Do LONG VAN
D.G. THOMAS
K. G. SUBRAMANIAN

RANI SIROMONEY
Bi-infinitary codes

Informatique théorique et applications, tome 24,1n° 1 (1990), p. 67-87
<http://www.numdam.org/item?id=ITA_1990__ 24 1_67_0>

© AFCET, 1990, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ITA_1990__24_1_67_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 24, n° 1, 1990, p. 67 a 87)

BI-INFINITARY CODES (")

by Do LoNG Van () (3) D. G. THomas (*) K. G. SUBRAMANIAN (}) and
Rani SiromONEY ()

Communicated by A. ARNOLD

Abstract. — The notion of bi-infinitary codes is introduced. For this purpose, the monoid ®* A% of
finite, infinite and bi-infinite words over an alphabet A is defined. A necessary and sufficient
condition for a set of words to be a bi-infinitary code is formulated. Conditions for a submonoid of
®A® to have a minimal generator set are established. Using a specific kind of Thue system, the
notion of bi-quasi free sub-monoids is introduced. An “algebraic” characterization of the submonoids
generated by bi-infinitary codes is obtained. Finally, a “‘combinatorial” characterization of bi-quasi
free submonoids is studied.

Résumé. — On introduit la notion de code biinfini. On définit d’abord le monoide ©*A® des mots
finis, infinis ou biinfinis sur un alphabet A. On énonce une condition nécessaire et suffisante pour
qu'un ensemble de mots soit un code biinfini. On donne également des conditions pour qu'un sous-
monoide de ®A* ait un ensemble minimal de générateurs. En utilisant un systéme de Thue
spécifique, on introduit la notion de sous-monoide bi-quasi libre. Une caractérisation « algébrique »
des sous-monoides engendrés par des codes bi-infinis est alors obtenue. Finalement, on étudie une
caractérisation « combinatoire » des sous-monoides bi-quasi libres.

INTRODUCTION

There has been a systematic study of codes consisting of finite words,
initiated by M. P. Schiitzenberger [16] and developed by many others taking
motivation from information theory (see [11-13]).

Recently, infinitary languages consisting of finite and infinite words have
served as an adequate tool for studying behaviours of processes. This is the
approach of M. Nivat and A. Arnold [14] in some problems of synchroniz-
ation which stimulated the study of infinite words including bi-infinite
words [15].

(*) Received June 1987, revised in February 1988.

(*) Department of Mathematics, Madras Christian College, Tambaram, Madras 600 059,
India.

(?) Permanent Address: Institute of Mathematics, Hanoi, Vietnam.

Informatique théorique et Applications/Theoretical Informatics and Applications
0988-3754 90/01 67 21/$4.10/© AFCET Gauthier-Villars



68 DO LONG VAN et al.

Motivated by the theory of codes [1] and the theory of infinitary languages,
the notion of infinitary codes has been introduced and examined in [3-10].

This paper is devoted to a study of bi-infinitary codes which are a natural
generalization of infinitary codes to bi-infinitary languages i. e., languages of
finite, left-infinite, right-infinite and bi-infinite words.

SECTION 1
MONOID *4* AND BI-INFINITARY CODES

Let A4 be an alphabet. We denote by A4*, the free monoid generated by 4.
Elements of A* are called finite words. The length of a word x in A4* is
denoted by | x|, the empty word by e and 4* =A%~ {&}.

We denote by 4", the set of all right-infinite words, by A~7, the set of all
left-infinite words and by 4%, the set of all bi-infinite words over 4. Every
(bi) infinite word u has a countable length |u|=w. For any X  A*, we
denote by X*(°X, °X®), the set of all right-infinite (left-infinite, bi-infinite)
words of the form x, x, ... (... X, X1, ... X; X, x5 .. .) for x;e X. In particu-
lar, if xeA*, then x°=xxx ..., ®x=...xxx and ®x*=...xxx.... We
write A®=A*\J) AY, ®A=A*\JUA " and ®4°=A4*J AN JA N A%

We define a product on elements of *A4® as follows:

o, if aedV\ 4%
a.p= { aB, if acd*\ AN, PBed* 4"
B, if aed*\ AN, Bed N 4L

It is not difficult to verify that the product is associative and therefore
© A4 is a monoid. This monoid has 4*, A® and *A4 as its submonoids. For
simplicity, instead of «.f, we write af. For any X € *4%, we denote by X*,
the submonoid of ®A4® generated by X and write X*=X*— {e}. Ifais a
word, instead of { o }*, we write o*.

For any X € ®A®, we write X;;,=X M A*,

XinszmAN’ X—-inf=XmA-N> Xb —XmAZ,

iinf —

X2 = Xgin U Xines X =Xein U X _ines

XO=x0= (g},
XYW=xyW=x,
X = L%, X50 o o3 X)X Xgs + o Xy 1 € Xpin» X,€X° }  for n22,
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BI-INFINITARY CODES 69

XM= Ly, X0 o X)X € X, X5, X3, .+ ., Xy € Xpip } for n=2,

X(?)= {('xlaxb . 'axn)/

X1 € X _ines Xn€ Xings X35 X35+« s Xp—1 € Xiin } for n=2

XP=xHYx»yx™  for nz2,

XW=y x®

nz0
)?(7{)={x1x2_..xn/(xl,xz,...,x,,)eX‘W’} for n=2
Xz(‘r?)z{xlxz,”xn/(xl,xz,,..,xn)eX(W)} for nz2,

XM= {x, %, 0. X (X1s %55 -+, X)X} for n=2

and

X =x Xy x™ for n=2.

We say that a word ae ®4® has a factorization on elements of X if
aA=x,X, ...x, for some (x,,x,, ...,x,)e X%,

DEerINITION 1.1: A subset X of ®A® is called a bi-infinitary code if every
word ae ®A® has atmost one factorization on elements of X. More precisely,
X is a bi-infinitary code if for any n, m=1 and for any (x,, x5, . . ., X,) € X®,
(x}, x5, ..., x.)eX™, the equality x,x,...Xx,=x} x5 ...x, implies n=m
and x;=x;(i=1,2,...,n).

Unless otherwise stated, from now on code means bi-infinitary code.

Example 1.1 :If A= {a, b }, the subset
X= {®(ab)®, “a, b®, ba}
is a code whereas the subset
Y= {°(ab)®, “a, b°, ab}
is not a code, since we have,

®ab®=q.ab.b®

=%q . b°.
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70 DO LONG VAN et al.

SECTION 2
A CHARACTERIZATION OF BI-INFINITARY CODES

In this section, we establish a characterization of codes. We first introduce
certain concepts and formulate a fundamental formula.

Let X and Y be two subsets of ®4®. Define the sets
Y 'X={0e®4™|3BeY: PucX,
(B€ Yine U Yyiinr = 2 =5¢),
(Be*Yandae 4 VU A = B=¢)},
XY '={ae*4”|IBeY:aBeX, (aedV U A% = P=¢),
(re*dandBe Y ;e U Yijne = =) }.
We note that if u, ve 4™ and u<wv, then u 'v is a subset of A*. For
example, if u=%a and v="a="a.a*, then u~ ' v=a*.

We associate with every subset X = ®A4%, a sequence of subsets, denoted
by U, (X) or simply by U,, defined recursively by

U=x""'X-{&}
Uy =X"'U,JU'X, n2l

LEmMMA 2.1: For any subset X of *A®— {&}, (i) if n is the smallest natural
number such that e€ U, thenVke{1,2,...,n}, Jue U, 3i, j=0:

u(XO— U NUAYNXV£0,  i+jtk=n,
ue AN U A5 =i=0 2.1
(i) Yn21, Vke{1,2,...,n}:
FuelU,3i,j20:u(XO— (AN U4H)) N XV£0,
i+j+k=n,
uec AN JA*=i=0)=ceU,

Proof: We prove by recurrence on k.

(i) Let »n be the smallest natural number such that ee U,. If k=n, then
(2.1) holds obviously with u=¢, i=j=0. Let n>k=1 and suppose the
statement is true for n, n—1, ...,k+ 1. We prove for k. Since the statement
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BI-INFINITARY CODES 71

is true for k+ 1, there exist ve U, ., and integers ', j* such that
v(X—(AVUAH) N XD,  P+j+k+1=n,

veAV U A?=i"=0. Thus we have xe X®'—(4"VJ 4% and ye XU such
that vx=y. The fact that ve U, gives rise to two cases.
Case (a): ve X~ ! U,. Then, there exists ze X, ue U, such that

zZv=u, (2€ Xine U Xjing =>0=¢)
and
(ze®X and ve A N\ A% = z=¢).

If wveAd", then =0, x=e¢ ze®*X and wu=zy. Hence
w(XO— (47N A%) N XY+ D £®. Thus (2.1) holds with i=0, j=j +1.

If ve AV A%, then ze®X and so z=¢. Thus £ X which contradicts the
hypothesis that X € *4°— {e}.

If ved* and zeX \UXyuy then v=¢ and wu=z  Hence
u(XO— (AN A4%)) N XV #0 and therefore (2.1) holds with i=0, j=1.

If ve A* and ze X, then ux=zy and so

u()?(i’)_(A—NUAZ)) mX/(j’+1)¢(I)_

Thus (2.1) holds with i=7, j=j+1.

Case (b): ve U, ' X. Then, there exist ue U, and ze X such that uv=z,
e AV \JA*=v=¢) and (ue 4, ve A~V 4% = u=¢).

If ved™, then =0, x=g ov=y, ue®4 and uy=z. Hence
u(X— (A VY AH) N XV #. So, (2.1) holds with i=j, j=1.

If ve A~V A%, then ue ©A4 and therefore u=¢. Thus e=ue U, with k<n,
which is contrary to the hypothesis that » is the smallest natural number
such that ee U,

If ved* and ze X, ;U Xyiinp> then v=¢, u=z and y=x. If i'=j=0, then
k+1=n and the equality u=z implies u (X®—(4~ U 4%)) N XM #®. That
is, (2.1) holds with i=0, j=1. Otherwise we have k+1<n and v=¢c€ U, ,
which gives a contradiction.

If ved* and ze®X then ue®A4. The equation wuy=zx gives
u(X— (AN Y AH)) N X+ V20, Thus (2.1) holds with i=j', j=i+1.

(ii) Suppose there exist ue U, and two integers i, j=0 such that
uXO—(A N UAYNXD£0, i+j+k=n, ueA¥\J A% =i=0. We have to
prove that e U,. If k=n, then i=;j=0 and so u=¢. Hence g¢e U,. Let now
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72 DO LONG VAN et al.

n>k=1 and suppose the statement is true for n, n—1,...,k+1. We prove
for k. Suppose x; x, . . . x;e X?— (47" 4%) and x| x} . . . x;e X such that
UXy Xy ... X; =X X5 ... xj. We discuss the following cases:

Case (a): Suppose wueAY\JA% Then i=0, j+k=n, j=1 and

U=Xx3Xx5 ...Xj Let wW=x3x3...X; Clearly welU,,, and

u (X(O’—(A“N UAZ)) NXU- D2, 0+]-— 1+k+1=n. By recurrence hypoth-
esis ee U,

Case (b): Suppose ue A*. If j=0, then i=0, u=¢ and k=n. Thus we have
eeU, Let j=1. If |u| = |x}|, that is, u=x}« for some ', then v'e U,
and

WXy Xy 0o X;=X5X5 ... X

So W (XP—UANUAD)NXV" V%D, i+j—1+k+1=n By recurrence
hypothesis, ee U,. If |u| < |x}|, that is, x; =uu" for some ", then " e U,

1

and u'" x5 x5 ... X;=X; X, ...x; Hence
W XA YUAHO)YNXI£ED, j-l1+itk+1=n.

This implies €€ U,,.
Case (c): Suppose ue A~ ". Then j>1. If j=1, then ux, x, . . . x;= x} which
implies x; x, ... x;eu” ' x}. Let '=x,x, ... x;. We have 'e U, , and

W XO-UANUA)YNXO£D,  O0+itk+1=n

By recurrence hypothesis e U,. If j> 1, there are two subcases.
If u is a left factor of x7, we have

X1 Xy .. X =u' X5Xx3 ... X
with ' eu~ ! x}. So, we have u’ € U, , , and
W (XID— (AN Y AN XO#D,  j—1+itk+1=n.

By recurrence hypothesis e U,,.
If x7 is a left factor of u, we have

X5X5 .. X;=u' X Xy 00X
with " €(x}) "' u. Then ¥’ € U, , and
W (XO—(A N UAH)NXI V£, i+j—1+k+1=n.

By recurrence hypothesis e€ U,. This proves lemma 2. 1.
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BI-INFINITARY CODES 73

We are now in a position to formulate the main result of this section
which is a generalization of the result proved by Do Long Van in [5, 10].
The latter is a generalization of Sardinas-Patterson theorem. This in many
cases gives us a procedure to check whether or not a given set is a bi-
infinitary code. ‘

THEOREM 2.1: A subset X of *A®— {&} is a code iff for all n21, U,(X)
does not contain the empty word €.

Proof: Suppose €¢ U, (X), n=1. Assume that X is not a code. Then there
exists a word o€ ®*4* having two different factorizations on elements of X:

U=Xy Xy ... X =X)Xy ..o x; where  (xp, X5, ...,x)eX?

and (x3, x5, ..., x)eXV.

Case (a): Suppose aeAd*\JAY. We may assume that x,#x; and
| x| >|x}|. Let x, =x} u for some u##¢. Clearly ue U,.

If x, € X;;,, then x} € X;;,, and ue 4*. So we have

UXy X3 .. X;=X5 X5 ... X, j=2.

Hence
u(XCV— (A ¥ UAH)YN X V£0.

By lemma 2.1 (ii), €€ U, ;_; which is a contradiction.
If x,eX,, then i=1, xjeX;, and ueA Therefore we have
u=x5xy...xj, j=2. This implies

u(XO— (AN YA NXIV£0.

Again by lemma 2.1 (ii), €€ U; which is a contradiction..

Case (b): Suppose ae 4", Clearly x,, x} € X_;, Since the case i=j=1 is
impossible, we may assume that i=2. There are two possibilities.

(i) If x,#x7 we can assume that x,=xju with ueA4* such that

UXy X3 ...X;=X3X3...Xx; j=2. Then clearly ue U; and

w(XE D= (4N Y AD) N XD 2.

Again by lemma 2.1 (ii), e€ U, ;. This is a contradiction.

(i) Suppose x,=x]. Here, if j=1, then x;x,...x,=x7 and so
X1 =%xyx3...x). Let x,x3...x;=u. Clearly uex;'x}; < U,. Hence
u(XO— (AN A%)) N X V4@, This implies €€ U, which is a contradic-
tion.
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74 DO LONG VAN et al.

Ifj=2, then x; x, ... x;=x} x5 ... xj with

X3X3 ... Xy Xy X3 ... X;EA®
If x;x3 ... x,=x53x5...Xx; we may assume that x,#x5, and as in case (a),
get a contradiction. If x,x;...x;#x3x5...x}, then we have either
X =xju and UXy X3 -0 X;=X5 X3 ... X or X|=x,u and
Xy X3 ... X;=uxyx3...x; for some ueA*. By symmetry, we shall discuss

one of the two possibilities.

Consider x;=xju and wux,x;...x=x53x5...x; Now x;=x] and
X, =xju imply X, =Xx,="u and ue(x))"'x, s U,. Thus
Ux, Xy ... x;=xpx5...x; gives u(X"V—(ANUAHHNXV"D£0 and so
gee U, ;_, which is a contradiction. _

Case (c): Suppose a.€ 4%. The case i=j=1 is impossible. We assume j=2.
If ;=1 then x,=x{x5...x; and so we have u=(x})"'x,e€U, with
u=x5xjy ...x; Hence u(X®—(4"NUA%)) N XU~V #£® which gives a con-
tradiction.

If i=2, then x; x, ... x;=x} x5 ...x};. Now x;, x; € X_,.;. There are two
possibilities.

(i) If x, #x}, as in case (a), we obtain a contradiction.

(i) If x, =x}, then we have either

XpX3 .0 X;=X5X5 ... X] or Xy X3 .o X; Xy X5 o0 X
If x, %3 ... x;=x5x5...Xx], then we can assume x, # x; and as in case (a),
get a  contradiction  since  X,X3...X, xyx3...x;ed. If
XyX3...X;#X3X5...X;, we can obtain a contradiction as in the last part

of Case b (ii). Thus X is a code.

We shall prove the converse. Suppose X is a code. Assume that there are
some sets U;(X) containing €. Let U,(X) be one among these, with the
smallest index. By lemma 2.1 (i), there exists a word ue U, with two integers
i, j=0 such that

u(XO-ANUAYNXV#£O,  itjt+l=n,

ue AN JA?=i=0. So, we have ux;x,...x;=xjx;...x; for some
Xy Xy ... %€ X0 —=(A7N U 4%) and x| X . .. xj;e XY, Since ue U,, there exist
words x, x’ e X with either x # x" and x=x"u or x=x" and x=x"u.

If ue A™, then both x, x' are either in X, or in X_, ;. Let x, x' € X,.
Then we have x # x" and x=Xx"u. So xx; x, . .. x;=x"x} ... xj and therefore
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BI-INFINITARY CODES 75

X is not a code, a contradiction. Let x, x"€ X_;¢. If x # x" and x=x"u, then
as before, we get a contradiction. If x=x" and x=x"u, then x=x"=“u and
either

X1 Xy .o X;=X) XS L. X or Xy Xy . X F XXy L X

If x;x, ... x,=x1x5...x}, theni=jand x,=x;, (k=1,2, ..., i) since X is
a code. Then the equation ux, x, ... x;=x} X, . . . x; implies u=¢g, a contra-
diction. If X1 Xy oo X F X)Xy L X then the equation
XXy %, ... x;=x"x7 x5 ...x;shows that X is not a code, a contradiction.

If ue A", then i=0 and either xe X, x" € X, Of X€ Xyjnp X €X_jne- In
both cases, we have x=x"x] ... x’; which shows X is not a code, a contradic-
tion.

If ue A%, then i=0, x€ Xy, and x'=¢. Since x'eX < *4°— {¢}, this
case is not possible.

If ue A" then x=u and x'=¢. As before, this case is also not possible.
Thus e¢ U,(X), Vr=1.

Example 2.1: (i) Let X= {®(ab)*, ®a, b, ab}. U, (X)={a* }, U, (X)={b},
Uy (X)={b°} and U, (X)={e}. So X is not a code.

(i) Let X={“°(ab)®, ®a, b°, ba}. U (X)={a*}, U,(X)=®. So, X is a
code.

SECTION 3
MINIMAL GENERATOR SET OF A SUBMONOID OF ©4%,

We recall that a generator set X of a monoid M is minimal if X is contained
in any generator set of M. Such a set, if it exists, is unique and called the
base of M, denoted as BASE (M). Every submonoid of 4* has a minimal
generator set whereas there are submonoids of ®4%* which have no minimal
generator sets. We illustrate this in the following example.

Example 3.1: Let A={a, b} and let M be the submonoid of ®4* given
by M= {0e*4®| |a|,=|al|,} where |a|, stands for the number of occur-
rences of a in a. This monoid has no minimal generator set.

DerFmviTioN 3.1: Let M be a submonoid of ®*4® and u, v, two elements of
M, .. We say that u precedes v, denoted by u < v, if there exists fe My, —¢
such that w=fv. An element ueM,, is called stable if VoveM,,:
(u<v)=(u=v). The set of all stable elements of M, is denoted by
STAB (M,,).
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Let x, y be two elements of M_; ;. Here also we say that x precedes y,
denoted by x <y if there exists ge M, —¢ such that x=yg. As before,
xeM_,, is called stable if Vye M_, ;: (x <y) = (x=y). The set of all stable
elements of M _, , is denoted by STAB (M _,.).

We say that a submonoid M satisfies the stability condition if every
unstable element of M, (resp. M _,,) precedes a stable element of M,
(resp. M _;,¢). We introduce the following two sets:

BASE (M;,) = (Mg, —8) — (Mg, —€)?
UNFAC (My;in0) = Myiing = (M 0 Min Mig).

THeEOREM 3.1: A submonoid M of ®*A® has a minimal generator set iff M
satisfies the stability condition and in that case, the minimal generator set of
M is
X=BASE (M)

=BASE (M4;,) U STAB (M) U STAB (M _ ;) U UNFAC (M)

Proof: Assume X satisfies the stability condition. Let

Xiin=BASE (My;,), Xine=STAB (Minf)’ X_ing=STAB(M_;,),
Xyiing = UNFAC (Myi0e) and Xein U Xine U X e U Xogiine-
Since
fm = Mfm’ inf STAB (Minf) U (Mfin - 8) STAB (Minf)
= Mfin STAB (Minf) = X;I;n Xinf’

Similarly,
M _ine=X_ins X and M yiing = UNFAC (M yi5,0)

UM e My Mine= Xoiine U X e Xin Xin-
Therefore,

M=Mg, UMye UM _;¢ U Mbiir.lf
- Xg‘m U fm inf U X—inf X?:n U Xbiinf
U X e Xfin Xine= X"
Thus X is a generator set of M. We shall prove that X is minimal. Let Y be

an arbitrary generator set of M. We can assume that ¢ Y. It is enough if
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BI-INFINITARY CODES 77

we prove that

Xein € Yiins Xint E Yines

X Y_ inf and Xbunf Ybunf

—inf S

As Y§ =My, and X, is the minimal generator set of M, we have
Xgin € Ygine Let ue X, Then u=y, y, ...y, for some (¥, y,, ..., y,)€ Y™,
nzl. If n=1, then wu=y,eY,, If n>1, we have u=fy, with
f=y1y2. YV 1EMg,—¢€ ie, u<y,. Since u is stable u=y,e Y, Thus
Xing € Yine- Similarly we can show that X_, .= Y _, . Let ue Xy, Then
u=wyw, ...w, for some (w;, wy, ..., w)eY™ n21.1f n=1, u=w, where
Wy € Yyune If 22, u=w,w, ... w, is an element of M _, M M, since
w €Y _ e YE =M_,, W,E Yfln imne=Mipe and wows ... w,_;€YE . This
contradicts the choice of u since ue UNFAC(M,;,.,). Hence ue Y, and so
Xoiint E Yeiint-

We prove the converse part now. Let Y be a minimal generator set of M.
Suppose M does not satisfy the stability condition. Then, there exists an
unstable element of M, (resp. M_;,), which does not precede any stable
element of M, .(resp. M_, ). Let u be an unstable element of M, and v
any element of M, such that v#u and u<o. If ueY,,, then since
Y, =My, the set Y'=(Y—{u})U{v} is a generator set of M. Since Y’
does not contain Y, we get a contradiction to the minimality of Y. If u¢ Y, ,,
then u=y,y, ...y, for some (y,, y5, ..., y,)€ Y™ with n>1. Therefore
u < y,. By hypothesis, y, is unstable. Therefore there exists w e M, , such that
w# y, and y, < w. Thus, the set Y"=(Y—{y,}) U {w} is a generator set of
M. Since Y" does not contain Y, we have a contradiction. Hence M satisfies
the stability condition.

Example 3.2: Let A= {a, b} . Let M be the submonoid of ®A4® given by
M= {®a(ab)®} U A* U b A* U 4* a°\U °b A* a®.

Every element of M, precedes the unique stable element ¢®. Every element
of M_,. precedes the unique stable element “b. M satisfies the stability
condition. By theorem 3.1, M has a minimal generator set which is 4 {a"’
b, ®a(ab)*}.

DeFINITION 3.2: Let M be a submonoid of ®*4®. Any increasing sequence
u, <u, < ... of elements of M, , or M_, is called a chain. An infinite
chain is called stationary if there exists #=1, such that u, =u,, for all m=n.
We say that M satisfies the stationary chain condition if every infinite chain
of M, as well as M _, , is stationary.

inf
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We note that stationary chain condition implies the stability condition but
the converse is not true.

DermitioN 3.3: A submonoid M of *4® is freeable if
M *MNMM 'c M.

The next theorem explains the existence of the minimal generator set for a
freeable monoid M.

TueoreM 3.2: For any freeable submonoid M, the following conditions are
equivalent. '
(1) M has a minimal generator set.
(ii) M satisfies the stationary chain condition.
(iii) M satisfies the stability condition.
Proof is similar to that of theorem 2.4 of Chapter II in [10] and is therefore

omitted. The main difference is to consider infinite chains of elements of
M

—inf-

DermiTioN 3.4: Let M be a submonoid of ®4*. An element u of

M, ¢ (resp. M_; ) is maximal if there is no element v of M, (resp. M _;)
such that u <. The set of all maximal elements of M, (resp. M_,,) is
denoted by MAX(M,,) [resp. MAX(M_; ). It is evident that
MAX(M,;,) € STAB(M,,,) and MAX (M _,.,) < STAB(M _,,;). We say that
M satisfies the maximality condition if every non maximal element of
M, ¢ (resp. M _,,;) precedes a maximal element of M, (resp. M _, (). Clearly,
maximality condition implies stability condition but not the converse.

DeriNITION 3.5: Any subset X of ®A4% is called distinguished if
Xing N Xein Xing = @y X i N X ¢ X = @ and Xigjine N X ¢ X Xine =

The following theorem gives the connection between maximality condition
and the distinguished minimal generator set of a monoid M.

THEOREM 3. 3: For any submonoid M, the following conditions are equivalent.

(i) M has a distinguished minimal generator set which is
BASE (M;,) U MAX (M) U MAX (M _;0) U UNFAC (My;;0¢)
=(M—8)—[(M,~&)* U (M, —8) My UM _ e (M, —€)
U M—inf Mﬁn Minfl

(i) M has a distinguished generator set
(i) M satisfies the maximality condition
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Proof: It is clear that (i) implies (ii). We show that (ii) implies (iii). Let Y
be a distinguished generator set of M. Since Y is a generator set, it is easy
to see that every element of M, — Y, (resp. M_;— Y _;.¢) precedes an
element of Y, (resp. Y_;,¢) and so it is enough to prove that

Yine € MAX (M) [resp. Y _;p € MAX(M _ ;)]

We shall prove that ¥, , € MAX (M;,¢). Suppose this is not true. Then, there
exists ye Y;, which is not maximal. So, for some ve M, ,, we have y < v.
Let y=gv where geM,,—¢ and v=y,y,...y, for some
B Vas - > Y)EY™,  n=1. Since gy,;¥,...Y,_1€ Ygn, We have
ye Y. N Y, Yie This is a contradiction since Y is distinguished. Hence (ii)
implies (iii).

We now prove (iii) => (i). Let M satisfy the maximality condition. This
means M satisfies the stability condition. By theorem 3.1, M has a minimal
generator set X, namely,

X=BASE (My;,) U STAB (M) U STAB (M _;,)) U UNFAC (M;;,)-
Since a non maximal stable element cannot precede a maximal element,

STAB (M) = MAX (M, () = M, — (Mg, — &) M ¢

and
STAB(M _;,)) =MAX (M _; =M _;\;— M _;,c (Mg, — ).
Since
UNFAC (My;i06) = Myiine — (M _ine Mg Mi6)
and
BASE (My;,) = (M1, —8) — (Mgin— €)%,
we have

X=(M-¢)— [(Mfin—s)z UM, — &) Miye UM (Mg, —€)
U M—infoin Minf]'
Since X=Xin U Xine U X i U Xiiings let X;in=BASE (M),

Xins = MAX(M,0), X _jne=MAX(M_,,) and Xy;.= UNFAC (M,;,¢)- Thus
Xinf m Xt:'i—nA,inf=(D» X—inf m X—inf X;;n:q) and

Xbiinme—ian* X

fin <*i

2=
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Hence X is distinguished.

SECTION 4
SUBMONOID GENERATED BY CODES AND A THUE SYSTEM

In this section we introduce a bi-quasi free monoid whose underlying set
is the set of all normal forms with respect to a specific Church-Rosser Thue
system. We establish a characterisation of codes in terms of morphisms of
monoids. We show the relation between bi-quasi free monoids, minimal
generator sets and codes.

Let B be any finite alphabet. Let R be a binary relation on B*. Elements
of R are written as equations, i.e, R={(u=v)|u,veB*}. Let
T(B)={B; R). We call T(B) as a Thue system associated with B. We say
(u=v)is in T(BYIff (u=7) is in R.

Define the relation = 5, on elements of B* as follows: For any (u=v) in
T'(B) and any x, y € B*, we write xuy = r ;5 xvy. The reflexive transitive closure
of the symmetric relation =g 4 is denoted as =i . Clearly =, is a
congruence relation on B*. If x = 5y, for any x, ye B*, we say that x is
congruent to y. The congruence class of x is denoted by [x].

If (u=0) is in T(B), we write u - g v if the length of u is greater than
%
the length of v. — 4, is the reflexive, transitive closure of the relation — ;4.

sk
When x — 1y, we say that x is an ancestor of y and y is a descendant
of x. x is said to be irreducible if it has no descendant except itself. For any
x, yeB* if x =,y and y is irreducible, then y is called a normal form
of x.

T'(B) is Church-Rosser if for all x, ye B*, if x=; 3y, then for some

ze B*, x —*+T(B,z and y iT(B)z. This means that every two congruent words
have a common descendant. It is known that if 7(B) is Church-Rosser, then
every congruence class has a unique normal form [2]. We make use of this
result in the following discussion.

We partition B into four mutually disjoint subsets B,, B,, B,, B; and call
B as a quadruple alphabet (B,, B,, B,, B;). With B, we associate a Thue
system defined by 7(B)= { B; R) where

R={(bb'=b)|beB,\UB,, b'eB} U {(bb'=D")|beB,\UB,, b'cB, UB,}.
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Now, =4, is a congruence relation on B*. Consider the quotient monoid
B*|=1 4 and denote this by Bl It is easy to see that T'(B) is Church-
Rosser. Hence every congruence class has a unique normal form. It is
interesting to note that the set of all normal forms of elements of B* is

B*\J B*B,\U B, B¥\U B, B¥ B, U B,.
By a mild abuse of language, we write
B*'=p*\)B*B, UB,B*\U B, BB, B,.
Define a product on B™*! as follows: For x, ye€ B*],

Xy if xeBF, yeBf B, \ B}
or
xeB,Bf, yeB}
x if xeB*B,\UB,\UB,B!B,
y if xeB¥\UB, Bf,
yeB, B*\JB,\U B, B! B,.

Clearly B™ is a monoid which we shall call as a bi-quasi free monoid
generated by B.

Lemma 4.1: If ¢: B™ - ®A4® is an injective morphism and ¢ (B)=X, then
P (B1) = Xein> ©(By)= Xing, ¢(B1)=X_ ;¢ and ¢ (B3)= Xijins-

Proof: We first show that ¢ (B,) € X};,- Suppose it is not true. Then there
exists be B, such that

@ (b) € Xine U X _ine U Xigiinr-
If ¢ (b) € Xinf U Xbiinf’ for b'e B,
e (bb)=9 (D)o (B)=0 ().

Since ¢ is injective, bb'=b which is impossible. If @ (b)eX_,, for
b'eB,\U By, bb'=b". So, ¢ (b) ¢ (b")= ¢ (b') which is impossible since ¢ (b) #e¢.
Hence ¢ (8,) S Xjin-

To prove that ¢(B,)<S X, we suppose that it is not true. Then there
exists be B, such that ¢ (b)eXp, U X e U Xpine- For b'eB, bb'=b. So,
@ (b)) (b)=0¢ (b) and this is not possible since @ (") need not be €. Hence
0 (By) S Xipe-
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We now show that ¢ (B,)S X _,. If it were not so, there would exist be B,
such that @ (b)e X, U Xior U Xyiir-Now, for b'e B, U B,, bb'=b" and so
o (b) e (b)=0o (b'). This is not possible since ¢ (b) #¢.

Finally, in order to prove that @ (B;)< Xy, assume that it is not true.
Then there exists be B, such that ¢ (b)e X, U Xipe U X_;e- For b'eB,
bb"=b. Therefore ¢ (b) ¢ (b") = ¢ (b) which is not possible since ¢ (b") #e¢.

Since ¢ (B)=X, we have, ©(B,)=Xp,, ©(By)=X,, ©(B)=X_;,; and
@ (B3) = Xyiinr- This proves the lemma.

Given a quadruple alphabet B=(B,, B,, B,, B;) we denote B")= B and

B(")={(b1, by, ..., b)b,b,, ..., b,_€B,,b,eB,UB,
orb,eB, \UB,, by, bs, ..., b,eB,
orb,€B,,b,eB,,by, by, ..., b,_1€B}

Lemma 4.2: (i) If a subset X of ®A® is a code, then every morphism
@ : B* > ®A® which induces a bijection from B onto X with ¢ (B,)< X,
@ (B,)S X,oe and @ (B,) S X _,¢ is injective.

(i) If @: B™) — ®© 4% s an injective morphism, then X= ¢ (B) is a code.

Proof is on lines close to that of lemma 1.3 of Chapter III in [10] and is
therefore omitted.

We now give a necessary and sufficient condition for a subset of *A4% to
be a code.

TueEOREM 4.1: A subset X of ®A% is a code iff there exists a bi-quasi free
monoid B™*! and an injective morphism @ : B* — © A% such that ¢ (B)=X.

Proof: Let X be a code. Let B=(B,, B,, B,, B;) be a quadruple alphabet
chosen so that B,, B,, B, and B, are in one to one correspondence with Xj;,,
Xine>s X _ine and X, respectively. This correspondence shows the existence of
an isomorphism

¢: B* - x* with ¢ (B))=X;;,,
(P (BZ) = Xinf’
P(B)=X_iy and ¢ (B3) = Xiiins-
By lemma 4.2, the theorem holds.

DEFINITION 4.1: A submonoid M of ©A4% is said to be bi-quasi free if it is
isomorphic to a bi-quasi free monoid B,
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The following theorem exhibits that the class of submonoids generated by
codes coincides with the class of biquasi free submonoids.

TureoreM 4.2: (i) Every bi-quasi free submonoid M has a minimal generator
set X which is a code.

(i) If X is a code, then X* is a bi-quasi free submonoid having X as its
minimal generator set.

Proof: (i) Suppose M is a bi-quasi free submonoid. Then there is an
isomorphism ¢ : B — M from a bi-quasi free monoid onto M. By theorem
41, X=o¢(B) is a code. By lemma42, ¢(B;)=ZX, ¢B2)=Xie
@ (By)=X_i and ¢ (B3) = Xyjine- We have

M=o (B*). =¢(Bf U Bt B, UB, Bt UB, B} B, UB;)
=[eBI* Ul (BII* 0 (B2) U ¢ (By) [o (B)I*
U (B,)[9 (B)I* ¢ (By) U 0 (B,).
= Xfin U Xfin Xing U X e Xfin U X g X Xing U Xijine = X
Hence X generates M. To prove the minimality of X, let Y be any generator
set of M and xeX. Then x=y,y, ...y, for some (y;, s, ..., Y€ Y®,

n=0. Since x#¢, n=1. Since X is a code, n=1 and so x=y,. Hence Xc Y.
Thus X is minimal.

(i) Suppose X is a code. By theorem 4.1, there exists a bi-quasi free
monoid B™*! and an injective morphism ¢ : B*! — ®*4® such that ¢ (B)=X.
Now ¢ is indeed an isomorphism from B! onto ¢ (B™))=X*. Thus X* is a

bi-quasi free submonoid. By the similar argument as in (i), X is a minimal
generator set of X*.

SECTION 5
A COMBINATORIAL CHARACTERIZATION OF BI-QUASI FREE SUBMONOIDS

LeMmMA 5.1: Every bi-quasi free submonoid is freeable.

Proof: Let M be a bi-quasi free submonoid with the minimal generator
set X. By theorem4.2, X is a code. Let ae M *M N MM™!. Since
ae M~ M, there exists Be M such that Bue M, (Be M, \U My = 0=¢)
and (Be®M and ae 4N\ 4% = B=¢). Since a.c MM ~*, there exists ¥ e M
such that ¥ e M,

(ae®dand ¥ e M e \U My = A=E€)
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and
(ae AN\ A% = v =5¢).
Let
B=x;x,...%x  with (x,, x,, ..., x)eX®;
0V =Xppq ... X, With  (tyqy Xpszs - o 0s X,)€XTH,
Bou=x} x5 ...x,  with (x}, x5, ..., x)eX¥;

L . . )
YV =X Xpgn oo Xy With (X4, - .., Xp)eX™Y

If Be M, \U My, then a=ce M. If Be ®M and ae 4~V 4%, then B=c¢.
Therefore foe M implies ae M. If ae AY, then we have ¥ =g and so a ¥ e M
implies ae M. When ae®4 and ¥ eM_, U M, then a=ceM. We
have to consider the only case when Be*M, aeA4* and ¥ € M*. Since
B(a?)y=(Box) ¥, we get

’
m*

— ! ’ L)
X Xg oo e X Xpggq o« X, =X1 X5 oo o X Xppq - - - X,

Since X is a code, n=m and x;=x;, i=1,2, ...,n. Since P is a left factor of
Bo, we have /=k. Therefore

P - —
Ba=xixhy ... =X1X, . X Xppq - X =BXesq ... X

This implies a=x,,, ...x,€M. Thus M *MNMM *<M and so M is
freeable.

DeFINITION 5.1: We say that a submonoid M satisfies finite chain condition
if all the chains in M, ; and M _, are finite.

The finite chain condition implies the maximality condition.

LEMMA 5.2: Every bi-quasi free submonoid satisfies the finite chain condition.
Proof is similar to that of proposition 3.3 of Chapter III in [10] and is
omitted. The difference is to consider infinite chains in M _; .
THEOREM 5.1: For any submonoid M, the following conditions are equivalent.
(i) M is bi-quasi free i.e., generated by a code.
(i) M is freeable and satisfies the finite chain condition.
(iii) M is freeable and satisfies the maximality condition
(iv) M is freeable and has a distinguished (minimal) generator set.
Proof: 1t is clear that (iii) <> (iv) by theorem 3.3. (i) = (ii) is by lemmas 5.1
and 5.2. (i) = (iii) is evident. We have to show that (iii) = (i).
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Suppose M is freeable and satisfies the maximality condition. By
theorem 3.3, M has a distinguished minimal generator set X which is
BASE (M¢;,) U MAX (M) U MAX (M _;,() U UNF AC (My;0¢)-
By theorem 4.2, it is enough if we prove that X is a code. Suppose X is not
a code. Then there exists a word a such that it has two different factorizations
on elements of X.i.e.,

’

A=X{Xp...X,=X1X3...X,

where n, m=1, (x, x5, ..., x,)€X® and (x}, x5, ..., x,)eX™. Clearly
either n, or, m should be greater than 1. Let m> 1.

Case (a): Suppose a€ A*. We may assume that x, #x}. Let | x; )| x{ |. Then
there exists a word f#¢ such that x, =x{fand fx,x5 ... x,=x5x5 ... X,
From the freeability of M, it follows that fe M,, —e. This contradicts the
hypothesis that x, € BASE (Mg,,).

Case (b): Suppose aeA™ Then x, x,e MAX(M,,). If n=1, then
X,=x1x5...x, and so x,<x,, which is a contradiction to the maximality
of x,. Suppose x=2. If

ETE 7 P L B A

m—1

then
P 7 ’ *
X1Xg oo Xy =X1X5 .. Xy EAR.

As in case (@), we get a contradiction. If not, we assume that
|y X5 ... X,_1|>]| X7} ... x,_, | This implies that there exists f #¢ with

—_ ! ’ ¢ _t
X1Xg oo Xy 1=X1X5 ... X,,_f and fx,=x,.

Again, by freeability of M, f e M, —¢ and so we have x|, <x, which contra-
dicts the maximality of x;,.

Case (c): Suppose ae A~ Y. Then x,, x; e MAX (M _, ). We can discuss as
in case (b) and obtain a contradiction.

Case (d): Suppose ae A% If n=1, then x, =x} x5 . . . x,, which is a contrad-
iction since X is a distinguished minimal generator set. Suppose #=2. Then
X1, X1 € MAX (M _;¢). There are two possibilities.

(@) If x, #x7, we assume x, =Xx} f and so we have
fXyXy . x,=x5%5 ... %, m=2.

ms
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This implies f € My, — € since M is freeable. Hence x; <x] which contradicts
the maximality of x;.

(ii) Suppose x, =x. We have either

Xy Xz ... X, =X5X5 ... X,
or
7 ! ’
XoyXzg oo XgF X5 X3 002 Xpye
Ifx,x5...x,=x5x3...Xx,, then we assume x, # x, and proceed as in case

(b) and get a contradiction. If x,x, ... x,#x,x5 ... X, since a has two
factorizations, we have either x, =x}f and

fXyX5 . X, =X3X5 ..., or xy=x.f
and

—— ’ ’ ’
XXy oo Xg=fX5X5 ... Xy

Since the two cases are similar, it is enough to consider any one of the
possibilities, say x; =x} fand f x, x5 ... x,=x5x5 ... x,,. Clearly fe My, —¢
as M is freeable and hence x, <x} which contradicts the maximality of x,.
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