ) = (1, 1) = (1,7 1)

with s, sie A* fov j=1, ..., r.

Note that, since y¢ F(X"), z, for i=1, ..., m and s; for j=1, ..., r, are
prefix of 1, y.

Let Ly={z;eA*/1<i<m} and L,={s5;64%/1<j<r}. Let z,eL, be the
glemeni of maximal length in L, and let s, €L, be the element of maximal
length in L,. Suppose |z,|2|s,|. Then z,eX' and it has two distinct
z-factorizations over X derived by a suitable combination of steps of f| and

J2 {ses fig. 3).
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Figure 3
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In figure 3, the two distinct z-factorizations of z, over X are denoted one
by the dotted line and the other one by the continuous line.

But this is in contradiction with the hypothesis that X is a z-code and the
theorem is proved.

Remark 9: Note that, in the theorem 5, to show that if X is a maximal
z-code then X is complete, the assumption that X is recognizable isn’t
necessary, but this assumption is essential to show the converse.

Remark 10: Let XS A* be a z-code and let Y=G (X'). We have just seen
(lemma 1) that if Y is a maximal code then X is a maximal z-code. The
converse follows from the theorem 5. Indeed, if X is a maximal z-code then
X is z-complete and therefore, from the remark 8, Y is a complete code.
From the theorem 4, it follows that Y is a maximal code.

S. SOME PROPERTIES OF THE MEASURE OF A Z-CODE

Let 4 be a finite alphabet with cardinality | 4| and let X< A* be a code.
It is well known that the inequality of Kraft-Mcmillan holds:

a)= Y |4|7*1<1

xeX

If X is finite with cardinality |X|=n, the previous series becomes a finite
sum of » terms.

The value a (X) is called measure of the set X.

Trivially if X< Y then a(X)Za(Y) [if X<£ Y then a(X)<a(Y)].

In the theory of codes it is known that the inequality of Kraft-Mcmillan
gives a simple method for testing whether a code is maximal and then

complete; in fact, let X be a code; then a(X)=1 if and only if X is maximal
(see [2)).

Remark 11: Trivially the inequality of Kraft-Mcmillan holds also if X is a
z-code. Moreover, if X is a non trivial z-code and Y=G(X"), then Y is a
code and X & Y; it follows that a non trivial z-code has always measure <1.

Remark 12: If X is a non trivial zcode, then a(X)<1 and this inequality
holds also for X maximal z-code and therefore for X z-complete. It follows
that, for a non trivial z-code X, it is not possible to decide whether it is
z-complete or not with a simple check on the value of its measure.
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Example 9: Let X={a?, ab, ab*, b>, ba®, ba*>b, baba, bab®}. X is a code.
The inequality a(X) <1 holds, then X is not a complete code in A*, but it is
completable. It suffices to add the word w=ba? b>.

X is also z-code and, since we X', X is z-complete.

It follows that X is a z-complete z-code and its measure is < 1.

SOME OPEN PROBLEMS

ProBrem 1 (Chap. 2) In the proposition 3 it is stated that, for any
z-submonoid N of A*, ZG(N)=G(N). It is easy to see that there exist
z-submonoids N of A* such that ZG (N) is finite, although G (N) is an infinite
set.

Example: Let N=X' with X={a, aba}. Then
ZG(N)=X and  G(N)={a(ba)*}.

Characterize the z-submonoids N such that ZG (N) is finite and G (N) is
infinite.

ProBLEM 2 (Chap. 3) :Referring to the definition of trivial z-code, we have
shown that there exist trivial z-codes which are neither prefix, nor suffix.
Characterize the family of trivial z-codes.

ProBrLEM 3 (Chap. 3). — Let N be a z-submonoid of 4*, that is free with
respect to * operation. We have remarked that ZG () is not always a
z-code (see example 8).

Characterize those z-submonoids N of A* that are free with respect
to * operation and such that ZG (N) results a z-code.

ProBLEM 4 (Chap. 5) : In the theory of codes it is known that any complete
set X has measure o«(X)=1. This property does not hold for
z-complete sets (see example 9).

In the interval [0, 1] find, if it exists, a lower bound for the measure of a
z-complete set.
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