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AN ALGORITHM FOR THE WORD PROBLEM
IN HNN EXTENSIONS AND THE DEPENDENCE OF ITS
COMPLEXITY ON THE GROUP REPRESENTATION (*)

b y J . A V E N H A U S C), K . M A D L E N E R (*)

Communicated by J. Berstel

ABSTRACT. — A wellknown methodfor solving the word problem of a Jinite presented group given as
HNN extension G* = (G, a; âua = (p(u),ueU > is to reduce it to the word problem of G by means ofan
a-reductionfunction [1,3,4].// isshown that the complexity ofthisme thod dépends very strongly on the
représentation ofG*. For any Grzegorczyck class S n, the complexity of the method applied to G* as
above may be not less than in é\, while the method applied to an o ther présentation ofG*, G* = (H, s;
svs = \\f (v), veY) may be of complexity in é\. For a recursively presented group G* the me thod applied
to one présentation may not work at ail, while applied to an other présentation is very easy.

Résumé. — Une méthode bien connue pour résoudre le problème des mots dans un groupe donné
comme extension de HNN, G* = (G,a; aua = q>(u),ueU ) est de le réduire au problème des mots dans

. G au moyen d'une fonction de a-réduction. On montre que la complexité de cette méthode dépend très
fortement de la représentation de G*. Pour toute classe de Grzegorczyck S n, la complexité de la
méthode, appliquée à G* donné comme ci-dessus peut être dans S n, alors que la même méthode,
appliquée à une autre présentation de G*,G* = ( H, s; Ivs = \|/ {v), v e V),peut être de complexité dans
ê A. Pour un groupe G* récursivement présenté, la méthode, appliquée à une certaine présentation, peut
ne pas aboutir du tout, alors qu'elle est très facile pour une autre présentation.

1. INTRODUCTION

In order to do effective computations in a group G, G is normally given by a set
S of generators and a set L of defming relators. Any group element can then be
represented by a word w in the generators 5 6 S and their formai inverses s,
s e S.The word problem is to décide for any word w whether it represents the unit
element of the group. Its solvability is basic for any effective computation in G.

Let S be a set, S = {s~| se S) and 5* the set of words over Su S. We dénote by e
the empty word, by = the identity of S* and by | w \ the length of the word w. Let
L<^S*, then the set of congruence classes [x] of the congruence generated by w = e
for w e L û  {si, Is \ s e S} forms a group G under multiplication [.v]. [y] = [xy] and
unit element [e]. We write G = < S; L > for this group.

(*) Reçu novembre 1979, révisé juillet 1980.
l1) Fachbereich Informatik Universitàt Kaiserslautern D-675 Kaiserslautern.
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356 J AVENHAUS, K MADLENER

Any group H is isomorphic to such a group < S; L > and we call < S; L > a
présentation of H. We will consider only groups given by présentations with
finite S, this means fmitely generated groups. < S; L > is finitely presented (f. p)
resp. recursively presented (r.p.), if L is fmite resp. recursively enumerable.

If we represent a group element [x] by the word x, then the problem whether
M = [y] — we write x = y in G in this case-reduces to the word problem xy'1 =e
in G. It is well known that the word problem is unsolvable in gênerai even for f. p.
groups, but there are large classes of groups for which it is solvable.

One method for solving the word problem for a class of groups is to use group
theoretical structure properties of the groups in the class. This means to use how
the groups are built up from smaller groups for reducing the word problem to the
word problem of the smaller groups. This is done for instance for solving the
word problem in the class of groups with only one defining relator.

The composition of a group out of smaller ones may not be unique, so one may
ask whether one décomposition is better than an other one with respect to the
complexity of the algorithm for solving the word problem induced by the
décomposition.

We will describe algorithms in G by appropriate word functions ƒ : S* -» S*
and identify the complexity of the algorithm with the complexity of ƒ In this
paper the well known Grzegorczyk classes ên are used to measure the complexity
of the algorithms. é\ is the smallest class of functions containing the initial
functions :

e : 5*° -+ S* constant e9

Ra: S*->S*, w-+wa for a e Su S,

nk. S*
k-*S*, (wl9 ...,wk)^>wh l ^ î ^ f c ,

together with the n-ih Ackermann-function and which is closed under
substitution and bounded recursion.

Hère, ƒ is derived from the functions g, ha and b by bounded recursion means
that:

ƒ (x, e) = g(x)9 ƒ (x, ya) = ha(x, y, ƒ (x, y))

and :

for ail xeS*\ yeS*,
The Ackermann-functions are given by:

An + 1(x, e) = su An+l(x, ya) = An{x, An+l(x9 y)).

R.A.I.R.O. Informatique théorique/Thepretical Informaties



AN ALGORITHM FOR THE WORD PROBLEM 357

It can be shown that an unbounded recursion with ^„-functions m aY le ad to
an é\+± function. We have S\ <^6°n+1 and the union of all the classes é°n coïncides
with the class of primitive recursive word functions.

One of the most important tools for the construction of groups with specified
properties and for the analysis of algorithmic problems in groups — specially the
word problem-is the concept of HNiV-extension [1, 2,4, 6]: If G is a group with
isomorphic subgroups (7, V and <p : U -> V an isomorphism then the group:

G* = (G, a; aua = (p(u), we(7>,

is called an HJVJV-Extension of G with stable letter a.

G is a subgroup of G* [6], so its word problem cannot be harder than that of
G*. We want to reduce the word problem of G* to that of G. If G = < S; L >, then
G* is generated by Sa : = S u J a } and has as defining relators L together with the
relations given above. If iveS* has the form w = xâuay with ueU, then
w = xq>(u)y in G*. A word weS* is a-reduced, if it does not contain a w%pinch"
aua, ue U or ava, v e F, as a segment.

A function r : S* -• S* is an a-réduction function, if r(w) = w in G* and r(u;) is
tf-reduced.

The systematic élimination of pinches leads to an a-reduction function. More
formally we can defme an a-reduction function r : S* -> S* by:

r(e) = e,

r(wc) = r(w)c, ceSuS;

\r(w)a, else;

r/M;-. = {x(P~1( t ;) ' w = xav, veS*, veV,
[r(w;)â, else.

By means of an a-reduction function the word problem of G* is reducible to
that of G, by [6] we get:

w = e in G* iff r(w) is a-free and r(w) = e in G.

The complexity of this method is the least upper bound of the complexities of r
and of G's word problem. In order to compute r as defined above one has to
décide for WE S* whether ueU(ueV) and in the positive case to compute
cp(w)((p"1(w)). If this can be done by an S„-process, then reên+l, since r is
defined by recursion with <f „-functions in this case. Let G have a <f „-decidable
word problem, then G* has an êu+, decidable word problem. If in addition r can
be bounded by an S „-function, it is itself an ê „-function, hence G* has ên-
decidable word problem, too. So two questions arise:

vol. 15, n°4, 1981



358 J AVENHAUS, K MADLENER

(1) Question: Is this apparent jump of the complexity from é\ to Sn+ x really
possible for all n, that is: Given any neN, does there exist a f. p. //JViV-extension
G* = (G, a; aua = cp(u), u e U ) such that the décisions for U, V and the
computations of cp, cp"1 are in 6\ but there is no a-reduction function in é\
for G*

(2) Question: How does the complexity of the described method for solving
the word problem of G* change if one chooses an other HAW-decomposition
G* = <H, b\ bvb = y\f(v), veV} for the group.

The first question came up to us in studying the complexity of algorithmic
problems in one relator groups in [2]: Every one relator group G = < S; p} with
\p\<2 n can be embedded in a HiVN-extension G* of a one relator group
H = (S0; p0} with \po\<2n — 2. An induction on n gives that G has Sn-
decidable word problem. If it could be proved that the jump from ên to S\+1 in
the réduction for G* does not occur for some n, one would have a bound for the
complexity of the word problem for one relator groups independent of the length
\p\ of the relator. Such bound is not known [2, 5], it is conjectured however that
every one relator group has S4-decidable word problem.

Our goal is to give for n^.4 examples of groups G* with a fmite présentation
G* = (G, a; âua = <p(u), ueU} such that the method gives an ^-solution
of the word problem for G* and with an other finite présentation
G* = (H, b\ bvb = v|/ (i?), v e V > such that the subgroups are ^„-decidable a n d the
isomorphisms are ^„-computable but for which no ^-réduction in ^,-exists.
These examples were given in [2], without proof. This paper can be viewed as an
continuation of [2], but is of independent interest and the knowledge of [2] is not
indispensable for this paper.

The examples answer both questions given above. So the method of solving
the word problem for a group G* given as /ƒ AW-extension dépends very strongly
on the HiVN-representation chosen for G*. For ' 'bad" décompositions it may be
extremely inefficient. If one allows recursively presented H AW-extensions G* we
show that for one représentation there may be no recursive réduction function
while for an other one there is an S2 -réduction function and the word problem
for G* is #2-decidable.

2. MAIN RESULTS

In this section we first give an example of r. p. #JVN-extension with S2-
decidable word problem, such that no recursive réduction function exists. Then
we turn to the more complicated case of fmitely presented groups and state the

R.A.I.R.O. Informatique théorique/Theoretical Informaties



AN ALGORITHM FOR THE WORD PROBLEM 359

main results. As usual in the détermination of the complexity of algorithmic
problems the main technical difficulties are in proving that some naturally given
lower bound for the complexity of the problem is sharp. This will occupy most of
section 3 of this paper were the proofs are given.

We need some more terminology and concepts from group theory. If A g S*,
then A'1 is the set A'1 = {x"1 \XEA}. Now A* is the set of words in the
XE Au A'1, while < A > is the set of words representing éléments of the
subgroup generated by A: For G = < S; L > and A g S* we have w e < A > iff there
is an UEA* such that w = u in G. In the computation of a réduction function for
an HAW-extension of G with a subgroup generated by a. set A, we must décide
wheter a word lies in < A > and in the positive case apply the isomorphism to the
word oîA*. For subgroups of the free group this can be done easily if A is a set of
Nielsen reduced words [6]. Let p be the free réduction function, then A is called
Nielsen reduced if the following three conditions hold:

( 1 ) If x e A then x~l$A and p (.Y) = .Y.

(2) If x, yeAuA~\ \p(xy)\ > 0 then \ç>(xy)\^\x\.

(3)lfx,y,zeAuA-\\p(xy)\>0,\p(yz)\>0then:

\p(xyz)\>\x\-\y\ + \z\.

A Nielsen reduced set A has two advantages: Its éléments freely generate the
subgroup {A > and the problem u*e< A > is reducible to the problem xeA.

Now we give our first example. Let ƒ : I\J -• I\J be an injective <5'2-function
which enumerates a recursively enumerable but not decidable subset of 1̂1. The
group: _

G* = < 0, b, c, d; Jbf {n) cbf {n) d= ânV{n) cbf {n) an {n e N ) >,

is a #AW-Extension of the free group G = < a, b, c; 0 > with stable letter d.

There is no computable d-reduction function r for G*, because of m e / ( N ) iflf
r(dbmcbmd)isd-îree.

On the other hand another représentation for G* as a HNN-extension of a free
group is:

G* = <tf, b, d, c; cbf(n)andbf{n)c = bf{n)andbf{n) («eN)>.

Hère the stable letter is c, U = V and the identity is the isomorphism. The set
{ b f {n) an~dbf{n) | n e N } is Nielsen reduced and <T2-decidable in < a, b, d; 0 >. So
JJand V are ^2-decidable and the définition of paragraph 1 gives a oreduction
function for G* in S2- This means that the word problem for G* is S2 decidable,
though there is no d-réduction function for the first représentation of G*. Of
course similar examples can be constructed for any complexity degree, but notice
that the group in this example is not finitely presented.
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360 J AVENHAUS, K MADLENER

We turn now to the class of finitely presented groups. We define two séquences
of groups Gn and Hn which are built up as HAW-extensions. To simplify
notations we set so = b2.

n = <Gn-n s„; s~nasn = bab, s„bsn = sn_1 >, n>0 ,

where S = {sn \ n > 0} is an infinité set of letters different from a, b. It is easy to see
that the groups Hn are all one relator groups.

2 . 1 . THEOREM: For any n ^ l :

(a) Gn is a HNN-Extension of Gn_1 with stable letter sn. There exists a sn-
reduction function rneSn + 2, but no s „-réduction f une tion lies in é\+1.

(b) Hn is a HNN extension of Hn^1 with stable letter sn. There exists a sn-
reduction function pneS°4 and for n^2 no s „-réduction function lies in Sz.

(c) Gn is a HNN-extension of Hn with stable letter a and there exists an
a-reduction function in $4.

(d) Both, Gn and Hn, have S\-decidable word problems.
We will prove this theorem in paragraph 3.

The groups Gn, Hn can be pictured in the following way.

.G, .
a -> bab

b - • s.

bs2 -* bs2

G.-! G,...

bsn -» bsn

b-*b2
b - s,

We draw some conséquences of the theorem.

2.2 . COROLLARY: For n ^ 3 there is a finitely presented HN N-extension
G* = (G, a; aua = (p(w), ueUy with:

(i) U and ty(U) are S„-decidable subgroups of G.
(ii) The isomorphisms (p and cp"1 are Sn-computable.

(iii) There is no a-reduction function for G* in S°n.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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2.3. COROLLARY: For n^3 there is afinitely presented HNN-extension:

G* = (G, s; sus = (p(w), ueU} = (H, a; âva = q>(v), veV},

with:

(i) G and H both have 6\-decidable word problem.

(ii) There exists an a-r e duc t ion f une lion for G* in é\.

(iii) There is no s-reduction function for G* in Sn.
(iv) G* has S\-decidable word prob/em.

These corollaries follow from the proof of theorem 2.1 in paragraph 3. For 2.2
take G„_ x as HAW-extension of Gn _ 2 and for 2.3 take G„ _ 1 as if AW-extension
of Gn_2 and of #„_ ! .

3. PROOF OF THEOREM 2.1

3 . 1 . LEMMA: For n^.1 we have:

(a) Hn = (Hn_l9 sn; snbsn = sn_l > is a HNN-extension of Hn_1.

(b) Gn = (Hn, a; âbs~ja = bs~j,j=l, . . ., n> is a HNN-extension ofHn.

(c) GB = <GB_1, sn; snasn = bab, snbsn = sn_iy is a HNN-extension ofGn_1.

Proof: We have to prove the isomorphism condition for T/iVW-extensions.
(a) cp : b -> sn_ l is an isomorphism, since < b > and < sn_ t > are free subgroups

of/ /„_! (notice that so = b2).

(b) The isomorphism is the identity.

(c) Since < a, b > is a free subgroup of rank two of G„_ l5 it suffices to prove

that < bab, sn_ t > is a free subgroup of rank two also. Let Un= {sxb, ..., snb]

and coe L/* be freely reduced in the (Sjb)±l. An induction on n shows:
(i) co is fully reduced, i.e. contains no srpinches (1 ^ i ^ n ) ;

(ii) b(£>b = sk
n in Hnok = 0 and co = e;

(iii) (ù = bk in Hnok = 0 and co = e.

By (i) the subgroup < Un > of Hn - and hence of Gn too - is freely generated by

the Sj b. By (ii) any co G { bab, s„}* freely reduced in ba± l b,s^1 is a-reduced in Gn.

Hence < bab, sn > is a free subgroup of rank two of Gn. A
We want to prove that there is no ^-réduction function for Gn in S°n+1 but

there is an ^„-réduction function for Hn in é\. For this we show that the words
Jl

n babs\ become very long after ^„-réduction. In order to measure the increase of
the length we introducé functions f \H^H and fn : N -• N ( H ^ O ) by the
following équations.

vol. 15, n°4, 1981



362 J AVENHAUS, K MADLENER

For i,neN let :
(a) ƒ(())= 1, ƒ ( i+ l ) = 2'<f>;

(b) /o(0 = 2 i+l , / B + 1 (O=/» } (1) (fn iterated i-times).
Then we get :

3 .2 . LEMMA: (a\ Thefunction f is a generatingfunction of the arithmetic class S 4

and thefn are generating functions of the classes ên + 2{n^\)\

(b) Let xo = b and xi+1=s~2xll s2bs2xis2(i^\), then Xi = bf(i) in H2.

(c) For i, ne Tl, ï\l~babs\i = bf«{l) abJ«(i) in G„.

Proof: For (a) see f. i. [l]Jeé\-S\ <indfneé\ + 2-é\+1{n^ 1).
(b) By induction on i :

xi+1=s2x
1
is2bs2xis2 = s2b

f{i)s2bs2b
fii)s2=I{^bs{ii) = b2fli) in H2.

(c) By induction on n, i :

\=^n+1b
f^{iUbf»+i(i) s n + 1 ^

In the sequel we will use the following abbreviation:

=

By Lemma 3.2 the following équation holds:

kw,i = si
nbabsi

n in G„ for n ^ l and ï^—n.

3 .3 . LEMMA: Let n ^ l an^ Kn = <Kkntj\jt: — w> IW ^o-

Then for any (£>eGn we have coG<5ab, s„> in Gn ijff tnere are /, m^O and
uG{a, 6}*, MEX„ M̂C/Z //za? co = 5'|Iwly~m in Gn and sl

nus~m is sn-reduced.

This means that the décision for we(bab, sn} in Gn is reduced after .?„-
réduction to the décision ueKn in the free group G0 = (a, b; 0 > .

Proof: "=>" Since k„f j = s~{babsJ
ne(bab, sn}, we have

© = s£ttf-me<6a6, O if UGX„.

"=>" Let coe {bab, sn}*. Because ofs~n kn jsn = kn j+ x in G„ fo r j ^ — n, we can
shift in co all s~n to the right and all sn to the left. This gives a word v e { knA \ i ̂ 0 }*
with co = sp

nvs~q in Gn (p, q^O).

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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The word s^vs~q may not be ̂ -reduced. We show by induction on n that the
^„-réduction of such a word s v

n vs~q results in a word sl
n us~ m with ueKnJ,m^0.

To do this, it suffices to prove that snvsneKn, if veKn and snvsn is a ^„-pinch.

Notice that the knj freely generate Kn in the free group <#, b; 0 > = GO

because they are Nielsen reduced. .

For n = 1, if sx vsx is a s^pinch we have ve(kltj\j^ — iy and ve(bab,b2}
in Go. So t;e<fc l fJ.|;^O> and sx i;s1G<felj ^ I j ^ - l > = « ! .

For the induction step: If snvsn is a s„-pinch then:

t ^ e < / c n > j \ j ^ -n} n

By the induction hypothesis v cannot contain the factor kn_l _n = kn _n. We get

t>e<fcBf j l ^ - w ) and jnt; 5 „€<*:„, j\j^-n} = Kn. A

With this Lemma we can now prove the existence of a ̂ „-réduction function in
Sn + 2 for Gn.

3.4. LEMMA: There is a s „-réduction function rneên + 2 f
or ^ = ( ^« - i5 sn\

snasn = bab, Jnbsn = sn-1}; but for n^l there is no s „-réduction function for
Gniné\+1.

Proof: The proof is again by induction on n. For n = 0, Go is the free group
< a, b; (fi > and we choose r0 to be the free réduction on Go. We will define rn

such that rn (GO) is fully reduced, i. e. contains no ̂ rpinch as a subword ( 1 ̂  / ^ «).

Suppose rn_1eS°n + l has been defined. For the définition of rn we use the
following auxiliary function hn:

co)x£, : xe{a,b,sl9...,sn-1} e = ± l ,

(p(t), hn((ù) = usn t', ve(a,by,

t(co)sn, otherwise,

cp-1(f), /!„((») = usnv, ve(bab, sn-iy^

h„(G))s„, otherwise

(in both cases v is s„-free) and put:

if:

/în (GO) = C00
 5n ©1 • • 5n"

vol. 15, n°4, 1981



364 J AVENHAUS, K MADLENER

We will have rn e $n+2, if we can prove hneé\+2. We show that the subgroups

< a, b > and < bab, s„_ l > of G„_ 1 are é\+ ^decidable and the isomorphisms cp
and cp"1 are (f„+1-computable. This immediately gives hneé°n + 2.

Le t A t = {ü, b, s l Si}. F o r veA^1 we h a v e ve(a,b} in Gn_1 iff
r„_j (r)e{ a, b}*, since rM_j (r) is fully reduced.

We get cp (v) if we replace a by bab and /? by s„_ x in r„_ x (u). So < a, b ) is <fn + x-
decidable and cp is ^n + 1-computable, since rn_1eS\+1.

If ve(bab, sn_1 > in G„_x then 1; = sj,_x û ~_"\ in G„_ l5 where /, m^O,
«£](„_! and . s j , . ! ^ " ^ is ^n_x-reduced by lemma 3.3. Because of
rn_1(v) = v = sl

n.1 us'^ 'mGn_1,rn_1 (v) and sl
n.1 us;^ must be s„_ x-parallel.

We get ve(bab, sn_l >in Gn_1 o

Because {kn-lt j\j^ — n+ 1} is a Nielsen reduced System of generators for
Kn_1 in the free group Go, it is <̂ „ + 1-decidable whether a word XG^4*_X is in
X„_ l 5 and to rewrite it as a word in the kn-lt j . The kn-lt } can in turn be written
aswordsinZ?ö6, sn^1. Forthecomputationofcp"1 replace bab by a andsn_ x byfe
in this word. So the subgroup < bab, sn_1}iséJ

n +1 -decidable in Gn_ x and cp~1 is
<^n+1-computable.

We have now proved rneé\ + 2- Assume r'n e Sn + x is a ̂ „-réduction function for

G„. Since rn_1e6\+1 and rJ.Cs^èûèsj,) is ^„-free, we can define the words cof =

r„_ 1 (r^ (5 "̂f babsl
n)) (/^ 0) and | co, | must be bounded by an $„+1-function. But of

course:

(o.=F- ( / )^ / n ( / ) in Go,

and/„ (/) grows faster than any Sn+ !-function. The right side of the last équation
is freely reduced and hence of minimal length among all words equal to cOj in Go.
So the I cûj I are not bounded by an &n+ !-function and no ^„-réduction function in
S\+l exists for Gn. A

Our next lemma will be concerned with réduction functions for the groups Hn.

3 .5 . LEMMA: There is a s „-réduction function pneS\ for Hn = (Hn_1, sn;
snbsn = sn-l ) . For n^.2 there is no s „-réduction function for Hn in S°3.

Proof: We define the functions p„ by induction on n and we use again some
auxiliary functions hn as in the proof of 3.4. They are defmed in a different way in
order to ensure some special properties needed later on. (It costs some effort to
show pneé\.)
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Let again p0 be the free réduction on Ho = (b:0}. The functions h„ are
defined as follows under the assumption that pn_1 eS4 has been found:

e=±l.

ub\

Hère we assume r to be s„-free.
If G>eHn is given, we define œ\ p„(a>) as follows. If:

= c o o se
n' co j . . . s£

n
p (co, sn-free),

then:

œ' = pn_1(cûo)s8
n

1pn_1(co1)... s^pn-^cop) and p^cojsfcjœ'),

where /in (co') cornes from hn (œ') by replacing the last s„-free syllabe u in hn (co') by

Pn-i(w).
The following three facts are easily proved:
(i) pn(co) is full reduced and, if co is full reduced, p„(co) = co.

(ii) The order of pinch resolutions in the computation of ^„(co') is left
most —inner most. In particular if CÛ'̂ CÛJ sE

nœ2s
£
na)3, where se

n(ù2s
£
n is the last

pinch resolved, then hn((û') = hn (hn (CO1)5^„(CU2)S^CO3).

(iii) If pn(cù) = uos
e
r; ux ... se

n
pup, then there is a décomposition:

œ = ©o-Sn©i • • - < P C Û P w i t h w,-= Pn(««)•

(For the last two properties we need the special définition of hn.)

To prove pn eS4 we need another fact: If M, V arefully reduced and zeZ.then we
have:

and

where f is max {1, | i | } .
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For the function fin we have | fin((o
f) | ̂  j ( | co' | ) with co' as above and ƒ as in

définition 3.2. This is proved by induction on the number of sn-pinches in the
computation of /?„(co') using (ii) and (•).

A further induction on n gives then the final resuit:

W\ûrl(\<*\) and |p„(a))|^/"(|ö)|).

This means the réduction functions p„ is bounded by an (?4-function and hence
is itself an S4-function.

To prove (•) we use an induction on n to prove the following fact:

If u, veH„ are fully reduced and i, j , k, leZ then:

ublsi, = V in Hn => \j\^î.2M,

' ub's^si.i in H„ => lilgf.21"1;

_ \pn(ubisk
nv)\^îulm\

(b)
|P»K^)I^2 |W|.

We will show only the induction step from n — 1 to n, for the induction basis for

n = 1 is proved in a similar way.

For (a) we make a further induction on p= \i\ = \u\Sn.

Let p = 0: ubl = bJ in Hn implies u = bk, since u is fully reduced, and we get

l 7 l ^ | k | + | / | g / - 2 | w | .

If 1*6' = s * - ! t h e n \j\ = \u\Sn_^\u\^2lul.

Induction step p— 1 ->p: Let U^UQSIU^ where u0 is s„-free and 8= —sgn(ï).
We may assume 8= — 1, the case 8 = 1 is analogous.

Both, ublsi = fcj and wfc's^sî-j in H„ imply ublsi
neHn_1 and

b / | fo/j"1 > k ^ 1 in Hn,

where M ^ ' s ^ ^ f t * in H» and so |/c| ̂ f-2 |Ul1.

For ublsl
n = bJ in #„ we get bj = uos

k
n_1 in / /„_! which leads to:

For Mfc^s^si-j in Hn we get s^_1=w05*_1 in Hn_1 which leads to:

So (a) is proved.

To prove (b) we first assume & = 0. Then we may assume pn {ubL v) to be sn-free.

For otherwise u = uou1 and v = v1 v0 where u0 and i;^"1 are empty or end with se
n

and pn(ublv) = uopn (u1b
lvl)v0 with p„ (wjfe ' t j 5„-free. Now, of course,

l p „ ( " i ^ i ) l ^ f 2 | ü l t l 1 implies | p n (w&''i;)l ^ i2 | M C | .
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Since pn (ubl v) is 5n-free we must have | u \Sa = \ v \Sm. We make now an induction
on/? = \u\Sn. If/? = 0 then pn (ubl v) = p n _ 1 (ubl v) and by induction hypothesis (for
n— 1) weget | pn{ublv)\ = f2 |m; |. Let u = uos~Eu1 and v = i\ s£

nv0 where w0 andi;0

are s„-free. Since ublveHn_1, s~tu1b
iv1s

E
n must be a pinch, which means

u1b
lv1= bj or = sj

n-1 depending on whether 8 = — 1 or 8 = 1 and in both cases we
have, by the induction hypothesis (for p - 1), |y| ^ \pn {u^frv^ ^f2 | U l 1 1 ' . We
get:

The induction hypothesis (for n- 1) gives | pn(Mèfi;)| è/.2 |Moi;ol^f.2 |ut ; |.

Let now/: # 0. Because of the symmetry we only consider pn (usk
n b

l v) and k > 0.
Let k =j + m + / such that the fnst jsn in sj react with M, the last /5„ in ^ react with
blv and m.sn remain unpinched. This means that we may décompose u = u1u0,
v = vovx with u0 s{ = ̂ _ 1 and sl

n b
l v0 = blx in Hn, where u0 and uj"x are empty or

begin with In and 1^ | =2 '" o i , \l,\ ^Î2M by(a). If m>0 then:

and:

If m = 0 then s„-pinches may occur bet ween ux and v1. We assume that ut and
vx are not sn-free and let u1 = u3 s

e„ u4 and vY =v4 si v3 where u4 and v4 are sn-free.

If a ^„-pinch occurs then ^"= — Ç and w 4 ^ _ ! è/f ^4 is equal to Z?g o r 5 j _ ! in
Hn_1, depending on 8 = + l or 8 = — 1.

By induction hypothesis (for n— 1) we have \q\ rg/^ J j .722 |1'4'41 and we get:

\ pn(u3snb
qsnv3) if 8 = — 1,

p (us bl v) = <
\pn(u3b

qv3) if £=1)

and:

If no further s„-pinch occurs then:

and:
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Notice that for H2 there is no s2-réduction function in êz\ Let xo = b
and xi+1=J2xr1 s2bl2xis2. Then \xt\ ^ 2 I + 1 but xi = bf(l) in H2, so | JCJ is

#3-bounded and bf (l) is not. Of course then there cannot exist a ^„-réduction
function in é°3 for #„ (fl^2). A

Next we want to prove that there is an «-réduction function in é\ for
Gn = (Hn, a;absia = bsi, i= 1, . . . , « > . Since G„ is aHAW-extensionoff/,, with
the identity as isomorphism we just have to show that the problem
coG < bsl, . . ., bsn > in Hn is <^4-decidable. To do this we first need an auxiliary
lemma.

3 . 6 . L E M M A : L e t Un = { s x b , . . ., s n b ) , ( u e H „ j u l I y reduced and /, m e Z . Ij
c o £ < 0 in Hn and s [ ® s ™ e ( U „ } in Hn t h e n \ l \ , \ m \ ̂  | c o | + w .

Proo/: We will use without special mention the following properties of/„ which

are easily proved by induction: Let co be fully reduced.

(à) If co"1flco = fclöb/ in Gn with isZ, then |z | ^ y n ( | c o | ) .

(b) For k ^ O , i e Z 5 / ^ A O ' ) and |co| g j : If (ù~blabl(o~* = sfö ablsk
n in G„

where snb
lab(sn is s„-reduced, then ï^j„ ij— |co| ) ^ 1 and / c^ |co|.Sn.

To prove the lemma, let sl
n co ̂  G < Un > and co ̂  < sn >. Then in Gn we have

a = sl
n as™ and so ?„ asl

n = cos™asia<o~1 in Gn.„ as = cos™asia<o~1 i

We consider three cases :

1. /, m ̂  0. This includes by taking inverses the case /, m ̂  0. Réduction of the
snasn blocks on both sides leads to:

where:

is s„ reduced. Then m —(n—1)^ |co|Sn or m ^ |co|Sn + (n —1) and:

If/„(| co | ) ^ ƒ„(/— 1) this equality cannot hold which means /— 1 < |co| and
/^ i co i + « .

2. / ̂  0 and m ̂  0. This can be written as ?n co ̂  G < £ƒ „ > with /, m ̂  0. We get
51!, ö?n = co s™ as~m co"1 in G„ and for /, m ^ — 1 réduction of both sn asn blocks
leads (as in the proof of lemma 3.3 and 1) to:

s^ ( "- 1 ) fo"- 1 ^"- 1 s i - ( "- 1 ) =cos^- ( "- 1 ) fc^ 1 afc"- 1 s^- ( n - 1 ) cû- 1 in G„,

which in turn may be written as:

nn
1abn-1sq

n(û-1sP in Gn>
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with p = l-(n-l) and q = m-(n-l). Hère ^ ô " " 1 ^ * " " 1 ^ is sn-reduced.
Suppose q^\to\Sn + 2. For ail sq

n to be cancelled at least two sn in s* must react
with s? because ail sn must pinch out in the right side of the équation. But
co<£ < sn >, so this is not possible. We get q S I © |SB + 1 ̂  | co | + 1 and by symmetry
P ̂  I œ | + 1 also. This implies /, m ̂  | co | + n.

3. / ^ 0 and m^O, which may be written as sl
ncos™e < U„ > with /, m^O. We

now have sj, a sj, = co s™ a s™ co ~ * in G„ from which we get:

"Mco x in Un

We show that this équation can only hold if m, / ^ |co|.

Let K„+=<{£„, f | / ^ 0 } > in GB with JtB, ^ï™abm as after lemma 3.2.
Notice that K ^ X 2

+ g . . . 3 ^ 2 . . . because of/n (m + ! ) = ƒ„_! (/„(m)). By
induction on « we prove that, if co is fully reduced and co <£<£„> with
®kn i(ù~1eK*, then i^ | co |. This is of course equivalent to our assertion
above.

We only prove the induction step w-— 1 —• n because the case n= 1 is handled
similarly. Suppose the claim is not true and let co be a counterexample of minimal
length with co/cn yco"1 eX„+ , co<£<s„> and 0 < |co| <i.

co is not sn-free: lîe^co is 5„-free we have co/c„ yco"1 =œkn_l /^^DCO"1 with
j n (i — 1 ) > i — 1 ̂  | co |. So for co $ < sn _ x > we can use the induction hypothesis and
get that co/c„ ^ ^ ^ K , ^ which contradicts our assumption.

If co = 5i_j in Gn_j thente0< | ; | ^ |co| < / and by using 3.3 we get:

©fcn_Uii(/_,)co"1=kn_ijii(I-_1)-;- in Gn.

But kn-u^-u-jtKÏ because of:

0 < | ; | < i implies \j\^jn(i-\)-jn(i-2)<Jn(ï)-jn(i~l\

and so:

for 0 < \j\ <i. This again contradicts our assumption.

We claim that © E E M ^ M , . - ! . . . ^nu0 with w7 ^„-free, r, \Uj\ < |co| < /, uoïàe

and M r^<jn_1>.
Suppose co = co'^w, wsn-free. Then M ^ < J I I _ 1 > in G„_1?for, if II = 5 Î _ 1 , we

have co = co'Z?k^ in Gn and cor Z?fc would be a shorter counterexample. Now
snukn, iU'1^ must be a pinch which means (see 3.3) uknm , u~1 = sj_j kn.lt , s j
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for some p ^ O , / > — (n — 1) and the right hand side is sn^l-reduced (equal

exponents, because u is fully reduced and by symmetry). But we have

\u\ <i— 1 <J„(i— l )and/cn ^ / ( „ . J J ^ ^ S O wewillneverreach from/c„ ,some

kn_1 j with y^O by reducing ukn {u~x. We must have p = 0 and
uk„. iU1 É X „ + - I which contradicts our induction hypothesis.

We have got CU = (Ü's„u and of course u^e (minimality of co). Now

snukn iU'1 sn must be a pinch, which means ukn {u~l =blabl and so:

A J n ( i - \ ) - \ u \ ) > j n { i - \ ) a n d ï „ u k n . i U - 1 s n = ka-ltl.

I t is n o w easy t o see t h a t a) = ursnur^1 .. ,snu0, Uj s„-free a n d :

•s„w,--i '-snuokn, /Wo" 1 ^^ . . . uj-\sn = kn_h}j,

with lj>j„(i-\) f o r ; = l , . . ., r. The minimality ofco implies that w r^<sn_! >,
so by the induction hypothesis cokn i®~1=ur kn_hK u~x ^K^_x, which finishes
our proof. A

3.7. LEMMA: There is an a-reduction function in S\ for Gn = (Hn, a;

absia = bsi^ i— 1 , . . . , « ) .

Proof: It sufïices to show that < Un} = {s1 b, . . ., „̂Z?> is a <f4-decidable
subgroup of Hn. We prove this by induction on n.

Let co = coo 4
1 cOi . . . /„p cop be fully reduced. If co e < Un > then there is a word

ueU*, free reduced in the s,- & and hence fully reduced (see the proof of lemma
3.1, with co = u in Gn. This means u = uo(snbfl. . .(snbfpupwithuie l / J - r . Since
w"1 co = ^ in Hn, there is a séquence y" _ l 5 i / 0 , • • -Jp-iJP withy_x =jp = 0 and a

system of p+ 1 équations of the form:

or:

sMMir
1 bjil(ùi sn = sj

ti_1, i. e. u^lbji~1(üi = bji,

or:

sBfcur'1 ftsij"-i»isw = bji i. e. bu;X«ï-i«f = 4 ' - 1 ,
or:

snbullbh'Qdisn = bu, i. e. bu^1 bji~l(ùi = sj
ti_1.

We claim | j{-,\ < \ co | + n • | co |Sn. Then according to the induction hypothesis one
can test by a <f 4-process, whether the system of équations is solvable, i. e. whether
we< U„y with co = u in Hn exists. So < l/n> is a <f4-decidable subgroup of Hn.
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The proof of | j £ | ^ | co| -hn -1 co|Sn, i= 1, . . . , p-1 is by induction on p. If

£j = - 1 then wocoo = s{°_1 in Hn_1, hence | ; 0 | ̂  |coo | + ( n - l ) by lemma 3 .6 .

(We have s ^ c o o *e< Un_1 >, and if c o o e < s n _ 1 > then | j o | ̂  |coo | ).

So:

co = Mo 1 'SÏ-iSnö> / = Mos"ll&
/o©/, where CO'EEÛ^SÎ,3©2 . . . sfy<ùp.

Now we can argue with b*>a>' instead of œ (there may be some cancellation
of b' s). By induction hypothesis:

\jt\ ^ Ico'l +7o + ( w - l ) | c o ' | S i i g |co| +n |co | S n .

If Ep= + 1 the same argument works with co"1 instead of co.

Let e 1 = e 2 = . . . =6^ = 1, zq+l = - 1 , q<p, and œ^cooS^cOi . . . sn(ûq. The
first q+\ équations are:

Mifesi:.1!© — ^ ' , Ï = 1 , ... . , ^ f - l ,

This implies:

l ^ - i l ^ l c D i l + l ^ l + l + ^ - l ) for î = l , . . . , « - 1

and | ^ _ j |, | j j ^ | co j + l + ( w - l ) = | © , | + n by lemma 3.6.

Thi s gives:

|7,-| ^ | œ | + w - ^ ^ | œ | + w | c o | S i i ' for i = 0, 1, . . . , g .

Aga in we get | ; , | ^ | co | + n \ co |Sn for ail i a s in the case 8j = — 1. A
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