NGUYEN HUONG LAM

DO LONG VAN
On a class of infinitary codes

Informatique théorique et applications, tome 24, n°5 (1990),
p.- 441-458

<http://www.numdam.org/item?id=ITA_1990__ 24 5 441_0>

© AFCET, 1990, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1990__24_5_441_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 24, n° 5, 1990, p. 441 a 458)

ON A CLASS OF INFINITARY CODES (*)

by Ncuyen Huong Lam and Do LonG Van ()

Communicated by J. E. PIN

Abstract. — The notion of infinitary codes has been introduced and studied in [2)-(7). We consider
in this paper a special class of these codes called strict codes i.e. codes which involve infinite
product of words.

Résumé. — La notion de codes infinitaires a été introduite et étudiée dans [2)-[7]. Nous considérons
dans cet article une classe spéciale de tels codes appelés codes stricts i.e. des codes qui concernent
un produit infini de mots.

1. PRELIMINARIES

Let 4 be a finite or countable alphabet. Each symbol of 4 is called a
letter. As usual, we denote 4* the free monoid generated by 4 whose elements
are called finite words. For each word w of 4*, we denote |w| the length of
w. The unit of A* is the empty word denoted by ¢,|e|=0. We denote A" the
set of all functions u: N — A from the set N of the natural numbers into the
alphabet A. Such a function u is also written in the form of infinite sequence
of letters,

U=UlUy. ..

with »,=u(@i) (i=1,2,...) and called an infinite word over A. We say by
convention that the length of every infinite word is @ =card N.

(*) Received June 1988, revised September 1989.
(*) Institute of Mathematics, P. O. Box 631 Bo Ho, Hanoi, Vietnam.

Informatique théorique et Applications/Theoretical Informatics and Applications
0988-3754/90/05 441 18/$3.80/@ AFCET-Gauthier-Villars

442 NGUYEN HUONG LAM AND DO LONG VAN

The set 4A® =AY U A* whose elements we call simply words can be equip-
ped with a product defined by

a.B=a if acA¥ and a.B=aB if acAd*

where aff is the concatenation of o and f. Clearly, this product makes A® a
monoid. In the sequel, for the sake of simplicity, we shall write aff instead
of a.B. We call infinitary (finitary, purely infinitary) language any subset X of
A® (resp. A*, A"). Given an infinitary language X, we denote X, =X N 4%,
Xine=X N AV, Also, the following notations are used:

X*: the submonoid of 4 generated by X. '

X*: the set of all the infinite words of the form u=x;x,... with
x;€ Xpin—{ €}. Obviously 4°=A4".

X*=X*X®
Xo={(xp. %0 .- X)/Xps oo Xy € X X, € X}, n=1,2, ...
Xe= U Xy
nz1
X,={(xy, %5, ..)x,€Xensi=1,2, ... }
X=X, UX,

A word o is said to admit an X _-factorization (resp. X -factorization) if
A=X;Xp... with (x4,x,,...)eX, (resp. X.). Obviously o admits an
X -factorization (resp. X -factorization) if and only if ae X* (resp. X®).

Let X, Y be two subsets of 4%, we denote
Y 'X={aeA”/IPeY:PoecX,Bec A" =>a=¢}
XY '={acAdA”/ApeY:afeX,0edA"=B=¢}
XY={oB/ocX,PeY}
X?=XX.

When Y is a singleton, Y= {a}, we write simply o' X, Xo ™" instead of
{a} 71X, X{a}™?

An infinitary language X is said to be an infinitary code if each word of
A® admits no more than one X -factorization. The concept of infinitary
codes was introduced in [3] and for them an extension of Sardinas/Patterson

criterion was proved in [5] which provides a procedure to verify whether a
given infinitary language is a code. We now recall it.

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 443

To every subset X of A® we associate a sequence of subsets U, (X) defined
by

U, (X=X""X—{¢}
Upe 1 D=X"'U,XOUU ' (X, nxl

THeOREM 1.1: (Generalized Sardinas/Patterson criterion [5]). 4 subset X
of A*—{&} is a code if and only if for all n21, U,(X) does not contain the
empty word €.

Our aim in this paper is to study a special class of infinitary codes obtained
by replacing in the definition of codes the condition “every word has no
more than one X -factorization” by a stronger one. More precisely, we have

DEerFNITION 1.2: An infinitary language X is said to be a strict infinitary
code if each word of 4™ admits no more than one X -factorization.

Throughout this writing, without otherwise stated, a strict code means a
strict infinitary code. L. Staiger [11] has introduced and considered infinitary
finite-length codes, these are not other but strict codes, which are finitary.

By definition, the class of strict codes is contained in the class of codes.
The following example shows that the inclusion is proper.

Example 1.3: Consider the subset X={a,ab,bb} over the binary alphabet
{a,b}. An application of Theorem 1.1. shows that X is a code. It is not a
strict code because the word ab® for example admits two different X -
factorizations (a, bb, bb, . . .) and (ab, bb, bb,. . .).

The rest of the paper consists of two sections. In Section 2 we establish a
relationship between strict codes and codes and also some criteria for strict
codes, which are analogous to that of Sardinas/Patterson. In Section 3 a
criterion for strict codes similar to that of Schiitzenberger for finitary codes .
is given. It is noted that in the case of infinitary codes the freeability alone is
not enough for a submonoid of 4® to have a code as base (see [4], [6]).

2. TESTS OF STRICT CODES

Given a new symbol ¢ not belonging to the alphabet 4. To each subset X
of A% we associate a subset X of (4 U {c})® defined by

Xein= {x1 CX5/Xy X, eXfiu}
Xine = Xfin U X Xing U {x1 X/ X1 € Xginy X1 X, eXinf}

vol. 24, n° 5, 1990

444 NGUYEN HUONG LAM AND DO LONG VAN

The following theorem establishes a connection between codes and strict
codes.

THEOREM 2. 1: For any subset X of A®, X is a strict code if and only if X is
a code.

Proof: If X is not a code then we have a word o admitting two different
X factorization (x;,x,,...,%,_{) and (J1,Y2, - -»Vm-1) With m,n20,
X, #Yy, i.e.

Xy Xy Xpe1=Y1Y2- - Imr1=0 Q)]

For every Be(4 U {c})®, denote B the word obtained from P by erasing
all the occurrences of ¢. Then from (1), we have

X1 Xy o Xp41=V1 V2o Vm+1 = 2

By the definition of X, it is easy to check that x,,x,,...,x,
V1:Y25 « > Ym€ Xiins Xn4 15 Ym+ 1 €X®. Also, X, #,; and (1) imply that x, #y,
which proves that X is not a strict code.

Conversely, let X not be a strict code. There exist then two different X -
factorizations (x,,x,,...) and (y,,y,, . ..) with x; #y, of some word a of
A®. We always can suppose that ae A", since if ae4* and admits two
different X -factorizations, so does o®. The words x,, y, cannot both belong
to X, otherwise x; = y,. If x; and y, are both in Xy;,, assume that |x1 |<|y:]
which implies yl—xlzl, zleA+~A*—{ } We put xl—xlc Y1 =X, ¢Z4,
X, =XyX3..., Y=Y, y3... Clearly x,, x,, y;, y, are in X and x, #¥y,. From
the equality

X1 Xy e =YYy .. =0 3)
it follows
X, =Y1Ys
which shows that X is not a code.

Suppose x; € Xpin, V1 € Xine, frim (3) it follows y, =x; y with yeXx® N A~.
We put x; =X, ¢, y;=X,Cy, X=X, X3... Then we have x, x,=y; and thus
X is not a code. This completes the proof.

The use of Theorem 2.1 lies in the fact that instead of checking whether
X is a strict code it suffices to verify whether X is a code or not. For the
latter can be applied Generalized Sardinas/Patterson criterion given in Theo-
rem 1.1, and since X is a rational and constructible language whenever X is

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 445
rational language, the Theorem 2. 1, provides an algorithm for testing whether
a rational language is a strict code.

Example 2.2 Let
A={a,b}, X={a,aba,ab® }.
Then
X={ca,ac, caba, acba, abca, abac } U { acb® } \J { a,aba }* U { a, aba }* ab®.
We have
Uy (XN)={ba,b"}, U,(D)=0
Thus X is a code and therefore X is a strict code.
Example 2.3: Let
A={a,b}, X={aa,ba,baa}.
Then
X={ caa, acaaac, cba, bca, bac, chaa, bcaa, baca, baac } U { aa, ba, baa }°.

We have U, (X)={a}, U,(X)={ca,ac} U {a} {aa,ba,baa}® and e€ U, (X)
because XM {a}{aa,ba, baa}®+# . Thus X is not a code and therefore X
is not a strict code,

Now if using directly the sequence of subsets U, (X) mentioned in Theorem
1.1, we shall get a sufficient criterion for strict codes formulated as follows.

THEOREM 2.4: For any subset X of A*—{e} if U;(X)=(for some i=1
then X is a strict code.

Proof: Suppose on the contrary X is not a strict code, we shall prove that
U;(X)# & forall iz 1. It is noted that if U;(X)=(J for some i then U;(X)= ¥
for all j>i.

If X is not a code then, by Theorem 1.1 and the above remark, it is easy
to see that U;(X)# ¢ for all ix 1.

Suppose now X is a code not being a strict code, There exist then
(x4, %3, ...)X, and (¥y,¥,, . . .)€ X, With x; #), such that

x1x2- . -=y1y2-|w

Clearly the proof will be completed if the following assertion is approved:
For every k=1 there exist a non-empty word ze U, (X) and two integers

vol. 24, n° 5, 1990

446 NGUYEN HUONG LAM AND DO LONG VAN

i,j=1 such that holds one of the following cases:

Xye o Xg=Y1. .Y

(@) _
ZXpv1 Xt 2e s T Vje1Viv2e - o IZ|<CO
XX, =Yi...Y;
®) 1 t —}’1 Yj
Xev1Xe42e - - T ZVjr1 Vjr2- - - |Zl<‘9
Xy X9Z =YY
© 1 1 _J’1 Yj ~
Xe41X42---=2, |z|=o

We now prove it by induction on k.
If | x, |>|y, | there exists then a nonempty finite word z such that
X1=h12
ZXy X3 o =Y P53 -
and so ze U, (X).
If | x, |<|y, | <, there exists then a nonempty finite word z such that
X1Z2=),
XyX3.. =2V, ¥P3...
and so ze U, (X).
If | x, | <|»; |=o then there is an infinite word z such that
X1Z=),
Xy X3...=2
and so ze U, (X). Thus the assertion is true for k=1. Suppose now it is true
for k> 1, we prove it true for k+ 1. By the induction assumption there exists
a nonempty word z of U, (X) such that one of the conditions (a), (b), (c),
holds. We treat only the case when (a) holds, for the other cases the arguments
are similar. We have y;,, #z because if not the equality x,...x;=y;...y;z

implies x;...x;=y,...y;y;+; which contradicts the fact that X is a code.
So the following three cases are possible.

If |z|>|p;+, | then there is a nonempty finite word z, such that z=y,, , z,.
So z, € Uy, (X) and from (a) we have
X{oo Xy =Y1. Vi1 2y
2y Xev1 Xpw2 o - T2 Vi3 -
i.e. (a) holdk for z,, i, j+ 1.
If |z|<|yj+1|<® then there is a nonempty finite word z, such that
2z,=Yj+1- S0 z; € Uy (X) and from (a) we have
Xye o o Xy 23 Y1e 0 Vjr
Xj+1Xj+2: - T22Vj+2Vj+3- - -

i.e. (b) holds for z,, i, j+ 1.

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 447

If |z| <|y;+1| = then there exists an infinite word z; such that zz;=y,,,.
So zye Uy 4, (X) and from (a) we have

Xyoo X235 Y1 Vit

Xe+1Xer2e - T 23

i.e. (c) holds for zg, i, j+ 1.
Thus the assertion is true for £+ 1. This completes the proof.
The converse fails, as it is shown in the following example.

Example 2.5: Let X={aa,ba,baa(aa)* { ba,baa}}. It is easy to verify
that X is a regular strict code, but U, =a(aa)* { ba,baa} and for all n>0,
U,=U,#. '

The converse of Proposition 2.4 holds if we restrict ourselves to finite
languages, to wit

THEOREM 2.6: For any finite subset X of A® —{&}, X is a strict code if and
only if U= for some i= 1.

Remark: The Example 2.5 above also shows that the Theorem 2.6 does
not hold for the regular languages, for which we develop another criterion
in the sequel (Theorem 2. 10).

Proof: It suffices to prove the “only if”” part. To do this we make use of
the following result of D. Koénig which has an interest of its own.

Lemma (Konig [8]): Let G=(V,E) be a directed graph whose set V of
vertices is an infinite union of nonempty finite subsets V,, i=1,2,... such
that for each ye V,, (i>0) there exists xe V, such that x and y are joined by
an edge: x—>y in E. Then there exists and finite path
Xy o Xy— ..o X, > ... Withx eV, fori=1,2,. ..

We now turn to proving Theorem 2.6. Suppose on the contrary that
U,(X)# for all i=0 and X is a strict code. Put V,=U;(X) i=1,2,... The
vertices a.e V;, Be V;, ,, for every i, are joined by an edge if and only if there
is u of X such that f=o"'u or p=u"'a. Since X is finite, so is each V,.
That each Be V;,, is joined with some ae V; by an edge (a, B) for every i is
obvious from the definition of subsets U, (X). Thus, from Lemma it follows
that there exists an infinite path o; — o, — . .. with o; € ;. We now construct
by induction on k two sequences of words of X:uy,u,,... and v,,v,,...
with the property: for every k>0 there exist i (k) and j (k) >0 such that either

Uy Uiy =01 - . 2DV €))]

vol. 24, n° 5, 1990

448 NGUYEN HUONG LAM AND DO LONG VAN

or

Uy Uigy =0y Doy)

For k=1, since a;€ U, (X) there exist u, v of X such that ua,=v and

u#v. We put i(1)=;j(1)=1 and u;,=u, v;;,=v. Suppose now for k>0

Ug, . o > Uigy Vg, - - > Vjgy have been defined already such that (1) or (2) holds.
Since o, — o, is an edge, there exists then u of X such that either

Wy =U TO = UL =0y (3)
or
O 1 =0 U = 0,)]

We must have in (3) ue X, and in (4) |o, | <o, otherwise e=o, ., and X is
no more a strict code (not even a code: Theorem 1. 1).

Four possible combinations are (1) & (3), (1) & (4), 2) & (3), and (2) &
(4). We treat first the case of (1) & (3). Then

ul. . -ui(k)uak+1=v1- . cvj(k)

Thus we can take u; 44 ,=u, i(k+1)=i(k)+1 and j(k+1)=j(k).
For the case of (2) & (4), from (2) and (4) it follows

Uy oo Uiy Oy 1 =01 Vg U1 =0p- - ViU

It suffices to take i(k+1)=i(k), j(k+1)=j(k)+ 1, v; 4., =u. The other cases
are treated similarly. Note that when treating the combinations, we take
i(k+1)=i(k) and j(k+1)=jk)+1 or i(k+1)=i(k)+1 and j(k+ 1)=j(k)
iff (2) or (4) appears in them respectively. Thus the required sequences are
constructed.

Now we distinguished two possibilities, both leading to contradictions

(@) |o;|=o for some s.

We have, for instance, :u; .. .4 y%=0,...0;4, and |v,...v;,|= and
for all i<i(s): |u;| <o (otherwise u, . . .u; =0y .. .0

Furthermore, by construction from s on we have for all k=s:i(k+ 1)=i(k)
and |u;g|<® and |o|=0 [(1) & (3) always happens]. Hence
UyUy...=Yy...Y;: acontradiction with X is a strict code.

(i) For all s>0 |o;|<®=u;, v;e Xy, for all i, j.

If the sequence (i) is finite then there exists s such that for every k>s
i(s)=1i(k), hence there is k, k>s such that |u,...u 4 |<|v;...v;4| (since

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 449

for all k>s i(k+1)=i(k) implies j(k+1)=j(k)+1 that is (v)) is infinite).
That is to say we are in the case (1), it follows that i(k+1)=i(k)+1: a
contradiction with i(s)=i(k+1). So (x) must be infinite. As X is a strict
code u;u,. .. #v,v,... There might be then integers m and =1 such that
each of the words u,...u,, v;...v, is not a prefix of the other which is

impossible because of (1) and (2). Theorem is proved.

Example2.7: Let A={a,b}, X={ba,bab,b(bab)* }. We have U, (X)={b},
U,(X)= {a, ab, (bab)”® } Hence (bab)® e U, (X) for every i=3. By Theorem 2.6
X is not a strict code. In fact, the word (bab)® has two different X -
factorizations (bab, bab, . . .) and (ba, b (bab)®).

Now we give another modification of the Sardinas/Patterson algorithm.

To any language X < A® we associate the following sequence of subsets
of A4>:

Vi=X"'x—{g}
Vi(X)=Vi—+11 X)Xwa i=1’2""

ProrosiTiON 2.8: For any subset X of A°°—{8}, if Vi(X)= for some
i=1 then X is a strict code.

Proof: Suppose on the contrary that X is not a strict code. There exist
then two different X -factorizations (x,, x,, . . .) and (¥, y,,. . .) with x; #y,
such that

X{Xgeo =Y Vg N

We now show that V;(X)# & for all i=1. Indeed, by (1) and x, #y, we can
assume | x, |<|y,| and then x,z, =y, for some z, #¢. Thus z, € ¥, (X) and
V.(X)# . It follows from (1) that

XyX3. .. =2,V V3.

If |z |=w then z,=x,x;...€X®. Hence V,(X) contains & for
e=z; 'z, eV (X) X* =V, (X). Since e X it follows e V;(X) for all i>2,
ie. ViIX)#Q. If |z;|<o we put z,=y,y,... Clearly. z,eX® and
=27 (X x3. .) eV ' () X® =V, (X). Consequently, e=z;'z,eV,(X).
By the same argument as above, we have e V,(X) for all i=3 and therefore
V;(X)# for all i=1. This concludes the proof.

The following example shows that the converse of Proposition 2.8, is not
true.

vol. 24, n° 5, 1990

450 NGUYEN HUONG LAM AND DO LONG VAN

Example 2.9: Consider any ainfinite prefix code X, in 4%

Xo={x1,%5,...}. Put X;={x,x1x,}, Xo={x3,X3%4%X4%X5},...,

Xn={xn(n+1)/2’ Xn@m+1)2Xnm+1)2+10 - s Xnm+1)2+n—1%n (n+1)/2+n}’ and put

X= U X;. It is easy to see that x, ,+124+,€ V,(X) for all n= 1. The fact that
i21

X 1s a strict code can be verified directly.

Nevertheless, the converse holds true for the case of regular languages. We
recall that a language X of 4% is said to be regular if the family
{a™! X/ae A® } is finite. We call the cardinality of this family index of X. It
is noteworthy that every language recognizable by finite automata is regular
and that the class of regular languages is closed under union, intersection, *,
® and oo.

The following theorem is a generalization of Lemma 15 in [4].

THEOREM 2.10: If X < A® —{&} is an infinitary regular language then X is
a strict code if and only if V. (X)= for some i=1.

Remark: The theorem 2. 10 holds also for the infinitary finite (not neces-
sarily regular) languages. The proof can be proceeded just as in case of
Theorem 2.6, taking into account the fact that whenever X is finite
View, X*U ... Uw,X*, for every i, with some words w,, ..., w,e A%.

Proof: In view of Proposition 2.8, it suffices to prove that if V|, (X)#
for all ;=1 then X is not a strict code. Let the index of X® be n. We choose
m>n and any word u,eV,(X). By definition, there exist
u, eVi(X), ... up_1€V,_(X)suchthaty, ey ' X*fori=1,2,...,m—1.
Since X® is a regular language of index n and m>n, there must be integers
p and g such that 1 <p<g=<mand u, ' X*=u,' X*. Without loss of genera-
lity we can suppose g=m and d=m—p>1. We put for every j=2m:u;=u,,,,
where t=j—m modd.

We state that for every i=1 w,,€u; ' X*. Indeed, it is trivial for
1<i<m—1. Suppose i=m, for i=m we have u, ., =u,,,cu, ' X*=u, 1 X*
(because 1 <d—1). Suppose the statement is true for some i=m, we prove it
holds true for i+1. Let i=m+kd+t for some k20, 05t<d—1. If t<d—1,
we have

= — -1 00—, —1 0 —,,—1 yo
Uity = Upmirari+1 = Upri41 €Uy X = Upiq e XO=u; X
If t=d—1, we have
— — — -1 0 —,—1 0
Uit | = Ut 1ya=Up = U €Uy~ X°=1pry X

e | 0 —,,—1 0 —,,—1 yo
SUpikara-1 X T Uprpar X =u; - X

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 451

Now we put
Xi=Uiliyq
for i=1,2,... Obviously x;e X™. From the fact that
u eV, (XN=X""*X—{e} it follows
u() ul = Zl
for some z,,z, in X, zy#z,.
Consider the product zyu, u, u3u,. .. We can write it by two ways
zo (uy, up) Uy uy) . - - =(2ouy) Uy uz) (ugis). . .
which yields
ZgXyX3...=Z; X X4 ..
which shows that X is not a strict code. The proof is completed.

Remark 2.11: When X is finitary, we define the sequence of subsets V;(X)
by
ViX)=x"1'X-{e}

_ _ 0
Vie =V X*, izl ©

and state

Claim: V;(X)# & for all i if and only if V,(X)# & for all i.
Therefore we can replace in the formulation of Proposition 2.8 and

Theorem 2. 10 the subsets V,(X) by V,;(X) which are convenient for calucla-
tion.

We now outline the proof of Claim. By induction on i, we can easily
establish the following two points:

Q) 7.(X) < V,(X) for i=1,2,. ..
(i1) If v;e V,(X) and there exist x, x,, . .. € X and y,,y,. .. €X such that

VpXiXg. - - =V V2o -

then 7;(X)# J for all j>i.

(iii) Let » be the smallest integer such that V,, .M X*# . Then for
i=2,3,...,n

V() X°=V, M

vol. 24, n° 5, 1990

452 NGUYEN HUONG LAM AND DO LONG VAN

If Ve N X#J for all i then (1) holds for all i. Indeed, for all i:1<i<n—1
Vier =Vi ' X =V X* U Vi X° U Vi X°

= zfm X* U tfm (2)

=(Vign X*) X 3

(we write V; instead of V;(X) for short).
Hence

Vi+1 fin " lme* (4)
for i=1,...,n=1. Since V,,=V,=V,, comparing (4) with (1) we obtain
Vieitin=Vis1» i=1,...,n—1. Hence, from (3) we get

Vier =W XD X =V, X°

Thus (iii) is proved.

Suppose now V;(X)# & for every i then by (i) V;(X)# & for every i.
Conversely, suppose V;(X)# & for all i=1,2, . .. If the number » mentioned
in (iii) does not exist then (1) holds for all i>1, therefore V,(X)# & for all
i21. If n<oo then (1) holds for i=2,. . From V,;, N X*#J and
V,=V,; 2, X® we must have some weV,_ A=x;X,...€X?,
B=y,y,...€X” such that wo=f which gives |w|<co Therefore, by (1), we
can write w=v,_,z,. ..z, for some v,_,€V,_, and z,, . . .,z,,€ X. Thus we
get

Vp—121++ ZpX1 X3 o =V1 Yoo ..

which implies that 7;# ¢ for all i=n—1 (by (ii)). Claim is proved.

We now provide a procedure for calculating V;(X). Let ¥ be any finitary
subset. For any n=1 we define the subsets

Z,=X"1'v
Zy1=X1Z,_,
and
T,=V1'Xx

T,,,=T,XUZ'X

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 453

TV, X\)=UTi

=1
and we state that
Vi=Xx"'X—{¢}
I7n+1=]1(V1mA,)

The last formulas become evident if we pay attention to the following
relations

T,=V'X
T,=V ' X’=(V'X)XUX 'V 1 X=T,XUZ{'X
T,=V 'X3=(V ' X XUX X M ' X=T,XUZ;'X

etc.

As an example we apply this procedure to show that the languages X of
{a,b}*, X={d'b,(a'b)'b:i=1,2,.. is a strict code. Such a verification
cannot be done by using Proposition 2.4. We have

Vi (X)={xf_1 bliz1 }
It is easy to see that
Z,={xi"""lizn+1}

for n=1, and

T, =Vi'X=J
Z)' X=g
for all n=1. Consequently

T,,.,=T,XUZ 'X=¢

for all n=1. Therefore V, (X)=T(V,,X)=(. By Proposition 2.8, X is a
strict code.

vol. 24, n° §, 1990

454 NGUYEN HUONG LAM AND DO LONG VAN

3. COMBINATORIAL CHARACTERIZATIONS

In this section we introduce the concept of co-submonoid of 4* and study
several properties of such co-submonoids as well as their generator sets. As
a main result, we prove a necessary and sufficient condition, analogous to
that of Schiitzenberger [9], for an co-submonoid of 4® to have a strict code
as the minimal generator set.

Let M be a subset of 4°, M is said to be co-submonoid of A® if M* = M.
A subset X © M is called an oo-generator set of M if X* =M. From now on
we shall call X simply a generator set of M. The generator set X is called
minimal if it does not contain properly any generator set of M. The following
proposition gives a characterization of the minimal generator set which is
useful in the sequel.

ProrosITION 3.1: Let X be a subset of an co-submonoid M of A®, then X
is minimal generator set if and only if

(i) X*=M

() X XT° N X=¢, where X**=Xx*—{¢}

Proof: Let X be a minimal generator set. Clearly (i) holds. If
o€ Xg, X * M X, then after removing o from X, X —{ o} remains a generator
set of M which is in contradiction with the minimality of X. Thus (ii) holds.

Conversely, assume that (i) and (i1) hold and X is not a minimal generator
set. There exists then a generator set Z properly contained in X. Choose
ae X—Z. Since Z is a generator set, « is a product of elements of Z

A=Z{Zy. ..

From a¢Z, we have |z, |<® and thus z, € Z;, = Xj;,. Hence ae X, X*°
which contradicts (ii). This completes the proof.

Given any submonoid M, we define on M, the relation “<” as follows:
u<v if and only if there exists a word we M, — { € } such that u=wo. Clearly,
the relation “<” is only transitive but not equivalence one. An element u of
M, ¢ is called maximal if there is no v satisfying u<wv. The set of maximal
elements of M, is denoted by MAX (M,). It is well known that every
finitary submonoid N of 4* possesses a smallest generator set in the sense
that it is contained in any generator set of N (see, for example, [10]) which
we denoted by ATOM (N) (see [7]). The following proposition shows that
every oo-submonoid M has a smallest generator set and therefore it has a
unique minimal generator set.

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 455

ProPOSITION 3.2: Every oo-submonoid M possesses a smallest generator set
which is Z=ATOM (My;,,) U MAX (M) =M — (Mg, —{e DM —{e}).

Proof: First, we show that Z is contained in any generator set X. In fact,
if aeZ;,=ATOM (My;,) then o is a finite pﬁ)duct of elements of Xj;,, and
therefore, of My,

A=X; X, ..

Since « is an element of the minimal generator set of My, it follows that
n=1 and thus a=x,eX. If aeZ, ,=MAX(M,,), o cannot be a product
of more than one nonempty word from X, otherwise o would belong to
Xen—{e DX ® = (M, — {€}) (M~ {&}) that contradicts the maximality of
o. Thus, we have ae X and Z = X.

Now it suffices to show that Z is a generator set itself, i.e. every element
of M can be expressed as a product of elements of Z. That every o€ My;, or
aeMy, MAX(M,,) is such a product 1is obvious. If now
od My, U Mg, MAX (M), there exists then an infinite chain

A=0 <0, <0z <. ..
where o, € M, — MAX(M,,0), i=1,2, ... which means that
0= Uiy Xy g
for u;e My, —{¢} and i=0,1,2, ... Thus
A=uyU,...e M3, =ATOM (M ;) = Z®

The proof is completed.

Now we come to a characterization of strict codes in terms of submonoids
and oo-submonoids generated by them.

TueoreM 3.3: For any infinitary language X, X is a strict code if and only
if

) X X" NX=Q

() @M ' XN X°X®) " 1=x*

Proof: Suppose that X is a strict code. The fact that (i) holds is obvious
by definition of strict code. Let de(X*)~ ' X* N X°(X®)~!. If d=¢ then
de X*. If d#¢ then there exist x from X* M A* and y from X* such that
xd=y. Furthermore: 3o, B X® such that du=p. If |d |=o that implies d=
and thus we have xB=y, which in turn implies d= B e X*, since X is a strict

vol. 24, n° §, 1990

456 NGUYEN HUONG LAM AND DO LONG VAN

code. Now if |d|<w, as (xd)a=x(do) gives the same factorization of xdu
over X, we have de X*. Consequently, (X*)™! X* N X°(X°)"! < X*. The
reverse inclusion is obvious and therefore (X*)™! X* N X® (X®)~1=X*.

For the converse, let (i), (ii) hold and suppose X is not a strict code.
There exist then x, y € X, &, Be X such that xa=yp and |x|<|y| (€ Xgn
according to (i)). Hence x 'ye[(X)7'X*UX°X~)"']-{e}, ie
x~'yeX™. It follows that ye X;, X* M X: a contradiction, which shows that
X must be a strict code. The theorem is proved.

Let M be a subset of 4°, M is said to be freeable ift M"* M N\ MM ™ '=M.
The following theorem, analogous to a result of Schiitzenberger, characterizes
the co-submonoid generated by a strict code.

THEOREM 3.4: Let M be a co-submonoid then M is freeable if and only if
its minimal generator set is a strict code.

Proof: Let Z be the minimal generator set of M and suppose Z is not a
strict code. There exist then x,ye Z, a, Be Z®: xa=yp with |x|<|y| (hence
x€Zg,). Therefore y=xw implies weM ' M—{e} and a=wf implies
weMM™'. Hence we M —{¢}. Consequently: ye Z,, Z*® N Z, which is a
contradiction with Z is a minimal generator.

Conversely, let Z be a strict code and let suppose that
Iwe(M *MNMM Y)-M#. There exist then wueM,, (since
w#¢g):uweM and veM :wve M. If |.w|=co then v=¢ hence ve M that is a
contradiction. If | w | <@ then from u (wv) = (uw) v being the same factorization
over Z we get we Z* — M: a contradiction again. This completes the proof.

Finally, in the following theorem, we characterize the freeability of co-

submonoids via their special subsets. Note that the subset M — Mg, need not
be a submonoid in general.

THEOREM 3.5: Let M be an co-submonoid, then M is freeable if and only if
(i) Mg, is a freeable co-submonoid
(ii)) The subset M — M3, is a freeable submonoid.

Proof: First, we recall some notions and results in our previous papers. A
monoid M is called regular if My, N\ M= & and quasi-free if M= X* with
X is a code. It has been proved that every quasi-free submonoid is freeable
(see [2], [4]). The following statement is the Corollary 3.11 from [2] (see also
[4]): A regular submonoid is quasi-free iff it is freeable.

Now if M is freeable then M is generated by a strict code
X:M=X°=Xg, U X* Since X is a strict code, then X3, N X*=¢J. Hence

Informatique théorique et Applications/Theoretical Informatics and Applications

ON A CLASS OF INFINITARY CODES 457

M- X3, = M- Mg, = X* is a submonoid generated by a (strict) code, conse-
quently it is freeable. Further, M = X is generated by a strict code X,
therefore M, is a freeable co-submonoid by Theorem 3.4. Thus the “only
if”” part is proved.

Suppose now (i) and (i) hold. Put M= M — M}, which is a submonoid
by our assump‘uon Since Mg, =M, it follows that
M2, N\ M, =M, N\ M, .= . This means that # is a regular submonoid.
In virtue of the statement aforementioned, M is quasi-free, i.e. M= X* for
some code X. We have Mfm—Mﬁn=,Y}’;n and M, =X¥, X, hence
M=(M-M)\J M, =X* X3, =X~ On the other hand
X3, N X*=Mg, N\ M=. Furthermore, by (i) and Theorem 3.4 Mg, is
generated by a strict code X: ME =X. Since ME,=X;,, and the code X,
and the strict code X satisfy (i) and (ii) of Proposition 3.1, it follows that
both X, and X are the minimal generator set of Mf,, so in view of
Proposition 3.2 X;;,=X. Thus Xj,, is a strict code. Finally, note that a code
X satisfying X%, M X*= ¢f whose finitary part X, is a strict code is a strict

code itself. The proof is completed.

ACKNOWLEDGMENTS

The avthors express their thanks to the refree who gave numerous valuable comments and
suggested some improvements.

REFERENCES

1. J. BersteL and D. PerriN, Theory of Codes, Academic Press, 1985.

2. Do Long VaNn, Contribution to Combinatorics on Words Thesis, Humboldt
University, Berlm, 1985.

3. Do Long Van, Codes avec des mots infinis, R.4.I.R.O.-Informatique Théor.
Applic., 1982, 16, p. 371-386.

4. Do Lonc Van, Sous-monoide et codes avec des mots infinis, Semigroup Forum,
1983, 26, p. 75-87.

5. Do LonG VAN, Ensembles code-compatibles et une généralisation du théoréme de
Sardinas/Patterson, Theor. Comp. Science, 1985, 38, p. 123-132.

6. Do LonG Van, Caractérisation combinatoire des sous-monoides engendrés par un
code infinitaire, Hanoi Preprint Series, n° 6, 1984.

7. Do LonG Van, Sur les ensembles générateur minimaux des sous-monoides de A®,
C.R. Acad. Sci. Paris, 1985, 300, série 1, p.443-446.

8. D. Konig, Theorie der endlichen und undendlichen Graphen, Leipzig, 1936; Sur
les correspondances multivoques des ensembles, Fundamenta Mathematicae, 1926,
8, p. 114-134.

vol. 24, n° 5, 1990

458 NGUYEN HUONG LAM AND DO LONG VAN

9. M. P. ScHUTZENBERGER, Une théorie algébrique du codage, « Séminaire Dubreil »,
exposé n° 15, Algébre et Théorie des Nombres, année 1955-1956; C.R. Acad. Sci.
Paris, 1956, 242, p. 862-864.

10. L. N. SuevriN, On subsemigroups of free semigroups (Russian), Dokl. Acad. Nauk
SSSR, 1960, 1, p.892-894.

11. L. Staicer, On infinitary finite-length codes, R.4.I.R.O.-Informatique Théor.
Appl., 1986, 20, p. 483-494.

Informatique théorique et Applications/Theoretical Informatics and Applications

