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BI- INFINITARY CODES (*)

by Do LONG VAN (X) (2) D. G. THOMAS O K. G. SUBRAMANIAN (X) and

Rani SIROMONEY (1)

Communicated by A. ARNOLD

Abstract. - The notion of bi-infinitary codes is introduced. For this purpose, the monoid cov4co of
finite, infinité and bi-infïnite words over an alphabet A is defined. A necessary and sufjïcient
condition for a set of words to be a bi-infinitary code is formulated. Conditions for a submonoid of
ÇOACO to have a minimal generator set are established. Using a spécifie kind of Thue System, the
notion of bi-quasi free sub-monoids is introduced. An "algebraic" characterization of the submonoids
gêner atedby bi-infïnitary codes is obtained. Finally, a "combinatorial" characterization of bi-quasi
free submonoids is studied.

Résumé. - On introduit la notion de code biinfini. On définit d'abord le monoïde ^A™ des mots
finis, infinis ou biinfinis sur un alphabet A. On énonce une condition nécessaire et suffisante pour
au 'un ensemble de mots soit un code biinfini. On donne également des conditions pour qu 'un sous-
monoïde de ^A™ ait un ensemble minimal de générateurs. En utilisant un système de Thue
spécifique, on introduit la notion de sous-monoïde bi-quasi libre. Une caractèrisation « algébrique »
des sous-monoïdes engendrés par des codes bi-infinis est alors obtenue. Finalement, on étudie une
caractèrisation « combinatoire » des sous-monoïdes bi-quasi libres.

INTRODUCTION

There has been a systematic study of codes consisting of finite words,
initiated by M. P. Schützenberger [16] and developed by many others taking
motivation from information theory (see [11-13]).

Recently, infinitary languages consisting of fmite and infinité words have
served as an adequate tooi for studying behaviours of processes. This is the
approach of M. Nivat and A. Arnold [14] in some problems of synchroniz-
ation which stimulated the study of infinité words including bi-infinite
words [15].

(*) Received June 1987, revised in February 1988.
l1) Department of Mathematics, Madras Christian College, Tambaram, Madras 600 059,

India.
(2) Permanent Address: Institute of Mathematics, Hanoi, Vietnam.
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68 DO LONG VAN et ül.

Motivated by the theory of codes [1] and the theory of infmitary languages,
the notion of infmitary codes has been introduced and examined in [3-10].

This paper is devoted to a study of bi-infinitary codes which are a natural
generalization of infinitary codes to bi-infinitary languages i. e,, languages of
finite, left-infinite, right-infinite and bi-infinite words.

SECTION 1

MONOID ^yl00 AND BI-INFINITARY CODES

Let A be an alphabet. We dénote by A*, the free monoid generated by A.
Eléments of A* are called fmite words. The length of a word x in A* is
denoted by | x | , the empty word by e and A+ =A*~ { e } .

We dénote by AN, the set of all right-infinite words, by A~N, the set of all
left-infinite words and by Az, the set of all bi-infinite words over A. Every
(bi) infinité word u has a countable length \u\ =©. For any X<^A*, we
dénote by Xm(mXJ

 mX**), the set of all right-infinite (left-infinite, bi-infinite)
words of the form xx x2 . . . ( . . . x2 xu . . . xx x2 x3 . . . ) for xt e X. In particu-
lar, if xeA*, then x<0 = xxx . . ., mx= . . . xxx and <öx<D= . . . xxx . . . . We
write^oo = ̂ *U^ i V , mA^A*{JA~N and "A^^A* \J AN KJA

We define a product on éléments of *°Am as follows:

I if aeANKJAz

aP, if aeA*UA~N, $eA*\JAN

ifIt is not difficult to verify that the product is associative and therefore
^A™ is a monoid. This monoid has A*, Am and mA as its submonoids. For
simplicity, instead of a. p, we write otp. For any I g ^A™, we dénote by X*,
the submonoid of œAm generated by X and write X+ =X*~ {E}. If a is a
word, instead of { a }*, we write a*.

For any Z £ mAm
y we write Xfin

fin U - inf,

i^)= {(xl9x29 . . .,xn)/xux2, . . .^„.jGlfi,,, x B e r } for n^l,
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BMNFINITARY CODES 69

> = {{xux29 . . .,xn)/x1e
coX,x2,x3, . . , x n e l f i n } for n£2,

^ , x„eJTinf, x2,x3, . . ^ V i G J f i J for w^

T̂T) y git) u ^ ) for w ̂  2 )

**> = {x tx2 . . . xj(xl9x29 . . . ^ J G ^ ^ } for

>= {xxx2 . . . xj(xux2, . . . ^ J E J ^ ^ } for

>= {xxx2 . . . xj(xl9x29 . . ^ X J G ^ " 5 } for

and

^») = ̂ » ) | j ^ » ) y ^ ) for n^2 .

We say that a word ae°°^co has a factorization on éléments of X if
oc = x1x2 . . . x„ for some (x lsx2, . . .9x^)sX^*\

DÉFINITION 1.1: A subset X of ™A™ is called a bi-infinitary code if every
word a e G0 4̂00 has atmost one factorization on éléments of X. More precisely,
X is a bi-infinitary code if for any n, m^l and for any (xl3 x2, . . ., x„) e J^"5,
(x'ux'2, . . . ^ J e ^ , the equality x t x 2 . . . x„ = x'1x2 . . . x'm implies n = m
and xf==x[(/— 1,2, . . . ,ri).

Unless otherwise stated, from now on code means bi-infinitary code.

Example \ .1 :lï A= [a, b), the subset

X= {"(abT^a, b

is a code whereas the subset

is not a code, since we have,

vol. 24? n° 1, 1990



70 DO LONG VAN et ai

SECTION 2

A CHARACTERIZATION OF BI-INFINITARY CODES

In this section, we establish a characterization of codes. We first introducé
certain concepts and formulate a fundamental formula.

Let X and Y be two subsets oî^A™. Defme the sets

Y~1X= {ae^A^llfie

We note that if u, veA~N and u^v, then u~1v is a subset of A*. For
example, if u — ma and v = G>a = (Oa. a*, then u~x v = a*.

We associate with every subset I i ^^t00, a séquence of subsets, denoted
by Un (X) or simply by Un9 defined recursively by

UX=X'XX- {s}

LEMMA 2 . 1 ; For any subset X of ^A™ — { e } , (i) ifn is the smallest natural
number such that s e Un, then Vfee{ 1,2, . . . , « } , 3ueUk, 3i,j^0:

(2.1)

(3ue Uk9 3 iJ^O : u(X®- (A ~N U 4̂Z)) H X01 /^>,

/ U Az=> i = 0) => ee £/„.

Proof: We prove by récurrence on A:.
(i) Let w be the smallest natural number such that &eUn. If k = n, then

(2.1) holds obviously with w = s, i=j=0. Let «>A:^1 and suppose the
statement is true for n, n—l, . . .,fc+ 1. We prove for fc. Since the statement
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BMNFINITARY CODES 71

is true for k+ 1, there exist ve Uk+1 and integers ÏJ' pich that

f+f + k+l=n9

veAN{JAz=>ï = 0. Thus we have x e F 1 - ^ " ^ / ) and ye^1 such
that ux = j>. The fact that veUk+1 gives rise to two cases.

Case (a): veX'1 Uk. Then, there exists zeX,ueUk such that

zv = u9(z€ Xinf U Xbiinf => x; = e)

and

(ze°°X N Z

If u e ̂ 4*, then f = 0, x = e, z G °°X and w = zy. Hence
u(X(0)-(A'N[JAz))nXa' + 1)^^- Thus (2.1) holds with f-0,7 = / '+ l .

If TÏ e A ~ N U ̂ 4Z
? then ze^X and s o z - s . Thus s G X which contradicts the

hypothesis that X g ^A™ - {s}.

If t) e ̂ 4* and z e Xin{ U ̂ bünf > t n e n ^ = £ anc^ w = z. Hence
u(Xi0)-(A-N[JAz))nXil)^^ and therefore (2.1) holds with i =0,7=1.

If t;e^4* and ze00^, then wx = zj and so

Thus (2.1) holds with i= i',y=/ + 1.

Case (Z?): Z J G ^ " 1 ^ . Then, there exist ueUk and zeX such that m; = z,
(we^wU^z=>v = e) and (ue™A, veA~N [J Az =>U = E).

If v e AN, then f' = 0, x = 8, ^ = j / , MGxi and w>> = z. Hence
M ( F - ( i 4 - N U ^ ) n F # « . So, (2.1) holds with i=j\j=l.

IïveA~N{JAz, then wG °°^ and therefore u = 8. Thus z = ueUk with fc<n,
which is contrary to the hypothesis that n is the smallest natural number
such that s G Un.

If veA* and z G Xin{ U Zbiinf, then x; = e, w = z and j = x. If i" =7" = 0, then
k+l=n and the equality M-Z implies « ( F - ^ ^ U ^ n F ^ O . That
is, (2.1) holds with z' = 0, 7= 1. Otherwise we have k+ 1 <n and t; = se l/k + 1

which gives a contradiction.

If ïje^4* and ze™X then WG °°y4. The équation uy = zx gives
« ( F - ^ ^ U ^ n F + ̂ t Thus (2.1) holds with i=f,j=ï+l.

(ii) Suppose there exist ueUk and two integers i, 7^0 such that
M ( F - ( ^ " N U i 2 ) ) n ^ V ^ i+j + k=n, ueAN{JAz^i=0. We have to
prove that zeUn. lï k = n, then i=j=0 and so w = s. Hence 8GC/„. Let now
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72 DO LONG VAN et al.

^.\ and suppose the statement is true for n, n—1, . . . , £ + 1 . We prove
for k. Suppose x1 x2 . . . x- G Z® - (A "N U ̂ 4Z) and *; x'2 . . . x) e %® such that
uxx x2 . . • Xj- = x'x x2 . . . x}. We discuss the following cases:

Case (à): Suppose ueANKJAz. Then z = 0, j+k = n, y ^ l and
w = *i *2 . . . *J- L e t w ' = X2 X3 • • • x j - Clearly ufeUk+1 and
w ' C F 0 ) - ( i " N U - 4 Z ) ) O ^ J * ~ 1 } # ^ , 0 + j - 1 + k + 1 = «. By récurrence hypoth-
esis £G £/„.

Case (b): Suppose ueA*. lfj = O, then i=0, u = z and fc=«. Thus we have
&eUn, Let 7 ^ 1 . If \u\ ^ | x i | , that is, u = x'1u' for some w', then u'eUk+1

and

So u'(^-(A"N\JAz))r\Xu~1)^<S>9 i+j~l+k+l = n. By récurrence
hypothesis, e G Un, If | u | < | x^ | , that is, x^ = uu" for some «", then w" e[/fc + 1

and w"x2x'3 . . . x} = x 1 x 2 , . . x .̂ Hence

v-iA-" \j AZ))

This implies s G Un.

Case (c): Suppose ueA~N. T h e n j ^ 1. If j = 1, then uxt x2 . , . xf = xi which
implies x x x 2 . . . X 1 GI/~ 1 X' 1 . Let w' = x 1 x 2 . . . xt. We have ufeUk+1 and

By récurrence hypothesis s G Un, lfj> 1, there are two subcases.

If u is a left factor of x'1? we have

11 2 • • • XJ U X2 A I

with « ' E M " 1 ^ . SO, we have u'eUk + 1 and

By récurrence hypothesis s G Un.

If x[ is a left factor of u, we have

Y' y' Y ' = M " TT TT v
A 2 A 3 . . . A>j U J^i A 2 . . . A£

with « " G ^ i ) " 1 ! / . Then u"eUk + 1 and

w" ( ^ ° - (A ~N U ̂ 2 ) ) H XV~1} # * , / +J -

By récurrence hypothesis s G Un. This proves lemma 2 .1 .
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BI-INFINITARY CODES 73

We are now in a position to formulate the main resuit of this section
which is a generalization of the result proved by Do Long Van in [5, 10].
The latter is a generalization of Sardinas-Patterson theorem. This in many
cases gives us a procedure to check whether or not a given set is a bi-
infinitary code.

THEOREM 2A: A subset X of 0 0^c o- {e} is a code ifffor all « ^ 1, Un(X)
does not contain the empty word 8.

Proof: Suppose e£ Un(X), « ^ 1. Assume that X is not a code. Then there
exists a word oce00^00 having two different factorizations on éléments of X:

OL — X1X2 . . . JC| = jciJC2 . . • x'j where (xux2, • - .,

x[, x'2, ...,x'j)eX^.

Case (a)\ Suppose a e A* U AN. We may assume that xx ^x\ and
xi I > I xi I • Let xx = x\ u for some u/£. Clearly ueU1.

If x1eXfin5 then jc^eA^ and ueA + . So we have

Hence

By lemma 2.1 (ii), e G C/£+J-_ X which is a contradiction.
If jq e l i n f j then /= 1, x i e l f i n and ueAN. Therefore we have

u = x'2x
f
3 . . . x'p j ^ 2 . This implies

Again by lemma 2.1 (ii), e e U} which is a contradiction.
Case (b): Suppose aeA~N. Clearly xu x'xeX_in{> Since the case i~j= 1 is

impossible, we may assume that Ï ' ^2 . There are two possibilities.
(i) If xx # x[ we can assume that xx = x[ u with u e A+ such that

ux2xz . . . x^x'ix'-s . . . x'pj^.2. Then clearly ueU1 and

Again by lemma 2.1 (ii), e G Ui+j^1. This is a contradiction.

(ii) Suppose x1=x'1. Here, if 7=1, then JCX JC2 . . . Xi = x'i and so
x1 =

 ö>(x2x3 . . . xf). Let x2x3 . . . xt = u. Clearly uexï1 x[ g C/i. Hence
u(Xi0)-(A'N\JAz))C)Xii~l)^^- This implies set/£ which is a contradic-
tion.

vol. 24, n° 1, 1990



7 4 DO LONG VAN et Cil

If/^2, then x1x2 . . . x^x^x^ . . . xj with

• • Xj-1 yi ,

If x2x3 . . . Xj = x2X3 , . . Xp we may assume that x27éx2, and as In case (a),
get a contradiction. If x2x3 . . . X|^x2x'3 . . . xj, then we have either
xt = x\ u and wx2 x3 . . . x̂  = x2 x3 . . . xj or x[ = x1u and
x2x3 . . . X^MX^X^ . . . Xj for some ueA + . By symmetry, we shall discuss
one of the two possibilities.

Consider x1 = x'1w and wx2x3 , . . X| = x2x3 . . . xj. Now x1=x'1 and
x1=xf

1u imply x1=
zxf

1 =
 mu and ^G(xi)~1x1 g Ux. Thus

wx2x3 . . . xf = x'2x3 . . . x'j gives « ( ^ " ^ - ( y l ^ U ^ n ^ " 1 ^ * and so
eeUi+j-i which is a contradiction.

Case (c): Suppose a€Âz. The case i—j—l is impossible. We assume/^2.
If i = l then x1 = x'1x2 . . . xj and so we have M = (X'1)~1X1G Ul with
w = x2x3 . . . x'j. Hence « ( F - ^ ^ U ^ n ^ " 1 ^ * which gives a con-
tradiction.

If i^2, then x t x 2 . . . x£ = XiX2 . . . x], Now x l3 x^eX^.^, There are two
possibilities.

(i) If xt #xr
l5 as in case (a), we obtain a contradiction.

(ii) If xt =x'1? then we have either

x 2 x 3 • * . Xj x 2 x 3 » . » X| o r x 2 x 3 . • * XJ ~?~ x 2 x 3 . « » X|»

If x2x3 . . . X| = x2x'3 . . . x'j, then we can assume x2 # x 2 and as in case (a),
get a contradiction since x 2 x 3 . . . x ( , x2x3 . . . X'JGAN, If
x2 x3 . . . X| 7e x'2 x3 . . . Xp we can obtain a contradiction as in the last part
of Case b (ii). Thus X is a code.

We shall prove the converse. Suppose X is a code. Assume that there are
some sets U^X) containing e. Let Un(X) be one among these? with the
smallest index. By lemma 2.1 (i)? there exists a word ueU1 with two integers
i, j ^ O such that

® ~ (A -N U Az)) H S01 # ^ 5 1+ ƒ + 1 = n,

ï==0. So, we have &xxx2 . . . xf = XiX2 . . . xj for some
xtx2 . . . X f G ^ - C ^ ' ^ U ^ 2 ) and x'Ax2 . . . XjG^K Since ueUu there exist
words x, xf eX with either x # x' and x = x' w or x = x' and x = x' u.

If u€A+, then both x, x' are either in Xfin or in X__inf. Let x, x'eXfin.
Then we have x ^ x' and x — xfu,Soxxxx2 - . . xt = xf x{ . . . x) and therefore
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BI-ÎNFINITARY CODES 75

Xis not a code, a contradiction. Let x, x 'e l_ i n f . If x # x ' and x = x'w, then
as before, we get a contradiction. If x — x' and x = x' w, then x = x' = wu and
either

or
2 • •

If xx x2 . . . x^Xi x2 . . . x'p then z=y and xfc = x£ (k= 1,2, . . ., z) since X is
a code. Then the équation uxx x2 . . . x^x^ x'2 . . . x,- implies U = E, a contra-
diction. If Xi x2 . . . X; / x\ x2 . . . Xj then the équation
x'xxx2 . . . xt = x' x[x2 . . . Xj shows that X is not a code, a contradiction.

If ueAN, then z = 0 and either xe l i n f , x ' e l f i n or i e l b i i n f , x ' e I H n f . In
both cases, we have x = x' x[ . . . x'̂  which shows Zis not a code, a contradic-
tion.

If ueAz, then f=0, xel b i i n f and x' = z. Since x ' e X g 0 O ^ 0 ° -{s} , this
case is not possible.

If ueA~N, then x = w and x' = s. As before, this case is also not possible.

Example 2 A: (i) Let JST= {œ(^)œ, œa, ôœ
9 û i} . t/x (JT)= {«+ }, (/2ffl

f/3(r)={è tû} and C/4(X)={£}. So Xis not a code.
(ii) Let X={ (û(aèr, wa, 6", 6a}. Ux(X)={a+}, U2(X) = <b. So, X is a

code.

SECTION 3

MINIMAL GENERATOR SET OF A SUBMONOID OF co^c0.

We recall that a generator set X of a monoid M is minimal if X is contained
in any generator set of M. Such a set, if it exists, is unique and called the
base of M, denoted as BASE (M). Every submonoid of A* has a minimal
generator set whereas there are submonoids of ^A™ which have no minimal
generator sets. We illustrate this in the following example.

Example 3.1: Let A= {a, b} and let M be the submonoid of ^A™ given
by M= {oc e COY400 | | a |a = | a \b} where | a |ö stands for the number of occur-
rences of a in a. This monoid has no minimal generator set.

DÉFINITION 3.1: Let M be a submonoid of ^A™ and w, v9 two éléments of
Min{. We say that u précèdes v9 denoted by u < z>, if there exists ƒ e Mf in - £
such that u =fv. An element u e Minf is called stable if V v e Min{:
(u<v)^>(u = v). The set of ail stable éléments of Minf is denoted by
STAB(Minf).

vol. 24, n° 1, 1990



76 DO LONG VAN et al.

Let x, y be two éléments of M_ inf. Here also we say that x précèdes y,
denoted by x-<y if there exists geM f i n —e such that x^yg. As before,
xeM_inf is called stable if VjeM_ i n f : (x <y) =>(x = y). The set of all stable
éléments of M_ in f is denoted by STAB(M_ inf).

We say that a submonoid M satisfies the stability condition if every
unstable element of Afinf (resp. Af_inf) précèdes a stable element of Afinf

(resp. Af _ in f). We introducé the following two sets:

BASE (Mfin) = (Mfin - e) - (Mfin - s)2

UNFAC (Mbiinf) - Mbiinf - (M_ inf Mfin Minf).

THEOREM 3 .1 : A submonoid M of COACO has a minimal generator set iff M
satisfies the stability condition and in that case, the minimal generator set of
M is

X= BASE (Af)

= BASE (Mfin) U STAB (Minf) U STAB (Af. inf) U UNFAC (Mbiinf).

Proof: Assume X satisfies the stability condition. Let

Xfin - BASE (Mfin), ^rinf = STAB (Minf)5 JT. inf = STAB (M_ inf),

JTblinf = UNFAC (Mbiinf) and X= Xïin U Xinf U ^ - i n f U Xhiinï.

Since

Z?in = Mfin, Minf = STAB (Minf) U (Mïln - s) STAB (Minf)

Similarly,

M_ inf = X_infZ*in and Mbiinf = UNFAC (Mbiinf)

U M_inf Mfin Minf = Xbiinf U JT_ inf X*n Xin[.

Therefore,

M=M f i n U Minf U M_ inf U Arbiinf

Thus X is a generator set of Af. We shall prove that X is minimal. Let Y be
an arbitrary generator set of M. We can assume that B £ F. It is enough if

Informatique théorique et Applications/Theoretical Informaties and Applications



BI-INFINITARY CODES 77

we prove that

Y a Y Y a Y

X_inf s F_ in f and Xbiinf g rbi inf.

As l?in = ^fin a n d ^fin i§ the minimal generator set of Mf in, we have
^fin £ Ï W L e t w e 4 f Then M ^ ^ y 2 . . . j„ for some (yu y29 . . ., j ^ J e ^ ,
« ̂  1. If n - 1, then w = ^M e 7 inf. If « > 1, we have u =fyn with
f=yiyi • • - ^ « - i G ^ f i n - £ *•£•, M-<j/B. Since u is stable w = j n e F i n f . Thus
Xin{ g Y"inf. Similarly we can show that ^_ i n f £ Y_in{. Let «6Zb i i n f . Then
u=wlw2 • • . wn for some {wu w2, . . ., wn)e y^n), « ^ 1. If n = 1, u=w1 where
w1eYhiin{. If n ^ 2 , u = w1w2 . . . wn is an element of M„ i n f M f i nM i n f since
Wi e 7_ inf l? in = AT_infï wne 7^n 7inf = Minf and w2 w3 . . . wn_x e Yfin. This
contradicts the choice of u since weUNFAC(Mbi in f). Hence ue 7biinf and so
Y cz Y
^biinf ~ ^biinf-

We prove the converse part now. Let 7 b e a minimal generator set of M.
Suppose M does not satisfy the stability condition. Then, there exists an
unstable element of Minf (resp. M_ inf), which does not précède any stable
element of M inf(resp. M_ inf). Let u be an unstable element of M inf and v
any element of Min{ such that v # u and u<v. If ue F inf, then since
I?i„ = Affin, the set r = ( F - {u}) U {^} is a generator set of M. Since Y
does not contain F, we get a contradiction to the minimality of Y. If u $ Yinl,
then M = j>i.y2 • • • J^ f o r s o m e C û 2̂» " « j j e ï 1 " 1 with « > 1 . Therefore
w -<ƒ„. By hypothesis, ƒ„ is unstable. Therefore there exists w e ¥ i n f such that
w ^ yn and yn < w, Thus, the set Y' = (Y- {yn}){J {w} is & generator set of
M. Since Y' does not contain 7, we have a contradiction. Hence M satisfies
the stability condition.

Example 3.2: Let A = {a, b } . Let M be the submonoid of c0^400 given by

M= {"aiaby] U A* {JmbA* [J A* aOU^bA* am.

Every element of Minf précèdes the unique stable element aa. Every element
of M_ inf précèdes the unique stable element ^b. M satisfies the stability
condition. By theorem 3 .1 , M has a minimal generator set which is A U {am,

}

DÉFINITION 3.2: Let M be a submonoid of œA°°. Any increasing séquence
ux < u2 < . . . of éléments of Minf or M_ inf is called a chain. An infinité
chain is called stationary if there exists n^t 1, such that um = un, for ail m^n.
We say that M satisfies the stationary chain condition if every infinité chain
of Minf as well as M_ inf is stationary.
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We note that stationary chain condition implies the stability condition but
the converse is not true.

DÉFINITION 3.3: A submonoid M of 00^400 is freeable if
M~1MDMM-1 £ Af.

The next theorem explains the existence of the minimal generator set for a

freeable monoid Af.

THEOREM 3.2: For any freeable submonoid M, the following conditions are
equivalent.

(i) Af has a minimal generator set.
(ii) M satisfies the stationary chain condition.

(iii) Af satisfies the stability condition.

Proof is similar to that of theorem 2.4 of Chapter II in [10] and is therefore
omitted. The main différence is to consider infinité chains of éléments of

DÉFINITION 3.4: Let M be a submonoid of G0^4G0. An element u of
Afinf(resp. Af_inf) is maximal if there is no element v of Afinf(resp. Af_inf)
such that u<v. The set of all maximal éléments of Afinf(resp. Af_inf) is
denoted by MAX(Afinf) [resp. MAX(Af_inf)]. It is evident that
MAX(M in f) g STAB(Minf) and MAX(M_ inf) ç STAB(M_inf). We say that
Af satisfies the maximality condition if every non maximal element of
Afinf(resp. Af_inf) précèdes a maximal element of Afinf (resp. Af_inf). Clearly,
maximality condition implies stability condition but not the converse.

DÉFINITION 3.5: Any subset X of ^A™ is called distinguished if
xinfnxf

+
inxin{=^ i . i n f n i - i n f 4 ^ and xbiinf nx_infx*nxinf=o.

The following theorem gives the connection between maximality condition
and the distinguished minimal generator set of a monoid Af.

THEOREM 3.3: For any submonoid Af, the following conditions are equivalent,

(i) Af has a distinguished minimal generator set which is

BASE (Affin) U MAX (Minf) U MAX (M_inf) U UNFAC (Mbiinf)

= (Af- s) - [(Mfin - 8)2 U (Mfin - e) Minf U M_ inf (Mfin - e)

UM_ i n fA/ f i nM i n f]

(ii) M has a distinguished generator set
(iii) M satisfies the maximality condition
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Proof: It is clear that (i) implies (ii). We show that (ii) implies (iii). Let Y
be a distinguished generator set of Af. Since y is a generator set, it is easy
to see that every element of M i n f - F i n f (resp. M _ i n f - F _ i n f ) précèdes an
element of Yin{ (resp. F- inf) and so it is enough to prove that

Yin£ g MAX(M inf) [resp. 7_ in f £ MAX(M_ i n f)].

We shall prove that 7inf g MAX(Afinf). Suppose this is not true. Then, there
exists yeYin{ which is not maximal. So, for some veMinf, we have y -< v.
Let y = gv where geMnn — s and v=yxy2 . . . yn for some
Ü>i, y2, • - •> yn)e ^n\ n^\. Since gyxy2 . . . ̂ ^ e Y£m9 we have
y e yinf H f̂tn înf* T n i s is a contradiction since Y is distinguished. Hence (ii)
implies (iii).

We now prove (iii)=>(i). Let M satisfy the maximality condition. This
means M satisfïes the stability condition. By theorem 3 .1 , M has a minimal
generator set X, namely,

X= BASE (Mfin) U STAB (Minf) U STAB (M_inf) U UNFAC (Mbiinf).

Since a non maximal stable element cannot précède a maximal element,

STAB (Minf) = MAX (Minf) = Minf - (Mfin - e) M inf

and

STAB (M„ inf) = MAX (M_ inf) = M _ i n f - M_ in f (Mfin - e).

Since

UNFAC (Mbiinf) = Mbiinf - (M_ inf Mf in Minf)

and

BASE (Mfin) - (Mfin - e) - (Mfin - e)2,

we have

X= (M- E) - [(Mfin - E)2 U (Mfin - E) Minf U M_inf (Mfin - e)

UM_ i n f M f i n M i n f ] .

Since X=Xnn{JXin({JX_infUXbiin{, let Xfin = BASE (Mf in),
Xinf = MAX(Minf), Z_ i n f = MAX(Af_inf) and Xbi inf=UNFAC(Mbi inf). Thus
XinCnXLXiBt = <t>, I - M n i - w ^ ^ and
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Hence X is distinguished.

SECTION 4

SUBMONOID GENERATED BY CODES AND A THUE SYSTEM

In this section we introducé a bi-quasi free monoid whose underlying set
is the set of all normal forais with respect to a spécifie Church-Rosser Thue
System. We establish a characterisation of codes in terms of morphisms of
monoids. We show the relation between bi-quasi free monoids, minimal
generator sets and codes.

Let B be any fini te alphabet. Let R be a binary relation on B*. Eléments
of R are written as équations, Le., R= {(u = v)\u, veB*}. Let
T(B)=(B; R). We call T(B) as a Thue System associated with B. We say
(u = v) is in T(B)lfî(u = v) is in R.

Define the relation = T (B) on éléments of B* as follows: For any (u = v) in
T(B) and any x, y E B*7 we write xuy = T (B) xvy. The reflexive transitive closure
of the symmetrie relation =T(B) is denoted as = T(By Clearly =T(B) is a
congruence relation on £*, If x = T{B)y, for any x, yeB*, we say that x is
congruent to y. The congruence class of x is denoted by [x].

If (u = v) is in T(B), we write u->T{B)v if the length of u is gréa ter than

the length of v. —>T(B) *S ̂ he reflexive, transitive closure of the relation -^rfB).
*

When x -» T {B) y, we say that x is an ancestor of y and y is a descendant
of x. x is said to be irreducible if it has no descendant except itself. For any
x, yeB*, if x =T(B)y and y is irreducible, then y is called a normal form
of x,

T(B) is Church-Rosser if for ail x5 yei?*, if x = Timy, then for some

zeB*, x-+ r ( B )z and y~+T(B)z- This means that every two congruent words
have a common descendant. It is known that if T{B) is Church-Rosser, then
every congruence class has a unique normal form [2], We make use of this
resuit in the following discussion.

We partition B into four mutually disjoint subsets Bu B2, B2, B3 and call
B as a quadruple alphabet (Bx, B2, B2, B3). With B, we associate a Thue
System defined by T(B)=(B; R) where

b'eB}U {(bb' = b')\beB1\JB2, b'eB2\JB3}.
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Now, =r(£) is a congruence relation on B*. Consider the quotient monoid
B*/ = T{B) and dénote this by B[*\ It is easy to see that T(B) is Church-
Rosser. Hence every congruence class has a unique normal form. It is
interesting to note that the set of all normal forms of éléments of B* is

Bf {JBfB2U B2 B\ U B2 Bf B2 U B3.

By a mild abuse of language, we write

£[*] = B* U Bf B2 U B2 Bf U B2 Bf B2 U B3.

Define a product on B[*] as follows: For x, yeB[*\

xy if xeBf, yeB*B2{JB*

or

x if xeB*B2UB3{JB2B*B2

y if xeB*UB2B*,
yeB2B*[JB3{JB2B*B2.

Clearly B[*] is a monoid which we shall call as a bi-quasi free monoid
generated by B.

LEMMA 4.1: If cp:i?[*]-> °°Aœ is an injective morphism and cpC#) = Z, then
cp (B,) = Xnn, cp (B2) = Xinf, cp (B2)-X_inf and cp (^3) = Xhiin{.

Proof: We first show that cp (Bx) £ X{m. Suppose it is not true. Then there
exists b e Bx such that

Since cp is injective, bb' = b which is impossible. If cp(è)eX_inf, for
b' EB2{J B3, bb' = b''. So, cp (b) cp (è') = cp (b') which is impossible since cp (b) # E.

To prove that cp(52)gXinf, we suppose that it is not true. Then there
exists beB2 such that cp(è)eXfin U^- i nf U^bünf F o r b'eB, bb' = b. So,
cp (b) cp (6') = cp (b) and this is not possible since cp (b') need not be e. Hence
cp(i?2)gXinf.
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We now show that cp(i?2)c=X_inf. If it were not so, there would exist beB2

such that (p(*)6jrfinU^i„fU^biinfNow9 for b'eB2[JB3i bb' = b' and so
cp (b) cp (b') = cp (bl). This is not possible since cp (b) ̂ e .

Finally, in order to prove that (p(53)clbi inf) assume that it is not true.
Then there exists beB3 such that (p(b)eX{in\J Xin{\J X_in{. For b'sB,
bb' — b. Therefore (p (b) cp (b') = cp (b) which is not possible since cp (b') ̂  E.

Since y(B) = X9 we have, cp(^1) = Zfin) cp(£2) = Xinf, q>(B2) = X,inf and
cp (i?3) = Xbiinf. This proves the lemma.

Given a quadruple alphabet B=(BX, B2, B2, B3) we dénote B{1) = B and

B^={(bub2, ...,bJlbl9b2, ...,bn_1eBl9bHeB1\JB2

B.UB^ b29b39 . . . , M * i

LEMMA 4.2: (f) ƒƒ « subset X of ^A™ is a code, then every morphism
cp:i?l*] -• c0^00 which induces a bijection from B onto X with <p(JS1)gAr

fins

cp (B2) £ Xin{ and cp (52) £ X_ inf w injective.

(ii) T/'cp : J?[*] —• ̂ A™ is an injective morphism, then X=(p(B) is a code.

Proof is on lines close to that of lemma 1.3 of Chapter III in [10] and is
therefore omitted.

We now give a necessary and sufficient condition for a subset of G0^00 to
be a code.

THEOREM 4.1: A subset X of 00
y4

co (s a code iff there exists a bi-quasi f ree
monoid B[*] and an injective morphism cp : B[*] -^^A™ such that cp (B) = X.

Proof: Let I b e a code. Let B=(Bly B2i B2, B3) be a quadruple alphabet
chosen so that Bx, B2, B2 and B3 are in one to one correspondence with Zfin,
Xin{, X_ inf and Xhiin{ respectively. This correspondence shows the existence of
an isomorphism

q> : # * - > * • with

cp (B2) = X„ inf and cp (B3) = Xhiint.

By lemma 4.2, the theorem holds.

DÉFINITION 4.1: A submonoid M of ^A™ is said to be bi-quasi free if it is
isomorphic to a bi-quasi free monoid 2?[*].
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The following theorem exhibits that the class of submonoids generated by
codes coincides with the class of biquasi free submonoids.

THEOREM 4.2: (z) Every bi-quasi free submonoid M has a minimal generator
set X which is a code.

(ii) If X is a code, then X* is a bi-quasi free submonoid having X as its
minimal generator set.

Proof: (i) Suppose M is a bi-quasi free submonoid. Then there is an
isomorphism cp : 2?[*] -> M from a bi-quasi free monoid onto Af. By theorem
4.1, X= cp (B) is a code. By lemma 4.2, <p(B1) = X{in, 9 (B2) = Xïnï9

and (pOB3) = Xbiinf. We have

U B* B2{J B2B* U B2B* B2U B3)

* U fo> (Bj\* cp (B2) U cp (B2) [q> (B,)]*

U <p (B2) [<p (Bx)]* cp (52) U cp (53).

= ^fin U ^fin ^inf U ^ - jnf ^ i n U ^ - i n f ^fin ^inf U ' ^biinf = ^ *

Hence X générâtes M. To prove the minimality of X, let Y be any generator
set of M and j c e l Then x = y1y2 . . . yn for some (y1? j ^ , . . ., yn)e i^"3,
n^O. Since x # e , « è 1- Since Z is a code, n= 1 and so x = y1. Hence X^ Y.
Thus X is minimal.

(ii) Suppose X is a code. By theorem 4.1, there exists a bi-quasi free
monoid B[*] and an injective morphism <p :B[*] -> ̂ A™ such that (p(B) = X.
Now cp is indeed an isomorphism from B[*] ónto 9 ( 5 ^ ) = ^ . Thus JSf* is a
bi-quasi free submonoid. By the similar argument as in (i), X is a minimal
generator set of X*.

SECTION 5

A COMBINATORIAL CHARACTERIZATION OF BI-QUASI FREE SUBMONOIDS

LEMMA 5.1: Every bi-quasi free submonoid is freeable.

Proof: Let M be a bi-quasi free submonoid with the minimal generator
set X. By theorem 4.2, X is a code. Let a e M " 1 Af H AfM"1. Since
oc G M " 1 M , there exists | 3 G M such that Pot G Af, ((3eAfinf U Mbiinf =>ot = £)
and (pG°°Mand aeA~N{JAz^ P = e). Since oteAfAf"1, there exists
such that a "K e M,

(a G ̂  and TT G M V inf U Mbiinf => oc = s)
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and

Let

$ = x1x2 . . . xk with (xu x2, . . .,

- . . x\ with (x'l
x'l + 2 ...x'm with

If PeM in fUMbi inf, then ot = seM. If $e°°M and aeA~N\JAz, then p = s.
Therefore |3a e M implies a e M. If a e AN, then we have *¥* — s and s o a f eAf
implies a e Af. When ae°°^ and ^eM_ i n f U Mbiinf, then a = seM. We
have to consider the only case when Pe°°M, a G A* and f e M w . Since

• - - xkxk+1 . . . xn —xtx2 • • • xtxl + 1 . . . xm.

Since A" is a code, « = w and x^x^ z = 1,2, . . .,/?. Since P is a left factor of
Pa, we have l^k. Therefore

Pa = x'1x
/
2 . . . xl = x1x2 . . . xkxk + 1 . . . xt=$xk+1 . . . xv

This implies a = xk + 1 . . . xteM. Thus M~1MPiMM~1^M and so M is
freeable.

DÉFINITION 5.1: We say that a submonoid M satisfies finite chain condition
if all the chains in Minf and M_inf are finite.

The finite chain condition implies the maximality condition.

LEMMA 5.2: Every bi-quasi free submonoid satisfies thefinite chain condition.
Proof is similar to that of proposition 3.3 of Chapter III in [10] and is

omitted. The différence is to consider infinité chains in M_inf.

THEOREM 5.1: For any submonoid M\ the following conditions are equivalent.
(i) M is bi-quasi free L e., generated by a code,
(ii) M is freeable and satisfies the finite chain condition,
(iii) M is freeable and satisfies the maximality condition
(iv) M is freeable and has a distinguished (minimal) generator set.

Proof: It is clear that (iii)o(iv) by theorem 3.3. (i) => (ii) is by lemmas 5.1
and 5.2. (ii) => (iii) is evident. We have to show that (iii) ̂ > (i).
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Suppose M is freeable and satisfies the maximality condition. By
theorem 3.3, M has a distinguished minimal generator set X which is
BASE (Mfin) U MAX (Minf) U MAX (M_inf) U UNF AC (Mbiinf).
By theorem 4.2, it is enough if we prove that X is a code. Suppose X is not
a code. Then there exists a word a such that it has two different factorizations
on éléments of X.i.e.,

UC A ^ A 2 • • • -A.„ -*-l-*-2 * • * -^m

where n, m ^ l , (xl5 x2, . . ., xn)eXin) and (xi, x'2, . . ., xr
m)eXim\ Clearly

either n, or, m should be greater than 1. Let m>\.

Case (a)\ Suppose ÖLEA*. We may assume that xl^x\. Let |x11)|x[ |. Then
there exists a word ƒ ^£ such that x ^ x ^ / a n d fx2x3 . . . xn = x2x

r
3 . . . xr

m.
From the freeability of M, it follows that ƒ eM f i n - s . This contradicts the
hypothesis that xx eBASE(Mfin).

Case (b): Suppose a e AN. Then xn, x^e MAX (Minf). If n = 1, then
x„ = xix2 . . . x^ and so x„-<x^ which is a contradiction to the maximality
of xn. Suppose x^2 . If

Xj. -*-2 * * * Xn~ 1 | ~~ I ̂ 1 X2 • • • Xm_ j

then

x1 x2 . . . xn_x =x1x2 . . . xm_1 eA*.

As in case (a), we get a contradiction. If not, we assume that
1x^2 . . . xn_l l^x^x^ . . . xm_11. This implies that there exists ƒ ^£ with

Again, by freeability of M, f eMfin — £ and so we have x'm-<xn which contra-
dicts the maximality of x'm.

Case (c): Suppose a e A~N. Then xu x/
1eMAX(M_inf). We can discuss as

in case (b) and obtain a contradiction.

Case (d): Suppose VLEAZ. If «= 1, then x1~xt
1 x2 . . . x'm which is a contrad-

iction since X is a distinguished minimal generator set. Suppose n ̂  2. Then
xl5 xieMAX(M_inf). There are two possibilities.

(i) If xy /x ' l 5 we assume xx —x\ f and so we have

fx2x3 . . . x„ = x2X3 . . . x^, m^2.
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This implies ƒ e M{in — s since M is freeable. Hence xx-<xi which contradicts
the maximality of xx.

(ii) Suppose x^x'^ We have either

x2 x3 . . . xn = x2 x3 . . . xm

or

x2 x3 . . . xn ^ x2 x3 . . . xm.

If x2 x3 . . . xn = x'2 x
f
3 . . . x'm, then we assume x2 ¥" x'2 and proceed as in case

(b) and get a contradiction. If x2 x3 . . . xn ^ x'2 x3 . . . x'm since a has two

faetorizations, we have either x1=x[f and

ƒ x 2 x 3 , . . xn = x2x3 ...x'm or x ' i ^ X i /

and

x2 x3 . . . xn = / x2 x3 . . . xm.

Since the two cases are similar, it is enough to consider any one of the

possibilities, say xx — x[ ƒ and ƒ x2 x3 . . , xn = x2x
r
3 . . . x'm. Clearly ƒ G Mt in — £

as M is freeable and hence x1^(x'1 which contradicts the maximality of xx.

REFERENCES

1. J. BERSTEL and D. PERRIN, Theory of Codes•, Academie Press, 1985.
2. R. V. Book, Thue Systems and Church-Rosser Property: Replacement Systems,

Spécification of Formai Languages and Présentations ofMonoids, in Combinatorics
on Words, L. CUMMING Ed., Academie Press, 1983, pp. 1-38.

3. Do LONG VAN, Codes avec des mots infinis, R.A.LR.O. inform. Theor., Vol. 16,
1982, pp. 371-386.

4. Do LONG VAN, Sous-monoïdes et codes avec des mots infinis, Semigroup Forum,
Vol. 26, 1983, pp. 75-87.

5. Do LONG VAN, Ensembles code — Compatibles et une généralisation du théorème
de Sardinas/Patterson, Theor. Comp. Science, Vol. 38, 1985, pp. 123-132.

6. Do LONG VAN, Sur les ensembles générateurs minimaux des sous-monoïdes de A™,
C. R. Acad. Sci. Paris, 300, Série I, 1985, pp. 443-446.

7. Do LONG VAN, Caractérisations combinatoires des sous-monoïdes engendrés par un
code infinitaire, Hanoi Preprint Séries, No. 6, 1984.

8. Do LONG VAN, Languages écrits par un code infinitaire, Théorème du défaut, Acta
Cybernetica, Vol. 7, 1986, pp. 247-257.

9. Do LONG VAN, Codes infinitaires et automates non-ambigus, C. R. Acad. Sci.
Paris, T. 302, Séries I, 1986, pp. 693-696.

Informatique théorique et Applications/Theoretical Informaties and Applications



BI-INFINITARY CODES 87

10. Do LONG VAN, Contribution to Combinatorics on Words, Publication of L.I.T.P.,
No. 29, 1985.

11. S. EiLENBERG, Automata, Languages and Machines, Vol. A, Academie Press, New
York/London, 1974.

12. G. LALLEMENT, Semigroups and Combinatorial Application, Wiley, New York,
1979.

13. M. NIVAT, Éléments de la théorie générale des codes, in Automata Theory,
E. R. CAIANIELLO Ed.), Academie Press, New York/London, 1966, pp. 278-294.

14. M. NIVAT and A. ARNOLD, Comportements de processus, in Colloque, Les Mathém-
atiques de l'Informatique, Paris, 1982, pp. 35-68.

15. M. NIVAT and D. PERRJN, Ensembles reconnaissables de mots biinfinis, Canad. J.
Math., Vol. XXXVIII, No. 3, 1986, pp. 513-537.

16. M. P. SCHÜTZENBERGER, Une théorie algébrique du codage, Séminaire Dubrail,
expose No. 15, Algèbre et théorie des nombres, année 1955-1956.

vol. 24, n° 1, 1990


