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AN ALGORITHM FOR THE WORD PROBLEM
IN HNN EXTENSIONS AND THE DEPENDENCE OF ITS
COMPLEXITY ON THE GROUP REPRESENTATION (*)

by J. Avennaus (1), K. MaDLENER (1)

Communicated by J. Berstel

ABSTRACT. — A well known method for solving the word problem of a finite presented group given as
HNN extension G*={ G, a;aua= @ (u),ue U ) is to reduce it to the word problem of G by means of an
a-reductionfunction[1, 3,4). 1t is shown that the complexity of this method depends very strongly on the
representation of G*. For any Grzegorczyck class & ,, the complexity of the method applied to G* as
above may be not less than in & ,, while the method applied to an other presentation of G*, G*={ H, s;
svs=V (v),veV ) may be of complexity in & 4. For a recursively presented group G* the me thod applied
to one presentation may not work at all, while applied to an other presentation is very easy.

Résumé. — Une méthode bien connue pour résoudre le probléme des mots dans un groupe donné
comme extensionde HNN, G* ={ G, a; aua= @ (u),ue U ) est de le réduire au probléme des mots dans
.G au moyen d’une fonction de a-réduction. On montre que la complexité de cette méthode dépend trés
fortement de la représentation de G*. Pour toute classe de Grzegorczyck &,, la complexité de la
méthode, appliquée a G* donné comme ci-dessus peut étre dans &, alors que la méme méthode,
appliquée a une autre présentation de G*, G* ={ H, s; sus=\ (v), ve V >, peut étre de complexité dans
& 4. Pour un groupe G* récursivement présenté, la méthode, appliquée a une certaine présentation, peut
ne pas aboutir du tout, alors qu’elle est trés facile pour une autre présentation.

1. INTRODUCTION

In order to do effective computations in a group G, G is normally given by a set
S of generators and a set L of defining relators. Any group element can then be
represented by a word w in the generators se S and their formal inverses s,
se S.The word problem is to decide for any word w whether it represents the unit
element of the group. Its solvability is basic for any effective computation in G.

Let Sbeaset,S = {5|seS}and S* the set of words over S U S.Wedenote bye
the empty word, by = the identity of S* and by | w | the length of the word w. Let
L < S*,then the set of congruence classes [x] of the congruence generated by w =e
forwe L u{ss,ss|seS} formsagroup G under multiplication [x]. [y]=[xy] and
unit element [¢]. We write G={S; L) for this group.

(*) Regu novembre 1979, révisé juillet 1980.
(*) Fachbereich Informatik Universitdt Kaiserslautern D-675 Kaiserslautern.
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356 J AVENHAUS, K MADLENER

Any group H is isomorphic to such a group (S; L) and we call {S; L) a
presentation of H. We will consider only groups given by presentations with
finite S, this means finitely generated groups. { S; L ) is finitely presented (f. p)
resp. recursively presented (r.p.), if L is finite resp. recursively enumerable.

If we represent a group element [x] by the word x, then the problem whether
[x]=[y] — we write x=y in G in this case-reduces to the word problem xy ! =e
in G. It is well known that the word problem is unsolvable in general even for f. p.
groups, but there are large classes of groups for which it is solvable.

One method for solving the word problem for a class of groups is to use group
theoretical structure properties of the groups in the class. This means to use how
the groups are built up from smaller groups for reducing the word problem to the
word problem of the smaller groups. This is done for instance for solving the
word problem in the class of groups with only one defining relator.

The composition of a group out of smaller ones may not be unique, so one may
ask whether one decomposition is better than an other one with respect to the

complexity of the algorithm for solving the word problem induced by the
decomposition.

We will describe algorithms in G by appropriate word functions f: S* — §*
and identify the complexity of the algorithm with the complexity of f. In this
paper the well known Grzegorczyk classes &, are used to measure the complexity
of the algorithms. &, is the smallest class of functions containing the initial
functions :

e: S*0 - S* constant e,
R,: S*-S* w—wa for aeSuUS,
nk . S¥k o §* (wy, .., w) > w;, 1ZiZk,

together with the n-th Ackermann-function and which is closed under
substitution and bounded recursion.

Here, f is derived from the functions g, h, and b by bounded recursion means
that:
fx,e)=g(x),  f(x,ya)=h,(x,y, f(x,y))

and :
Lf(x, »)I=Ib(x, p)I,
for all xe S**, yeS* aeSUS.
The Ackermann-functions are given by:

A (x, y)=sii*ti¥i(s €S fixed),
An+1(xs e)Esla An+1(xs ya)EAn(xa A"+1(x, y))

R.A.LR.O. Informatique théorique/Theoretical Informatics



AN ALGORITHM FOR THE WORD PROBLEM 357

It can be shown that an unbounded recursion with & ,-functions may lead to

ané ., function. Wehave &, =&, , , and the union of all the classes &, coincides
with the class of primitive recursive word functions.

One of the most important tools for the construction of groups with specified
properties and for the analysis of algorithmic problems in groups — specially the
word problem —is the concept of HN N-extension [1, 2, 4, 6]: If G is a group with
isomorphic subgroups U, V and ¢ : U — V an isomorphism then the group:

G*={G, a; Zua=(p(u), ueU ),
is called an HNN-Extension of G with stable letter a.

G is a subgroup of G* [6], so its word problem cannot be harder than that of
G*. We want to reduce the word problem of G* to that of G. If G=(S; L ), then
G*is generated by S, :=S U { a } and has as defining relators L together with the
relations given above. If weS¥ has the form w=xauay with weU, then
w=x@(u)yin G*. A word weS¥ is a-reduced, if it does not contain a “*pinch”
aua, ue U or ava, veV, as a segment.

A function r : §¥ —» S¥* is an a-reduction function, if ¥ (w) = w in G* and r (w) is
a-reduced.

The systematic elimination of pinches leads to an a-reduction function. More
formally we can define an a-reduction function r : $* — S* by:

r(e)=e,

r(we)=r(w)c, ceSuS;

r(wa)= xou), w=xau, ueS* uel,
- | rw)a, else;

1 _ "
r(wE)E{X(p _(v), w=xav, veS*, veV,
r (lU) a, Clse.
By means of an a-reduction function the word problem of G* is reducible to
that of G, by [6] we get:

w=e in G* iff r(w) is a-free and r(w)=¢ in G.

The complexity of this method is the least upper bound of the complexities of r
and of G’s word problem. In order to compute r as defined above one has to
decide for ueS* whether ue U(ue V) and in the positive case to compute
@ (u) (¢~ ' (u)). If this can be done by an & ,-process, then reé, ., since r is
defined by recursion with & ,-functions in this case. Let G have a & ,-decidable
word problem, then G* hasan é,,, decidable word problem. If in addition r can
be bounded by an & ,-function, it is itself an & ,-function, hence G* has & -
decidable word problem, too. So two questions arise:

vol. 15, n°4, 1981



358 J AVENHAUS, K. MADLENER

(1) Question: Is this apparent jump of the complexity from &, to &, , really
possible for all n, that is: Given any n€ N, does there exist af. p. HNN-extension
G*={G, a; aua=@(u), ueU ) such that the decisions for U, V and the

computations of ¢, ! are in &, but there is no a-reduction function in &,
for G*

(2) Question: How does the complexity of the described method for solving
the word problem of G* change if one chooses an other HNN-decomposition
G*={H, b; bub=\(v), ve V) for the group.

The first question came up to us in studying the complexity of algorithmic
problems in one relator groups in [2]: Every one relator group G={S; p ) with
|pl<2 n can be embedded in a HNN-extension G* of a one relator group
H={S,; po> with |po|<2rn—2. An induction on » gives that G has &,
decidable word problem. If it could be proved that the jump from &, to &, in
the reduction for G* does not occur for some n, one would have a bound for the
complexity of the word problem for one relator groups independent of the length
| p| of the relator. Such bound is not known [2, 5], it is conjectured however that
every one relator group has &,-decidable word problem.

Our goal is to give for n=4 examples of groups G* with a finite presentation
G*={G, a; aua=¢(u), ucU) such that the method gives an &,-solution
of the word problem for G* and with an other finite presentation

G*={H, b; bub= Y (v),ve V) such that the subgroups are & ,-decidable and the
isomorphisms are &,-computable but for which no b-reduction in &, -exists.
These examples were given in [2], without proof. This paper can be viewed as an
continuation of [2], but is of independent interest and the knowledge of [2] is not
indispensable for this paper.

The examples answer both questions given above. So the method of solving
the word problem for a group G* given as H N N-extension depends very strongly
on the HN N-representation chosen for G*. For “‘bad” decompositions it may be
extremely inefficient. If one allows recursively presented H N N-extensions G* we
show that for one representation there may be no recursive reduction function
while for an other one there is an &,-reduction function and the word problem
for G* is &,-decidable.

2. MAIN RESULTS

In this section we first give an example of r. p. HNN-extension with &,-
decidable word problem, such that no recursive reduction function exists. Then
we turn to the more complicated case of finitely presented groups and state the
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AN ALGORITHM FOR THE WORD PROBLEM 359

main results. As usual in the determination of the complexity of algorithmic
problems the main technical difficulties are in proving that some naturally given
lower bound for the complexity of the problem is sharp. This will occupy most of
section 3 of this paper were the proofs are given.

We need some more terminology and concepts from group theory. If A = S*,
then A7" is the set A™'={x"'|xeA4}. Now 4* is the set of words in the
xeAu A, while (A4) is the set of words representing elements of the
subgroup generated by A: For G=< S; L > and 4 =S* we have w € { A4 ) iff there
is an ue A* such that w=uin G. In the computation of a reduction function for
an HN N-extension of G with a subgroup generated by a set 4, we must decide
wheter a word lies in { 4 ) and in the positive case apply the isomorphism to the
word of A*. For subgroups of the free group this can be done easily if A is a set of
Nielsen reduced words [6]. Let p be the free reduction function, then A is called
Nielsen reduced if the following three conditions hold:

(1) If xe A then x '¢ A4 and p (v)=x.

(2) Ifx, yeAu A~ [p(xy)| >0 then | p(xy)| = | x|.

(3) Ifx,y,zeAu A, |p(xy)|>0,|p(yz)| >0 then:

lp(xyz) [ >Ix| =1yl +]z].
A Nielsen reduced set A has two advantages: Its elements freely generate the
subgroup { 4 > and the problem we<{ A ) is reducible to the problem xe 4.
Now we give our first example. Let f: N — N be an injective &,-function
which enumerates a recursively enumerable but not decidable subset of N. The
group: . B
G*={a, b, c,d; db’ ™ cb! Md=a"b’ "™ cb! ™ g" (neN)),
is a HNN-Extension of the free group G=<{a, b, ¢; Q > with stable letter d.
There is no computable d-reduction function r for G*, because of me f (N) iff
r(db™cb™ d) is d-free.
On the other hand another representation for G* as a HN N-extension of a free
group is:
G*={a, b, d,c;cb’ Ma"db’ ™ c=b"Ma"db’ ™ (neN)).

Here the stable letter is ¢, U =V and the identity is the isomorphism. The set
{bs ™ a"db’ ™ |neN } is Nielsen reduced and & ,-decidablein { a, b, d; ¢ >.So
Uand V are & ,-decidable and the definition of paragraph 1 gives a c-reduction
function for G* in & ,. This means that the word problem for G* is &, decidable,
though there is no d-reduction function for the first representation of G*. Of
course similar examples can be constructed for any complexity degree, but notice
that the group in this example is not finitely presented.
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360 J AVENHAUS, K MADLENER

We turn now to the class of finitely presented groups. We define two sequences

of groups G, and H, which are built up as HNN-extensions. To simplify
notations we set s,=b2.

Go=<a, b; (>,
G,={G,_,,s,; s,as,=bab, 5,bs,=s,_,>,  n>0,
H0=<b7 ¢>’
Hn=<Hn—1’ sn; Enbsn:Sn—1>7 n>0’

where S= {s,|n>01} is an infinite set of letters different from a, b. It is easy to see
that the groups H, are all one relator groups.

2.1. Tueorem: For any n>1:

(a) G, is a HNN-Extension of G,_, with stable letter s,. There exists a s,-
reduction function r, €8, ,, but no s,-reduction function lies in &, ;.

(b) H, is a HNN extension of H,_, with stable letter s,. There exists a s,-
reduction function p,€& 4 and for n=2 no s,-reduction function lies in & .

(¢) G, is a HNN-extension of H, with stable letter a and there exists an
a-reduction function in 6.

(d) Both, G, and H,, have & ,-decidable word problems.

We will prove this theorem in paragraph 3.

The groups G,, H, can be pictured in the following way.

Sy Sy . Sn
Go — e Gy Gy...... G, , -G,...
a - bab a — bab a - bab
b - b2 b s, b= s,
bs, — bs, _ _ _ _
bs, — bs, ' : bs, — bs,
a e—e a| bs, - bs, a | bs, — bs, a . al .
bs,_y = bs,_, bs, — bs,
!
s s, s,
Ho—_‘_>H1 __2_>.H7 ...... Hn-—l ‘>H"...
b - b b—s, b—s,

We draw some consequences of the theorem.

2.2. CorOLLARY: For n>=3 there is a finitely presented HN N-extension
G*={G, a; aua= (1), ue U with:

(1) U and (p(U‘) are & ,~decidable subgroups of G.

(i) The isomorphisms @ and @~ ! are & ,-computable.
(iit) There is no a-reduction function for G* in & .

R.A.L.R.O. Informatique théorique/Theoretical Informatics



AN ALGORITHM FOR THE WORD PROBLEM 361

2.3. CoroLLARY: For n=3 there is a finitely presented HN N-extension:
G*=(G, s;sus=0@(u), uecU Y={H, a; ava=o (v), ve V),

with:
(i) G and H both have & ,-decidable word problem.
(ii) There exists an a-reduction function for G* in &,.
(iii) There is no s-reduction function for G* in &,
(iv) G* has & ;-decidable word problem.
These corollaries follow from the proof of theorem 2. 1 in paragraph 3. For 2.2

take G,_, as HNN-extension of G, _, and for 2.3 take G, _; as HN N-extension
of G,_,and of H,_,.

3. PROOF OF THEOREM 2.1

3.1. Lemma: For n=1 we have:

(@) H,=<{H,_,,s,; s,bs,=s,_, > is a HNN-extension of H,_,.

(b) G,=<{H,, a;abs;a=bs;, j=1, ..., n) is a HNN-extension of H,,.

(€) G,={G,_y, s,; s,as,=bab, 5,bs,=s,_, > is a HNN-extension of G,_,.

Proof: We have to prove the isomorphism condition for HN N-extensions.

(a) ¢ : b—>s,_,isanisomorphism,since { b > and {s,_, ) are free subgroups
of H,_, (notice that s,=b?).

(b) The isomorphism is the identity.

(c) Since < a, b) is a free subgroup of rank two of G,_,, it suffices to prove
that { bab, s,_, » is a free subgroup of rank two also. Let U, = {s, b, ..., s,b}
and we U} be freely reduced in the (sjg)il. An induction on n shows:

(i) o is fully reduced, i.e. contains no s;-pinches (1 <i=<n);

(i) bob=s*in H,<k=0 and w=e¢;

(ili) o=b*in H,< k=0 and o =e.

By (i) the subgroup { U, ) of H, —and hence of G, too —is freely generated by
thes; b. By (il) any 0 € { bab, s, }* freely reduced in ba*' b, st is a-reduced in G,
Hence  bab, s, > is a free subgroup of rank two of G,. A

We want to prove that there is no s,-reduction function for G, in &, but
there is an s,-reduction function for H, in &,. For this we show that the words

S—;Zabsf, become very long after s,-reduction. In order to measure the increase of
the length we introduce functions f: N - N and f, : N > N(n=0) by the
following equations.

vol. 15, n°4, 1981



362 J. AVENHAUS, K. MADLENER

Fori,neN let :

(@ fO)=1,f(+1)=27";

(b) foi)=2i+1,f,,,()=/D(1) (f, iterated i-times).
Then we get :

3.2. LeMMA: (a) The function f is a generating function of the arithmetic class &,
and the f, are generating functions of the classes & ,,,(n=1):
(b) Let xo=b and x;. =5, x; ' 5, b5, x;5,(i21), then x;=b7 " in H,.

(¢) For i, nell, s. babs’ =b'"n"" ab’" in G,.

Proof: For (a) see f.1. [7], feé&,— &5 and f,€6,,,—E 1 (B2 1).
(b) By induction on i :

Xip1=53%X1 8, b5, X;5,=5,b7 D5, b5, b7 D5, =] D ps/ D=p¥" in H,.

(c) By induction on n, i :
a1 :§n+ 1 Bf"“(“ abim+1"s, =E{.."”m Babs{j‘““’

= /e D) g p S @ g Gory. A
In the sequel we will use the following abbreviation:

o b gph0) 50,
b, = b~ ghi*tt  i<0.

By Lemma 3.2 the following equation holds:

k, ;=s.babs, in G, for n21andiZ —n.

3.3. LemMma: Let n21 and K, =<k, ;|j= —n) in G,.
Then for any we G, we have we{bab, s, in G, iff there are |, m=0 and
ue{a, b}* uek, such that ©=syus, " in G, and s,us, ™ is s,-reduced.

This means that the decision for we < bab, s,y in G, is reduced after s,-
reduction to the decision ue K, in the free group Go=<a, b; D).

Proof : =7 Since kn, j=s_{;5abs,{'e <Eab, SuPs we have
o=slus;mebab,s,) if uekK,.

“="Letwe{ bab, s, }* Becauseofs k, .s,=k, ., ,inG, forj= —n,wecan
n n™n, j°n n, jt+1 n .]

shift in w all s, to the right and all s, to the left. This givesa word ve { k, ;|i=0}*
with ®=s2vs, 91in G, (p, ¢=0).
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AN ALGORITHM FOR THE WORD PROBLEM 363

The word s2vs, 4 may not be s,-reduced. We show by induction on r that the
s,~-reduction of such a word s? vs, 4 results in a word 5%, us, ™ withue K,,/, m=0.
To do this, it suffices to prove that s,vs, e K,, if ve K, and s, vs, is a s,-pinch.

Notice that the k, ; freely generate K, in the free group {a, b; @>=G,
because they are Nielsen reduced. .

Forn=1,ifs, vs; is a s,-pinch we have ve (k, ;|j=—1) and ve{bab, b*)
in Go. Sovedky ;1j=0) and s, vs, ek, ;lj=—1>=K;.

For the induction step: If s, vs, is a s, -pinch then:
velk, j1jz—n)n(bab, s, ;> .

By the induction hypothesis v cannot contain the factor k,,_, _,=k, _,. We get

velk, ;lj>—n)and s,vs,e<k, ;|j=Z-n>=K, A
With this Lemma we can now prove the existence of a s,-reduction function in
8,4+, for G,.

3.4. LemMA: There is a s,-reduction function r,e&,,, for G,=<{G,_{, Sy
5,as,=bab, 5,bs,=s,_,>; but for n=1 there is no s,-reduction function for
G,in€,, .

Proof: The proof is again by induction on n. For n=0, G, is the free group
{a, b; ¢ > and we choose r, to be the free reduction on G,. We will define r,
such that r, (w) is fully reduced, i. e. contains no s;-pinch as a subword (1<i<n).

Suppose r,_; €&, has been defined. For the definition of r, we use the
following auxiliary function 4,,:

h,(e)=e,

h,(®x%)=h,(®)xc. xe{a, b,sy,....5,_;} e==%1,
_fuo), h,(®)=us,v, vela, b,

hn (@ 5,)= {h,,(co)s,,, otherwise,

h,(®s,) {“(p“(v), ho(@)=us,v, ve{bab,s,_4 .
n Sp) = - .
h,(®)s,, otherwise

(in both cases v is s,-free) and put:
Ta(@) =7, 1 (00) S5 Ty 1 (@1) ... STy (@),
if:
h,(@)=0,s; 0, ...sr0, with ®; s, free.
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364 J AVENHAUS, K MADLENER

Wewill haver,eé, ., ,,if wecan prove h,e &, ,. We show that the subgroups
{a, b> and { bab, Sp—q» of G,_; are &, -decidable and the isomorphisms ¢
and ¢! are &, ;-computable. This immediately gives h,€&,,, ,.

Let A,.={a.b.s,.....s;}. For te A} , we have te{a, b) in G,_, iff
-y (v)e{a. b}*, since r,_(v) is fully reduced.

We get ¢ (v) if we replace a byZab andbbys,_,inr,_,(v).So<{a, b>is& 4 -
decidable and ¢ is &, ;-computable, since r,_; €& ,4 .

If ve{bab,s,_,> in G,_, then v=s._,us;™ in G,_,, where I, m=0,
ueK,_, and si_,us;™ is s, ;-reduced by lemma 3.3. Because of
Fooy(0)=v=s,_jus;™ inG,_,,r,_(v)and s,_ us,™ must be s,_,-parallel.
We get ve bab, Sp-12inG,-; <=

Fa1 (D)= V0 Sp— 10y oo Spo g VySpoy Uiy - v Sy g Vit
pu )
Arn—l(sn-lrn—l(v)snm-l)eKn-l'
Because {k,_; ;|j=—n+1} is a Nielsen reduced system of generators for

K, _, in the free group G, it is &, ;-decidable whether a word xe A¥_, is in
K,_,,and torewriteitasawordin thek,_, ;. Thek,_, ;caninturnbe written

as words in bab, $,— 1. For the computation of ¢ ™! replaceZab byaands,_, bybd
in this word. So the subgroup <Eab, S,_,>isé&, . -decidableinG,_, and @~ 'is
&, +1-computable.

We have now provedr,€&,,,. Assumer, €&, is as,-reduction function for
G,.Sincer,_,€&,+, and r,(s; 'babs.) is s,-free, we can define the words ®;=
Fu_y (rh(s7 "babs)) (i=0) and | ;| must be bounded by an &, , , -function. But of
course:

o, =b""ab"" in Go,

andf, (i) grows faster than any &, . ;-function. The right side of the last equation
is freely reduced and hence of minimal length among all words equal to ®; in G,,.
So the | ®; | are not bounded by an &, ; ; -function and no s,-reduction function in
&4, exists for G,. A

Our next lemma will be concerned with reduction functions for the groups H,,.
3.5. LemMa: There is a s,-reduction function p,eé&, for H,=<{H,_{, S,;
Spybs,=s,_,>. For n=2 there is no s,-reduction function for H, in &5.

Proof: We define the functions p, by induction on » and we use again some
auxiliary functions 4, asin the proof of 3.4. They are defined in a different way in

order to ensure some special properties needed later on. (It costs some effort to
show p,eé,.)
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AN ALGORITHM FOR THE WORD PROBLEM 365

Let again p, be the free reduction on Hy={ b: @>. The functions h, are
defined as follows under the assumption that p,_, €&, has been found:

h,(e)=e,
h,(@x)=h,(@)x", ~ xe{b.sy.....s,_,}. e=%1.
Uy 1 h,(®)=us,v. v=b'
U.;" n— )S,, h =us . .
h(0s,)= Pu-1()s W(@)=us, v, vélb),
US, Pu_1(t)s,, h,(®)=us,t,
pn-l(l.)snﬂ h,,((l))El},
( ub'. h,(®)=us,v, v=s._,,
h,(©3,)= ) “‘jn Prn-1 (l’)i,,, h,,((x))Euf‘,, t. ¢S, ).
US,,P,,_,(I‘)S,,'. h,,((D)Eus,,r.
pn—l(v)gm h"((’))Ev.

Here we assume ¢ to be s,-free.
If oe H, is given, we define ®’, p, (o) as follows. If:

D=0 S, Oy ...y, (w; - s,~free),
then:
©'= P,y (@) S5 Puey (@) ... ST Pay (@)  and  p,(0)=h,(@),

where fz,, (') comes from h, (®’) by replacing the last s,-free syllabe u in h,, (®") by
Pn—1 (1)

The following three facts are easily proved:

(i) pn(o) is full reduced and, if o is full reduced, p,(®)=0o.

(ii) The order of pinch resolutions in the computation of ir,,(m") is left
most —inner most. In particular if ® =0, 5% 0, 5% ©;. where st ®, s, is the last
pinch resolved, then h, (0" )=h, (h, (®,) st h,(©,)s5 o).

(iii) If p,(@)=uqos; u, ... s u,. then there is a decomposition:

D=, S, Oy ... Sy, with u;=p, (©;).

(For the last two properties we need the special definition of h,,.)

To prove p, €6, we need another fact: If u, v arefully reduced and i e Z then we
have:

(%) |p,(ubir)| <i2™! and | pnlushv)| Sis™,
where 7 is max {1, |i|}.
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For the function 4, we have | A, (0')| £ f (|®’|) with @’ as above and f as in
definition 3.2. This is proved by induction on the number of s,-pinches in the
computation of A, (o) using (i) and ().

A further induction on n gives then the final result:

lo'|<f '(lol) and  [p, (@) = f(Jo]).

This means the reduction functions p, is bounded by an & ,-function and hence
is itself an &,-function.
To prove (%) we use an induction on »n to prove the following fact:
If u, ve H, are fully reduced and i, j, k, [eZ then:
ub'si=b’ in H, = |j|<l.2",
ub'si=si_, in H, = |j|<l.2",
| p(ub’syv)| <ik2'™),
| p,(uskbiv)| <ik 2",

(a)
(b)

We will show only the induction step from n — 1 to n, for the induction basis for
n=1 is proved in a similar way.

For (a) we make a further induction on p=|i| = |u],,.

Let p=0: ub’=ﬁbf in H, implies u=b*, since u is fully reduced, and we get
IS Tkl + 11 £1-2M

If ub'=si_, then |j| = |ul,

Induction step p—1 — p: Let u=u, s, u; where u, is s,-free and e= —sgn (i).
We may assume €= —1, the case e=1 is analogous.

Both, ub'si =b’ and ub'si=s)_, in H, imply ub'sie H,_, and

<|u| 2™

1=

ub'si,EuOE,,ulb’sf,“lsn=uo§,,bks,,=uosﬁ_l in H,,
where u, b'si™'=b* in H, and so | k| <[-2"".
For ub'si=b’ in H, we get b’=u,sk_, in H,_, which leads to:
|J| ézluolgzlul.
For ub's,=s}_, in H, we get sj_,; =uqsk_, in H,_, which leads to:
IS luols,,+ 1kl S luo| +1-2M<T-2M0
So (a) is proved.
To prove (b) we first assume k = 0. Then we may assume p,, (ub’ t) to be s,-free.
For otherwise u=uq u, and v=v, v, where u, and v; * are empty or end with s¢

and p,(ub'v)=uyp, (u;b't,)v, with p, (u;b'tv,) s,-free. Now, of course,
I Pnluy biov,)| <i2" " implies | p,, (ub'v)| <i2'.
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Since p,, (ub' v) is s,-free we must have | u|, = |v|, . We make now an induction
onp=|ul,.Ifp=0thenp,(ub'v)=p,_, (ub'v)and by induction hypothesis (for
n—1)weget|p,(ub'v)| <i2"! Letu=uys; *u, and v=v, s% v, where uy and v
are s,-free. Since ub'veH,_,, s, u, b'v, s must be a pinch, which means
u; b'v, =b’ or=s)_, depending on whether e= — 1 or e =1 and in both cases we
have, by the induction hypothesis (for p—1), |j| < | p, (u, b'v,)| <i2""" We
get:

i - _
p"(ubiv)s{pn—l(UOb.l’O)a € 1*
Pu-1(tioSn-170),  €=1.
The induction hypothesis (for n— 1) gives | p, (ub'v)| <j. 2" <1, 21!,

Let now k 0. Because of the symmetry we only consider p,, (us® o' v) and k> 0.
Letk =j+m+1Isuch that the first s, in sk react with u, the last /s, in s* react with
b'v and ms, remain unpinched. This means that we may decompose u=u, u,

V=00, With uysi=¢!_, and s, b'v,=5b" in H,, where u, and v, ! are empty or
begin with s, and |/, | 2", |/,| £i2"' by(a). If m>0 then:

Pa(uskbiv)=p,(u, s )smp,(b" v,)
and:

|p,(uskbiv)| <. 2" +m+ |1 | + vy |£2"" 4 m412" 4 v, | STk 2™
J1

If m =0 then s,-pinches may occur between u, and v, . We assume that u, and
v, are not s,-free and let u; =us3 s, uy and vy =vy st v where u, and v, are s,-free.

If a s,-pinch occurs then & = —{ and u, s._, b" v, is equal to 5% or s2_, in
H,_,, depending on e=+1ore=—1.

By induction hypothesis (for n—1) we have |g| <1, .j,.j, 2" and we get:

p,(uss,bis,vy) if e=—1,

kpio)—
pn(us, b b)_{Pn(uabqu) if e=1,

and:
Ip,,(usf,bi U)| §é-2|"’”’|+2§i1'f1'2'"’"‘”’”‘|+2 éf‘2|c°l'2lu°|'2'"’"‘”’”"+2éf-ﬁ-Z""’l.
If no further s,-pinch occurs then:
Palustbiv)=uyshp,_; (Uash_, b' v,)s5 03

and:

| pa(uskbiv)| < |us] +1+[1‘J¢1'2|u‘:‘|+1+ [vsl <iqk-2
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Notice that for H, there is no s,-reduction function in &;: Let xo=b
and x;,,=5,x7 s, b5,x;5,. Then |x;| £2'*! but x,=#" in H,, so |x;| is
&53-bounded and b7V is not. Of course then there cannot exist a s,-reduction
function in &5 for H, (n=2). A

Next we want to prove that there is an a-reduction function in &, for
G,=<{H,, a;abs;a=bs;,i=1, ..., n).Since G, is a HN N-extension of H, with
the identity as isomorphism we just have to show that the problem

welbs,,..., bs,>in H, is &,-decidable. To do this we first need an auxiliary
lemma.

3.6. LemMa: Let U,={s;b,...,s,b). e H, fully reduced and I, me Z. If
w¢{s,>in H,and ssosme{U,> in H, then |l|, |m| £|o]| +n.

Proof: We will use without special mention the following properties off, which
are easily proved by induction: Let o be fully reduced.

(@) fo *aw=b'ab in G, with i€ Z, then |i| < f,(|o]).

(b) For k20, ieZ, I={,(j) and |o| <j: If ob'ab'o™'=s*b' ab'5* in G,
where s,b'ab's, is s,-reduced, then i> f, (j— |©|)=1 and k< ||, .

To prove the lemma, let s, ®si'e{ U, > and w¢{s,>. Then in G, we have
ast @ sT a=s, os™ and so 5} ast=ws"as"® ! in G,.

We consider three cases :

1. I,m=0. This includes by taking inverses the case I, m £0. Reduction of the
s, as, blocks on both sides leads to:

bf"(l_”abf"(/_l)=0).s’:—("_“ pr—1 abn—ls;n—(n—l)(o—l,

where:

snm—(ix—l)bn—l abn—l SJ:—'(n—I)’

is s, reduced. Then m—(n—1)< |®

s orm=|wl,+(n—1)and:
@~ 1 pH=D gpfit=1 =gm=(n=1) pn-1 ab™™ 1?:—(n—1).
Iff, (o] )= f,(I—1) this equality cannot hold which means /— 1< |®| and
If|o| +n.
2. I£0and m=0. This can be written as s, ® sTe { U, > with /, m=0. We get

shast=os"as,"® ! in G, and for /, m=n— 1 reduction of both s, as, blocks
leads (as in the proof of lemma 3.3 and 1) to:

SL-(n—l)bn—labn—lE;—(u—l)=wsnm—(n—l)bn—labn—lg:ln—(n—l)m—l in Gn’

which in turn may be written as:
b lab" =P osib" tab"  sio T s in G,
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with p=/—(n—1) and g=m—(n—1). Here s,,b"“‘aZ"_‘s,, is s,-reduced.
Suppose = |® |, +2. For all s to be cancelled at least two s, in s? must react
with s? because all s, must pinch out in the right side of the equation. But
¢ (s, »,so thisis not possible. We get g< |o|, + 1 < |®| + 1 and by symmetry
p=<|w|+1 also. This implies [, m< || +n.

3. 120 and m <0, which may be written as s, ws™e{ U, > with I, m=0. We
now have s}, as,=0sras"® ! in G, from which we get:

b= ghhll=D) = g =1 ghhn=D =1 in G, .

We show that this equation can only hold if m, IZ |o].

Let K ={{k, ;1i=20}) in G, with k, ;=b""ab"" as after lemma 3.2.
Notice that Ky 2 K7 2...2K, 2 ... because of f, (m+1)=f,_, (f,(m)). By
induction on n we prove that, if o is fully reduced and w¢{s,)> with

ok, ;0 'eK;, then i< |o|. This is of course equivalent to our assertion
above.

We only prove the induction step n— 1 — n because the case n=1 is handled
similarly. Suppose the claim is not true and let ® be a counterexample of minimal
length with ok, ;0" 'eK;, 0¢ (s, and 0< || <i.

o is not s,-free: If e is s,-free we have 0k, ;0 '=wk,_; .0~ ! with
f,i—1)>i—1=|o]|.Soforw¢ (s,_, » we can use the induction hypothesis and
get that ok, ;o™ '¢ K,/ | which contradicts our assumption.

If o=s)_,in G,_, then 0< [j| < |w| < i and by using 3.3 we get:

Ok,_1,6-10" ' =keoy i-n-; in G
But k,_; , i—1-;¢ K, because of:

and so:

Jali=D)<fu 1 fui=D)= 1D <o)< fu- s (Jai=1D)+ D)< fn(i+1),

for 0< |j| <i. This again contradicts our assumption.

We claim that o =u,s,u,_, ... S,uo With u; s,free, r, |u;| <|o| < i, usze
and u, ¢ (s,—y -

Suppose ®='s,u, us,free. Then u¢ (s,_,) in G,_, for, if u=sk_,, we
have w=0'b*s, in G, and ©'b* would be a shorter counterexample. Now
s,uk, ;u~'s, must be a pinch which means (see 3.3) uk, ;u~'=sb_ k,_y 5§
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for some p=0, I>—(n—1) and the right hand side is s,_,-reduced (equal
exponents, because u is fully reduced and by symmetry). But we have
|lu| <i—1<f,(i—1)andk, ;=k,_, , ,_1),so wewill never reach fromk, ;some
k,—y ; with j<O by reducing uk, ;u~'. We must have p=0 and
uk, ;u~'eK,_, which contradicts our induction hypothesis.

We have got w=w's,u and of course u#e (minimality of ®). Now

snuk, ;u~'s, must be a pinch, which means uk, ,u”'=b"'ab' and so:

lz]n—l(fn(l—l)_|u|)>jn(l_1) and Snuk u_ls :kn—l.l‘

n. i n
It is now easy to see that @=u,s,u,_; ... S,Uo, u; s,-free and:

Enuj—l o Satigky jugts, ... uj——ll Sn=kKn_1.1,,
with [;> f,(i—1) for j=1,..., r. The minimality of ® implies that U, <{Sp_1 >,
so by the induction hypothesis 0k, ;0™ '=u,k,_, , u, ' ¢ K,/_, which finishes

our proof. A

3.7. LEemMA: There is an a-reduction function in &, for G,=<{H,, a;
abs;a=bs;, i=1,...,n).

Proof: It suffices to show that (U, > =<SIZ, ce, an> is a &,-decidable
subgroup of H,. We prove this by induction on n.

Let o=w, s o, ... 570, be fully reduced. If e (U, > then there is a word
ue U¥, free reduced in the S,E and hence fully reduced (see the proof of lemma
3.1, witho=uinG,. Thismeansu = ugy (s, b)" . . .(s, b)" u, withu,e Uj_ . Since
u"'®w=ein H,, there is a sequence j_, jo, - - s Jp-1-jpWithj_;=j,=0and a
system of p+ 1 equations of the form:

s,u; 'bsh s, =si_,, i.e. uj'bsiz w,=b",

or:
Spui tbiregs,=sh_y, Qe ui bt =bk,
or:
Sabui bshit @;s,=b" i.e. builsiow;=sk_,,
or:

s,bu; ' birw;s,=b e bu'biw;=si_,.

Weclaim| j;| £ |o|+n-]ol,. Then according to the induction hypothesis one
can test by a & ,-process, whether the system of equations is solvable, i. e. whether
ue(U,> with o=uin H, exists. So { U, > is a §,-decidable subgroup of H,,.
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The proof of |j;| < ]0)] +n-lo|,,i=1, ..., p—1is by induction on p. If
g=—1 thgn ugwo=sy_, in H,_, hence |j,| < |®,| +(n—1) by lemma 3.6.
(We have sk g '€ U,_, ), and if @ye(s,_, > then |j,| < |0, ]).

So:

-1 — - .
O=uy S¥_;5, 0 =uys, b, where o'=0,s570,...s570,.

Now we can argue with b* o’ instead of ® (there may be some cancellation
of b’s). By induction hypothesis:

il = lo’l +jo+(=1 ]|, <ol +nl|ol,,.

If e,= +1 the same argument works with ®~! instead of .
Let g, =¢,= ... =¢g,=1,¢,,,=—1, g<p, and O=0yS, 0 ... s,0,. The
first g+ 1 equations are:

ug ' wg=b',

u; bshi w;=b", i=1,...,q9-1,
bu_ bsis- =

bu,bsypzy 0, =sp_,.

This implies:
i1 S ol + |j;]l +1+(n-1) for i=1,...,q—-1

and |j,—y |, lj,| £1o,| +1+(n—1)=|w,| +n by lemma 3.6.
This gives:
ljil € lo| +n-g< o] +nlol, -~ for i=0,1,...,4q.

Again we get |j;| £|o| +n|w], for alliasin thecaseg; =—1. A
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