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FIBRATIONS AND CLASSIFYING SPACES:
AN AXIOMATIC APPROACH II

by Peter L BOOTH

CAHIERS DE TOPOLUGIE ET
GEUMETRIEDIFFERENTIELLE CATEGORIQUES

Volume XXXIX-3 (1998)

R6sum6
L’utilisation du th6or6me de représentabilité de Brown pour

produire une classification des espaces de fibrations n’est pas
possible faute d’une difficulté technique de th6orie d’ensemble.
En particulier, ceci est le cas pour le r6sultat unifiant les classifi-
cations presente dans 1’article ant6c6dent. Nous introduisons ici
le concept de fibration universelle par deux nouvelles definitions,
et d6montrons 1’6quivalence de celles-ci. Nous profitons de ce
r6sultat pour enfin circonvenir le problème soulev6 ci-haut.

1 Introduction

A set theoretical difficulty occurs when one seeks to use the Brown
Representability Theorem to produce a theory of classifying spaces for
fibrations [M, p.(vi)]. In particular, this applies to the unifying clas-
sifying result (theorem 8.1) of [B2]. We will prove the equivalence of
two alternative definitions of universal fibration, and use this result to
eliminate the aforementioned problem.

We recall the concept of an E-fibration, characterized by the property
that it satisfies the EWCHP [Bl, p.136] relative to a category (£, U)
of enriched spaces, or £-spaces [Bl, p.129], in which .the fibres of these
fibrations are required to lie. If F is a given E-space, then 0 will denote
the category of fibres generated by F. Thus F consists of all £-spaces
that are £-homotopy equivalent to F, together with all £-homotopy
equivalences between these £-spaces. If B is a space, then FFHE(B)
will denote the collection of all F-fibre homotopy equivalence classes, or
FFHE classes, of F-fibrations over B. The above result of [B2], when
applied to 7-fibrations., invokes the assumption that E is £FHE set-
valued, i.e. that, for all choices of F in £ and of a CW-complex B, the
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collection FFHE(B) is a set.
However, in the cases of the types of fibrations that we wish to clas-

sify, it is not obvious that the corresponding £FHE set-valued condi-
tions are satisfied. The objective of this paper is to produce a satisfactory
resolution of that difficulty.

Recalling the concept of a category of well enriched spaces [B2,
def.2.3], we introduce (definitions 5.1(ii)) a condition - that of £ carrying
the structure of a proper category of well enriched spaces - whose validity
is easily verified for the important examples. We define a subcategory
KE of E, by putting an upper bound K on the cardinality of the underly-
ing sets of acceptable £-spaces. Assuming that E is well behaved in the
above senses and that K is greater than or equal to the cardinality of the
continuum, we show (proposition 5.2) that K£ carries the structure of a
category of well enriched spaces and is K£FHE set-valued. It follows,
using theorem 8.1 of [B2], that universal KF-fibrations exist, for each
K0 in K£. We then have to show that these universal KF-fibrations are
also universal F-fibrations. Our verification of this hypothesis requires
an understanding of the relationship between two alternative definitions
of universal fibration, a topic that takes up most of this paper.

In section 2, we review some ideas concerning fibred mapping spaces.
We use these ideas in section 3, and some techniques from [B2] in section
4, to show that the grounded universal and weakly contractible universal
concepts are often equivalent. In section 5, the set theoretical difficulty
is eliminated from the classification result of [B2]. A brief discussion of
examples is given in section 6.

The conventions, notation and terminology of [Bl] and [B2] will
normally be used in this paper; in particular we work in the context
of the category ’r of cg (= corrapactly generated) spdces [Bl, p.128-129].
A space B will be said to be weak Hausdorff if the diagonal subset is
closed in the cg-ified product space B x B.

We recall some notation and terminology. If s : D- B and t : D - C
are maps, then the map D - B x C, d -&#x3E; (s(d), t(d)) will be denoted by
(s, t).

The symbols -, 7 -0 7-A 7 -jr and =FB will denote homotopies in
the free, pointed, under A, in F and "F-map over the space B" senses,
respectively. A pair of sections to a fibration are vertically homotopic if
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there is a homotopy between them consisting of sections to the fibration.
A map that satisfies the covering homotopy property, or CHP, is

a Hurewicz fcbration. One that satisfies the weak covering homotopy
properly, or WCHP, is a Dold fibration.
We assume, from this point on, that (£, U) is a category

of enriched spaces. This assumption appears in a stronger form in
theorem 4.5 and section 5.

2 Fibred Mapping Spaces
If p : X - B is a map and b E B, then Xlb will denote the fibre p-1 (b)
of p over b. If, for each b E B, Xlb carries the structure of an E-space,
then p will be said to be an E-overspace [Bl, p.130].

Let f : D -&#x3E; B be a map, and p : X- B and q : Y- C be £-overspaces.
We recall the concept of the induced £-overspace pf : X fl D -+ D, ob-
tained by "pulling p back over f " [Bl, p.130]. Also there is a fibred

mapping space XDY with underlying set UbEB, cEC E(X|b, Yle) and a
map pOq: XOY -&#x3E; B x C, with (pOq)(C)= (b, c), where C E E(X|b, Ylc),
b E B and c E C [B1, p.131-132]. We use the symbols pO1q:XOY-B
and pO2q : XOY-&#x3E;C to denote the maps obtained by composing pOq
with the projections 7rB : B x C- B and 7rc : B x C--&#x3E; C, respectively.
So if C E E(X|b,Y|c), where b E B and c E C, then (pO1q)(C) = b and
(pO2q)(C) = c.

In this section, we present some basic properties of pO1q. Some of
these results are stated and proved in section 2 of [B4], others are proved
here.

We recall that an £-pairwise map y,b&#x3E; : p -q, i.e. from p to q,
consists of a pair of maps y : X- Y and 6 : B - C such that qy = Sp,
with the further property that y|(X|b) : X|b - Y|d(b) is an £-map for
all b E B.

Theorem 2.1 : Fibred exponential law. (= theorem 2.1 of [B4J).
Let p : X -&#x3E; B and q : Y- C be £-overspaces, and f : D- B be a map,
where B is a weak Hausdorff space. Then there is a bijective correspon-
dence between:
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(i) the set of £-pairwise maps y, d&#x3E; from P f to q, and
(ii) the set of maps ,°: D -&#x3E; XDY over B, i.e. with (pcllq)70 = f.

This is determined by y(x, d) = y0(d)(x) and by S = (pD2q),0, where
p(x) = f(d).

Corollary 2.2 (= corollary 2.2 of [B4J). There is a bijective corre-

spondence between :
(i) the set of £-pairwise maps y, d&#x3E; from p to q, and
(ii) the set of sections 70 to polq.

This is determined by y(x) = y0(b)(x) and by S = (pD2q),0, where
p(x) =b.

Corollary 2.3 (a) There is a bijective correspondence between:
(i) £-pairwise homotopies r, A&#x3E; from px1I : X x I - B x I to

q, and

(ii) homotopies r° : B x I-+ XDY over B, i.e such that (pO1q)T0
is the projection B x I -&#x3E; B. This is determined by r(x, t) = ro(b, t)(x)
and A = (pD2Q)fO, where p(x) = b.

(b) Let y, S&#x3E; and C, 77&#x3E; be £-pairwise maps from p to q, y0 and
Co be sections to plllq, r, A&#x3E; be an £-pairwise homotopy between
y, d&#x3E; and C, "1&#x3E;, and ro be a vertical homotopy between 70 and (°. If
r, A&#x3E; corresponds to T0 in the sense of (a), then y, d&#x3E; corresponds
70 and C, "1&#x3E; corresponds Co in the sense of corollary 2.2.

Proof. (a) This follows from theorem 2.1 if we take D = B x I, f the
projection B x I -&#x3E; B, and identify p f with p x 11.

(b) This is an immediate consequence of (a) and corollary 2.2.

Let F be an £-space and q : Y- C is an £-overspace. Then there
is an injection from the set UCEC £(F, Ylc) to the set 7-(F, Y), that
takes each £-map F - Ylc to the composite map F - Ylc C Y. We
define PrinFY to be the space with underlying set UCEC £(F, Ylc) and
the strong (cg-sense) topology, relative to this injection into the space
T(F,Y). Thus the injection is a homeomorphism into, from PrinFY to
7-(F, Y).
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Corollary 2.4 (= corollary 2.4 of [B4J). If b E B, then the fibre of
polq over b is PrinXIbY.

The following result should not be confused with proposition 2.6 of
[B4].

Proposition 2.5 Let B be a weak Hausdorff space. If p : X -&#x3E; B and
q : Y-&#x3E;C are £-fibrations, then pdlq is a Dold fibration.

Proof. We know from [Bl, prop.4.5] that pOq is a Dold fibration. Now
pO1q= TB (pOq) and so the result follows.

3 Universal 0-Fibrations I

From this point on we assume - except where we specify other-
wise - that F is a given £-space and F is the associated category
of fibres.

Let q : Y-&#x3E; C be an F-overspace. Then the map PrinF(Y) -&#x3E; Y
that evaluates at an arbitrarily chosen point of F is continuous. Let

prinFq : PrinF(Y)- C denote the obvious projection function. Then
prinFq is the composite of this evaluation map with q and so is contin-
uous.

Definitions 3.1 The space S will be said to be weakdy contractible if
Tn(S) = 0, for all non-negative integers n. The F-fibration q : Y -&#x3E; C
will be said to be weakly contractible universal if PrinF(Y) is weakly
contractible.

The validity of the above property of q depends on F, and is clearly
independent of our choice of F in F.

Lemma 3.2 Let p : X --&#x3E; B is an F-fibration over a weak Hausdorff
space B and q : Y - B be a weakly contractible universal F-fibration.
Then polq is a weak homotopy equivalence.
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Proof. It follows from proposition 2.5 that pDlq satifies the WCHP. If
b E B the fibre of polq over b is PrinX|b(Y) (corollary 2.4) which has
the homotopy type of PrinF(Y), a weakly contractible space. Hence

the fibres PrinX|b(Y) are weakly contractible. 
Let C, C’ E XDY, with (pDIq)(Ç) = b and (pDIq)(Ç’) = b’ lying in

the same path component of B. Applying the WCHP to a path from b’
to b that is stationary on [0, 1], we see that there is a path in XOY from
C’ to C", where C" E PrinXIbY. Clearly there is a path from C" to C in
Prinxlby, and so there is a path from C’ to C. Thus pdlq induces an
injection between the path components of its domain and range spaces.

It follows from the definition of F-overspace that p and q are sur-
jective ; hence so also is pdlq. Thus pF-Ilq induces a bijection between
path components. In fact considering the exact homotopy sequence of
pOlq we see that this map is a weak homotopy equivalence.

We now recall some concepts from [B2]. An F-grounded F-fib ration
(p, h) consists of an 7-fibration p : X-&#x3E; B over a pointed space B, and
an F-homotopy equivalence h : F -&#x3E; X|*, where * denotes the base point
of B.

Let (p x : Xx - B, h A : F-XA|*) be F-grounded F-fibrations, for
A = 0 and 1, and g : X0-&#x3E; Xl be an FFHE. Then g will be said to be
an F-grounded FFHE from (po, ho) to (pi, hi) if hi =F (gl(Xol*))ho,
where the range of this homotopy is restricted to X1|*. In this case we
write (po, ho) =F (pi, hi).

Let B be a pointed space. The class FFHE F(B) will consist of all
F-grounded FFHE-classes of F-grounded F-fibrations over B. Then
F will be said to be FFHE F set-valued if, for all choices of a pointed
CW-complex B, FFHEF(B) is a set.

Let (p : X -&#x3E; B, h : F -&#x3E; X|*) be an F-grounded F-fibration and
f : B’-&#x3E; B be a pointed map. Identifying the distinguished fibre of p f,
i.e. (X|*)x{*}, with X|*, we see that there is an induced F-grounded
F-fibration (p f, h).

Let F be FFHEF set- valued and (r: Z -&#x3E; D, l: F -&#x3E; Z6*) be an
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F-grounded F-fibration. We will use Wo to denote the class of all
pointed spaces that have the pointed homotopy type of a pointed CW-
complex. Then (r, t) will be said to be grounded universal amongst
F -grounded F-fibrations if, for all choices of a space B E W°,

is a natural bijection.

Definition 3.3 Let F be FFHE F set - valued and r : Z -&#x3E; D be an

F - fibration. Then r will be said to be grounded universal amongst
F-fibrations if there is a point * E D and a map i e 7(F, Zl*) such that
(r, i) is grounded universal amongst F-grounded F-fibrations.

Theorem 3.4 Let (£, U) be a category of enriched spaces, F be an
£-space and T be the associated category of fibres. We assume that

there is a weakly contractible universal F -fibration q : Y -&#x3E; C. Then F is
F F H EF set-valued and q is grounded universal amongst F-fibrations.

Let us make an arbitrary choice of * E C and, k E F(F, Y I*). The
underlying idea of the proof, which takes up the remainder of this sec-
tion, is rather easy. Let (p: X -&#x3E;B, h : F -&#x3E; X |*) be an F-grounded
F-fibration over a pointed CW-complex B. We know via lemma 3.2
that the fibration pDlq is a weak homotopy equivalence and so should
have a unique vertical homotopy class of sections. It then follows from

corollaries 2.2 and 2.3 that there is a unique F-grounded F-pairwise
homotopy class of F-pairwise maps from (p, h) to (q, k,) and the result
should follow via the universal property of pullbacks.

A similar result for F-grounded F-fibrations over pointed CW-comp-
lexes, where F-fibration is understood in the FCHP sense [Bl, ch.3],
was given in [BHP, thm.3.3]. However, in the present case, there are
complications. To show that we have suitably defined sections to pO1q,
we wish to use the relative CHP described in [S, thm.7.8.9] and a direct
application would require our Dold fibration polq to be at least a Serre
fibration (called a weak fibration in [S]). Another factor is that our
base spaces B are only known to be in W0. So we require some extra
technical arguments to deal with these matters. Our proof is given in
four parts, the first being a variation on [S, thm.7.6.22] that is tailored
to deal with the specific situations that we encounter.
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Lemma 3.5 Let us assume that (K, L) is a relative CW-complex, that
q : Y - C is a Dold fibration, p. : C. -&#x3E; D. is a Hurewicz fibration,
and that a : L - Y* and B : K - D. are such that p. q. a = f3IL. We fur-
ther assume that p. q. is a weak homotopy equivalence. Then there is a
map 1/J : K -+ Y* such that p.q.1/J = B and 0 1 L = wa, where w : Y. -&#x3E; Y*
is a map over C* that is homotopic over C* to the identity on Y*.

Proof. Let us factorize q* as r’u, where u : Y. -1- Z* is a homotopy
equivalence and r’ : Z. -1- C* is a Hurewicz fibration. We know that

p’r’ua = p.q.a = f3IL; also that p*r*, like p*q*, is a weak homo-

topy equivalence. It follows from [S, thm.7.6.22] that there is a map
o : K-&#x3E; Z* such that p.r.u =L, B and o|L = ua. Now p*r* is a Hurewicz
fibration: applying the relative CHP of [S, thm.7.8.9] we obtain a map
T : K-&#x3E; Z* such that p’r’T = B. and rlL = ua.

Let v : Z. -&#x3E; Y* be a fibre homotopy inverse of the FHE u (see
[D, thm.6.1]). We define U : K --&#x3E; Y. to be vr and w = vu. Then

w is homotopic over C° to the identity on Y* as required. Further

p.q.1/J = p.q.vr = p.r.r = f3, and OIL = vril = vua = wa.

Lemma 3.6 Let q : Y - C be a weakly contractible universal F-fibration,
*E C and k E F(F, Y|*). If (p :X--&#x3E; B, h) is an F-grounded F -fibration
over a space B in Wo, then there exists a pointed map g : B -&#x3E; C such
that (p, h) =F (qg, k).

Proof. We first prove the result in the case where B is a pointed CW-
complex.

(i) Let h’ : X|* -&#x3E; F be an F-homotopy inverse of h. Then the

map kh’ : X|* --&#x3E; Y|* is an T-homotopy equivalence. We now apply
lemma 3.5, taking (K, L) to be (B, *)7 q* to be pOq, p* to be the
projection B x C -&#x3E;B, a to be the map {*} -&#x3E; XOY value kh’ and
/3 the identity map on B. Then p*q* = pO1q is a weak homotopy
equivalence (lemma 3.2) and we obtain a section 0 to polq. Further
the F-map U(*) = wa(*) = w(kh’) X|* -&#x3E; Y|*, where w is a self-map
of X DY that is over B x C and homotopic over B x C to the identity
on XOY. Then the F-maps U(*) and a(*) = kh’, from Xl* to YI*,
must F-homotopic.
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It follows from corollary 2.2 that there exists an F-pairwise map
y, g&#x3E; : p - q with y|(X|*) = U(*) =F kh’. Let x E X I *. Then g(*) =
gp(x) = qy(x) = q(U(*)(x)). Now U(*) : X|* --&#x3E; Y|*, so U(*)(x)E Y|*
and q(U(*)(x)) = *. Hence g( *) = *, i.e. g is a pointed map.

There is an F-map (y,p) : X-&#x3E;YUB over B; the restrictions of
(y,p) to individual fibres are essentially the restrictions of 7 to indi-
vidual fibres, and so are F-homotopy equivalences. Hence (7,p) is an
FFHE [B1, thm.5.4]. Now (7,p)I(Xl*) agrees with y|(X|*), modulo
the identification (Yl*) x 1*1 = Y|*. So we have y|(X|*)=F kh’ and
(y|(X|*))h =F kh’h -g7 k. Hence (y,p) is an F-grounded FFHE
from (p, h) to (qg, k).

(ii) We now deal with the case where B E W°. Let p : K - B be a
pointed homotopy equivalence, where K is a pointed CW-complex. Let
v : B - K be a pointed map that is a homotopy inverse, in the pointed
sense, to p.

We know from (i) that there is a pointed map g’ : K - C such that

(qg’, k) =F (pu, h). Then (qg’v, k) = ((qg’)v), k) =F ((pu)v, h)
(puv, h). It follows from [B2, lemma 4.3(ii)] that (PflV’ h) =F (p, h).
Hence, if we take g = g’v, then (p, h) =F (qg’v,k) = (qg, k).
Proposition 3.7 If there is a weakly contractible universal F-fib ration
q : Y - C, then F is set-valued in both the FFHE and FFHE F senses.

Proof. We first consider the FFHE F case. There is only a set of based
maps g from B to C, so it follows that there is only a set of possibilities
for the grounded F-fibre homotopy type of (qg, k). If B is a pointed
CW-complex, then we see via lemma 3.6 that FFHE F (B) is a set.

Hence is F F H EF set-valued.
A similar argument applies in the FFHE case. Let us, in part (i)

of the proof of lemma 3.6, forget about base points and distinguished
fibres. We have then shown the following result: for every 0-fibration
p : X - B over a CW-complex B, there is a map g : B - C such that p
is FFHE to qg. It follows that F is FFHE set-valued.

We need to prove, in the proof of theorem 3.4, that the corresponding
function O is bijective. The surjectivity property follows easily from
lemma 3.6; the following lemma establishes injectivity.
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Lemma 3.8 Let B E Wo and q : Y -&#x3E; C be a weakly contractible uni-
versal 7-fibration, with * E C and k E 7(F, Y|*). If f and g are pointed
maps from B to C such that (qf, k) is F-grounded T7FHE to (qg, k),
then f -° g.

Proof. (i) We will first prove the result in the case where B is a pointed
CW-complex. Let Y U fB and Y U gB denote the spaces obtained by
pulling Y back over f and g, respectively. Let fq : Y n fB -&#x3E; Y and
gq : Y ngB --&#x3E; Y denote the projections. Then there are F-pairwise
maps fq, f&#x3E; : q j - q and gq, g&#x3E; : qg -&#x3E; q. Let s be an F-grounded
FFHE from (qf, k) to (qg, k); then there is also an F-pairwise map
gqs, g&#x3E; : q f - q. Applying corollary 2.2, the pairs fq, f&#x3E; and

gqs,g&#x3E; give rise to sections fo and go, respectively, to (q!)Dtq. Then
fo (b) (y, b) = fq (y, b) = y and g0(b)(y, b) = gqs (y, b), where q(y) = f (b).
Hence f°(*) = 1(Y|*) and g°(*) = s|(Y|*) : Y|* -+Yl*. Now the

OFHE s is F-grounded, so there is an F-homotopy G: (Y|*) x I -&#x3E;Y|*
from 1(Y|*) to sl(YI*). It follows that there is a map G° : I -&#x3E;F(Y|*, Y|*),
associated with G via the rule GO(t)(y) = G(y, t), where y E Yl* and
t E I. Hence Go is a path from 1(Y|*) to sl(YI*) in F(Y|*, Y|*) (see
[B1, 0.1]).

If p. is the projection BxC-&#x3E;B and q* is (qf)Oq, then p°q° is the
weak homotopy equivalence (qf)O1q (lemma 3.2). As in lemma 3.6, this
fact will enable us to apply lemma 3.5. We define the map
a :(BxI) U (*xI) -+ (YnfB)aYby

if and

if and
if and

Let (K, L) = (BxI, (BxI) U ({*}xI)) and B : BxI-&#x3E;B be the projec-
tion. Then, by lemma 3.5, there is a map rO = ’ljJ : B x I -&#x3E; (Y n fB) O Y
with ((qf)O1q)T0 = (3 and T0|(B x I) U ({*}xI) = wa. Here w is a

self-map of (Y n fB)O Y over B x C that is homotopic over B x C to
the identity on (Y n fB) 0 Y.
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So we have T0(b,0) = wf0(b) and ro(b, 1) = wg0(b), where b E B,
and ro(*, t) = w(GO(t)), where t E I. In particular ro is a vertical

homotopy from wfo to wgo.
Applying corollary 2.3(a) to ro, the rule r(y, b, t) = rO(b, t)(y, b)

determines an F-pairwise map r, A&#x3E; : q f x II -&#x3E; q, where q(y) = f(b).
We will view r, A&#x3E; as being an F-pairwise homotopy between two
F-pairwise maps qf-&#x3E;q, i.e from y, d&#x3E; to C, n&#x3E;. Then, according
to corollary 2.3(b), wfo and wg° correspond in the sense of corollary
2.2 to y, d&#x3E; and C,n&#x3E;, respectively. Recalling that rC denotes the
projection B x C-&#x3E; C, we have:

by corollary 2.2
see the definition of pO 2q

since w is a map over B x C

see the definition of pD2Q
by corollary 2.2.

In a similar way 77 = g. Thus A is a homotopy from f to g.
Now A = ((qf)O2q)T0 by corollary 2.3(a), it follows that A (*,t) =

Also we have that

Hence A is a

based homotopy, and so f = S =0 q = g.
(ii) Let us weaken our assumption on B, requiring only that B E W°.

We will assume that p : K - B is a pointed homotopy equivalence from
a pointed CW-complex K into B. If (q.f, k) -F (qg, k), it follows that

We see from (i) that fll -° gy, and hence that f -° g.

Proof of theorem 3.4. The first part is given in proposition 3.7, the main
part follows from lemmas 3.6 and 3.8.

4 Universal F-Fibrations II

We assume, throughout this section, that F is FFHE set-
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valued and that the double retraction property [B2, def.3.2]
holds for F-fibrations. It follows that the subfibration replacement
property holds for F-fibrations [B2, thm.4.8], and hence that F is
FFHE F set-valued [B2, lem.6.2].

Theorem 4.1 Let r : Z-&#x3E; D be an F-fibration that is grounded univer-
sal amongst F-fibrations. Then r is also weakly contractible universal.

It follows from the theorem data that there is a point * E D and an
l E F(F, Z|*), such that (r : Z -&#x3E; D, l) is F-grounded universal amongst
F-grounded F-fibrations. Let d E D. Then id will denote the inclusion
Z|d C Z.

The proof of the theorem requires the following three lemmas. Their
proofs require that we make careful distinctions between maps into the
fibres of fibrations and the corresponding maps into the total spaces
of the same fibrations. We will use the following alternative view of
PrinFZ.

Let 1*1 denote a one point space and e : F-&#x3E;{*} denote the con-
stant map. Then e carries the structure of an F-overspace, in an obvi-
ous way. We can identify any C E T(F, Zld) with the F-pairwise map
(id)C, d&#x3E; : e-&#x3E; r, where d E D and 6(*) = d. On this view the under-
lying set of PrinFZ consists of all F-pairwise maps from e to r.

Any path in PrinFZ, i.e. a map fo: I -&#x3E; PrinFZ, can be viewed as
a path in T(F, Z). It hence determines a homotopy f : F x I -&#x3E; Z by
f(x, t) = fo(t)(x), where x E F and t E I. Then f, (prinFr)f°&#x3E; is an
F-pairwise homotopy between the 7-pairwise maps, from e to r, that
correspond to fo(O) and fo(l). So we can view paths in PrinFZ as
F-pairwise homotopies, i.e. between the F-pairwise maps determined
by the endpoints of the paths.

Lemma 4.2 7ro(PrinFZ) = 0.

Proof. There is just a single F F H EF -class of F-grounded F-fibrations
over a discrete pointed space with just two elements. It follows, from
the grounded universality of (r,l), that there is just a single pointed
homotopy class of pointed maps from such a two-point space to D.
Hence D is path connected.
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Let C E PrinFZ. We can now apply the the OWCHP property of r,
using the 7-lverspace e, the map (id)C : F -&#x3E; Z, where d = (prinFr)ç,
and a path in D from (prinFr)(ç) to *. This path should be station-
ary on the interval [0, .1]. It follows that every element of PrinFZ is
JF-pairwise homotopic to a member of F(F,Z|*). Hence it is suffi-

cient to show that l E F( F, Z|*) and an arbitrarily chosen member of
7(F, Z I*), viewed as F-pairwise maps from e to r, must necessarily be
JF-pairwise homotopic to each other. For then all elements of PrinFZ
are F-pairwise homotopic to each other, and hence in the same path
component of PrinFZ.

We will now define an F-fibration over 81, and use it to establish
the above sufficient condition. If h E 1:7(F, F), then (e : F-+f *1, h ) must
be an F-grounded F-fibration. It follows, using the double retraction
property for F-fibrations, that there exists an F-space Z(h), together
with F-maps i : F-&#x3E;Z(h), j: F-&#x3E;Z(h) and o : Z(h)-&#x3E;F. These satisfy
jo=F 1Z(h), ai = h and other conditions. We notice that i =F lot =

jh. In practise Z(h) is likely to be an appropriately defined mapping
cylinder for h.

We define F4lF to be the quotient space of

obtained by identifying (x, .1) with (i(x), 1 3), (x, 2 3) with (j(x), 2) and
(z, 0) with (x, 1), where x E F.

Let us view S’ as being obtained by identifying together the 0 and
1 ends of the unit interval I. The function e4lh : F 6F -t S’ is defined
to be the obvious projection; it clearly is continuous and carries the
structure of an F-overspace.

Applying [B2, prop.4.5] with "B" = "C" = {*}, "p" = "q" = e,
and using the above h, we obtain the F-fibration e4h : F(F - I, since

I = MC({*} -&#x3E; {*}). We notice that (FAF)|(0,1) = (F4F)(0,1), and
so (eAh)|(0,1) = (e4h)|(0,1). Now e4h satisfies the FWCHP, hence
so also does (eAh)|(0,1). Taking [0, 1 3) U (2 3, 1] as a subspace of I, the
identification I -tS1 determines a corresponding open subspace W of S1 .
Further (FAF)|W = FxW. Hence (eAh)|W: (FAF) I W -+ W is the
projection and trivial F-overspace FxW-&#x3E;W, and (e6h)/W satisfies
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the FWCHP. The cover {(0, 1), W} of 81 is numerable; it follows

from [Bl, thm.4.7] that e0h is an F-fibration.
We will now introduce two other ways of specifying F-pairwise maps.

If y, S&#x3E; is an 0-pairwise map, then this same map can alternatively be
described by the notations y, b -&#x3E; (b)&#x3E; and x-&#x3E;-y(x), b-d(b)&#x3E;,
where x and b are typical elements in the domains of y and S, respec-
tively.

Let x : F-&#x3E; F4lF be the map defined by X(x) = (x, *), where x E F.
Then X is a homeomorphism into. The members of the following list
of 0-pairwise maps from e to e6h are, in turn, F-pairwise homotopic.
This is clear for (i) and (ii) from the definition of F4lF, for (ii) and (iii)
using the homotopy jh =F z and for (iii) and (iv) via the definition of
FAF.

Hence the F-pairwise maps X, * -&#x3E; * &#x3E; and Xh, * -3 * &#x3E; are

F-pairwise homotopic. We notice that the two ranges of this F-pairwise
homotopy circle around F 6F and 81, respectively.

Let us take [0] = [1] to be the distinguished point of 81, and denote
it by *. Then the distinguished fibre of e4lh is (e6h)-I(*)=F x 1*1.
This F-space will be identified with and replaced by F. Then the inclu-
sion of this fibre in F 6F is X and the pair (eAh, 1 F) is an F-grounded
F-fibration. There is a pointed classifying map q: S1-&#x3E; D for (eAh, 1F),
i.e. (rq, i) is F-grounded FFHE to (e6h, IF). It follows, by compo-
sition of this TFHE with the projection Z UnS1 -&#x3E; Z, that there is an
F-pairwise map C, n&#x3E; from e4lh to r, such that l =F C|F.

So there are F-pairwise homotopies from e to r, determined by the
following known homotopies between maps from F to Z:
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Hence i*l,* --&#x3E; * &#x3E; and i*lh, * -&#x3E;* &#x3E; are 0-pairwise homotopic.
If k E F(F,Z|*), then we can choose h E F(F,F) such that th =F k.
Then i*lh, * -&#x3E;* &#x3E; and i*k, * -&#x3E; * &#x3E; are F-pairwise homotopic, so
i*l, * -&#x3E;* &#x3E; and i*k, * --&#x3E;* &#x3E; are F-pairwise homotopic. The result
follows.

Lemma 4.3 (= a generalization of [A, lem.4.1]). Let j denote the
inclusion map F(F, Zl*) C PrinFZ. If K is a pointed CW-complex,
and u : K -&#x3E; PrinFZ is a map with u(*) = l E F(F,ZI|*), then there is
a map v : K-&#x3E;F*(F,Z|*) such that u - jv.

Proof. We notice that u corresponds, via the exponential law [B1, 0.1],
to a map -y : F x K-&#x3E; Z defined by y(x, y) = u(y)(x), for all x E F and
y E K Let d : K - D denote the composite (prinFr)u and 7rK denote the
projection FxK-+K. Then

ry(x,y) = r(u(y)(x)) = (prinFr)u(y) = d(y) = drK(x,y),
for x E F and y E K, i.e. ry = drK ; it follows that y, d&#x3E; is an

F-pairwise map from 7rK to r. We notice that -ylF: F x {* }--&#x3E;Z|* is

the F-map (x,*)-&#x3E;l(x), where x E F. Hence, taking e : F - F x f *1
to be the F-homeomorphism x--&#x3E;(x,*) where x E F, c5 is a classifying
map for the trivial grounded F-fibration (7rK, c). Now c : K-&#x3E; D, the
constant map to *, is also a classifying map for (7rK, e). It follows that
S -0 c. A homotopy from c5 to c that is stationary on the values [0, 1]
can be selected. Then, since r has the FWCHP, c can be lifted to
C : F x K - Z such that C, c&#x3E; is an F-pairwise map from 7rK to r that
is F-pairwise homotopic to y, d&#x3E;. The range of C is Z I*; hence C de-
termines a map v : K --&#x3E;F(F, Z|*) with v (y) (x) = ((x,y), where y E K
and x E F. The homotopy y = C : F x K x I -&#x3E; Z similarly determines
a homotopy K X I-Prin fZ from u to jv.

The next result is largely a generalization of [A, lem.4.2]. However,
we avoid the quasi-fibration aspect of the argument of [A], as that would
lead us into making unwanted assumptions concerning F.

Lemma 4.4 Let K be a pointed CW-complex and v : K -&#x3E; F(F, Z I*) be
a map. Then, with j as in the previous lemma, jv : K -+ PrinFZ is

freely homotopic to a constant map.
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Proof. The exponential law [B1, 0.1] determines a map v’ : F x K-&#x3E; Z|*
by v’(x, y) = v(y)(x), for x E F and y E K. Let h: F x K -4 (ZI*) x K
denote the map h(x,y) = (v’(x,y), y), where x E F and y E K. It fol-
lows from [B1, thm.5.4] that h is an FFHE between the projections
p : F x K-&#x3E;K and q :(Z|*) x K-&#x3E;K.

We will now use h to define a corresponding F-fibration p. It follows,
via the double retraction property for F-fibrations, that there is an

0-overspace p : Z(h) -&#x3E; K. Further there are maps i : F x K -4 Z(h),
1: (Z I *) x K -4 Z(h) and o : Z(h)-&#x3E;(Z|*)x K that are all 0-maps over
K. These must satisfy ja ’:::!. FK 1F, ai = h and other conditions.
We notice that jh = jai =FK i. In practise Z(h) is likely to be an
appropriately defined mapping cylinder for h.

We define P to be the quotient space of

under the relations (x, y, 0) - (x, y’, 0), (x, y, 1 3) = (i(z, y), 1 3), (z, y, 3) =
(j(z, y), 1), and (z,y,1)= (z,y’,1), for all x E F, y, y’ E K and z E Z 1*.

Let us define the suspension space SK to be the quotient space of
K x I under the relations (y, 0) =- (y’, 0) and (y,1 ) = (y’,1), for all

y, y’ E K. The "0" and "1" endpoints of SK will be denoted by [0] and
[1], respectively.
We define the map p : P-SK to be the obvious projection, i.e. using

u on the "middle section" of P. Then p can clearly be taken to be an
F-overspace of SK.

Let CK denote the quotient space of K x [0,1 3) under the relation
(y7O) =- (y’, 0), for all y, y’ E K. Then pICK: P|CK --&#x3E;CK is the

projection and trivial F-fibration FxCK-&#x3E;CK. Let C’K denote the

analagous subspace of SK corresponding to (2 3, 1]; then piC’ K is the
projection and trivial T-fibration (Z|*) x C’K-&#x3E;C’K.

We now use the qbh construction of [B2, section 4] with "B"= "C’ =
K, thus obtaining an F-overspace q4h : ((Z|*) x K)( (FxK)-&#x3E; K x I.
Let V denote the subspace K x (0,1) of SK. We know that qbh is an
F-fibration [B2, prop.4.5], hence so also is p|V = (q4h)|(Kx (0, 1)).

Now {CK, C’K, V} is a numerable cover of SK, so p must

be an 0-fibration [B1, prop.6.2].
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Let Xo : F - P be defined by z - (x, {K}, 0), where x E F , and
X1 : Z-| * - P be defined by z--&#x3E; (z, {K}, 1), where z E Z|*. Then Xo
and Xl are homeomorphisms into P; their images are the fibres of p
over [0] and [1], respectively. We now identify F and Zl* with their
images under these homeomorphisms. So the fibres of p over [0] and [1]
are now F and Zl*, respectively; their inclusions in P are now Xo and
Xl, respectively.

Taking * = [1] E SK as basepoint, p has distinguished fibre Z|* and
(p, l) is an F-grounded 0-fibration. Then (p, l) has a classifying map
S E T°(SK, D), relative to the F-grounded universal F-fibration (r, f).
It follows that there is an 7-pairwise map y, d&#x3E; from p to r such that

(y|(P|*))l=:F l. Hence (y|(P|*)) =F 1zl*.
The following 0-pairwise maps from p : F x K - K to p : P -&#x3E; SK

are, in turn, 7-pairwise homotopic. This is clear for (iii) and (iv) using
the homotopy z .FK jh ; in all other cases it follows via the definition
of P. We assume, throughout this list, that x E F and y E K.

and

Let JrF : F x K -&#x3E; F denote the projection. We have seen that the
F-pairwise maps (i) Xo7rF, y-&#x3E; [0] &#x3E; and (vi) Xlv’, y-&#x3E; * &#x3E;, where

y E K, are F-pairwise homotopic.
Let co and CI denote the constant maps K -&#x3E; D, with values d([0])

and d[1] = d(*)= *. Composing the last two F-pairwise maps with
y d&#x3E;, we obtain the F-pairwise maps yX0rF, co&#x3E; and yX1v’, c1&#x3E;
from p to r. Recalling that i* : Z|* -&#x3E; Z denotes the inclusion and that

7Xi = i*(y|(P|*)), we see that yXI1v’, C1&#x3E; = i*(y|(P|*))v’, c1&#x3E;.
Now there is an F-homotopy between y|(Z|*) and the identity on Zl*,
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so i*(y|(P|*))v’, c1&#x3E; is F-pairwise homotopic to i*v’, c1&#x3E;. Hence we
have an 7-pairwise homotopy from yX0rF, c0&#x3E; to i.Vl, c1&#x3E;.

Applying the exponential law [B1, 0.1] to this homotopy, we see that
the constant map to ,Xo E PrinFZ and jv are freely homotopic maps
of K into PrinFZ.

Proof of theorems 4.1. The n = 0 case is lemma 4.2. Let us now

assume that n &#x3E; 0, (r,l) is grounded universal amongst F-grounded
F-fibrations and that the map u : Sn-&#x3E;PrinFZ has u(*) = l. It follows
from lemmas 4.3 and 4.4 that u is freely homotopic to a constant map,
and therefore (lemma 4.2) freely homotopic to the constant map to l.
We see, via [S, thm.1.3.12], that rn(PrinFZ, l) = 0.

We now combine the main results of the last two sections.

Theorem 4.5 Let (£, U£, IX x£ I}) be a category of well enriched
spaces under a space A, F be an £-space, F be the category of fibres in
E determined by Fand p : X - B be an F-fibration over a CW-complex
B . Then p is a weakly contractible universal F-fibration if and only
if F is FFHE F set - valued and p is grounded universal amongst
F-fibrations.

Proof. It follows from [B2, lem.2.4] that £ carries the structure of a
category of enriched spaces and from [B2, thm.3.7] that the double re-
traction property holds for F-fibrations. The "only if" part follows from
theorem 3.4; the "if" part from theorem 4.1.

Note. A fibration, as in theorem 4.5, is also free universal amongst
F-fibrations [B2, def.2.2 and prop.7.4].

Definition 4.6 If an F-fibration is free universal amongst F-fibrations,
grounded universal amongst F-fibrations and weakly contractible univer-
sal, then it will be said to be a universal F-fibration.
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5 The Set-theoretical Difficulty and the
Main Result

We assume, throughout this section, that (£, U £, fX x £ I}) is
a category of well enriched spaces under a space A. Taking
A to denote the category of spaces under A, we recall that U£ is a

functor from £ to A, and that there is also an underlying space functor

U A : A-&#x3E;T (see [B2, section 2]). In the following discussion we refer to
the underlying set of an £-space X. This should be interpreted to mean
the underlying set of the underlying topological space U AU£(X).

Definitions 5.1 (i) Let K be a cardinal number. If the underlying
set of an £ -space has cardinality less than or. equal to K, then it

will be said to be a K£ -space. Let K£ be the full subcategory of
E’ containing all such K£-spaces. Then the functor UK£ : K£ --* A
will be defined to be the restriction to K£ of the functor U£ : E -+ A.
If X is a K£ -space, then we define the cylinder X x K£ I to be the
cylinder X x£I.

(ii) The category £ will be said to be proper if, for every choice of a
category of fibres F in £ and of space X under A, the class of all
associated F-space structures on X is a set.

Proposition 5.2 Let K be a cardinal number greater than or equal to
the cardinality of the continuum. Then:

(i) (K£, Unc, {X x K£ I}) is a (possibly empty) category of well en-
riched spaces under A, and

(ii) K£ is rc£FHE set-valued.

Proof. The functor U K£ is clearly faithful. If S is an £-space, then
card(S) will denote the cardinality of the underlying set of S. Then, if
X is an object of K£, we have
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Hence, for such X, the 9-cylinder X x £ I is also in K£. Given a mor-
phism f of x£, a similar argument can be applied to x£MC( f) =
EMC(f) ; the rest is easy.

(ii) We see from the definition of K£ that, for every K£-overspace
p: X -&#x3E; B, card(X ) K x card(B). Hence, if K£-overspaces of B are
classified up to homeomorphism over B , i.e. 7-homeomorphism over
B, then there is just a set of such types.

We notice that categories of fibres in K£ take the form KF, where
0 is a category of fibres in £. Then KF = F n K£. We know that every
F-fibration is a K£-overspace, so there is just a set of homeomorphism
over B types of KF-fibrations over B. Also is proper, so there is just
a set of KF-homeomorphism over B types of KF-fibrations over B. Now
any two KF-fibrations over B, that are KF-homeomorphic over B, are
necessarily KF F HE. It follows that all such KF F H E( B) are sets, and
so r,.6 is K£F H E set-valued.

Theorem 5.3 : Main Result. Let (E, U£, IX xc I}) be a proper
category of well enriched spaces under a space A, F be an £ -space and
F be the category of fibres determined by F. Then there is a universal

F-fibration over a path connected CW-complex.

Proof. Let K be the greater of the cardinalities of the underlying set of
F and of the continuum. Proposition 5.2 then allows us to apply [B2,
thm.8.1((a) =&#x3E; (d))] and [B2, prop.7.3] in the KF context. Thus we take
the "F" of that proposition 7.3 and the "£" of that theorem 8.1 to be
our present x0. It then follows that there exists a grounded universal
K0-fibration PKF : EKF --&#x3E; BKF over a path connected CW-complex
BKF. Applying theorem 4.1 in the K0 context, we see that PKF is
weakly contractible universal.

Now KF C T, so every K0-fibration is an F-fibration. Hence PKF
is a weakly contractible universal F-fibration. Applying theorem 4.5 in
the F context, we see that is FFHEF set-valued, and that pkF is
universal amongst F-fibrations.
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6 Examples
The following brief comments are intended to make our discussion of
proper categories of well enriched spaces more concrete. We show that
this concept does indeed apply to the three "classical" theories of fibra-
tions. It follows that theorem 5.3 holds for each of these cases. A more

extensive and detailed discussion of these and other examples
will be given in [B3].

(i) Dold Fibrations and Hurewicz Fibrations. Let E be the

category T of all (of course cg-) spaces and maps, A be the empty
space and UA = U£ = 1T, the identity functor on T. The cylinder
X x £ I is just the cartesian product space X x I. It may be seen that

(7-, 17-, {X xI}) is a category of well enriched spaces.
The additional structure required to make a space into an £-space is

in this case empty, so the class of associated £-structures on any given
space is just a singleton set. Thus this category of well enriched spaces
is proper. 

Given a space F, we define F to consist of all spaces that are ho-
motopy equivalent to F and all homotopy equivalences between such
spaces. Then theorem 5.3 applies to Dold fibrations.

Any Dold fibration, like any other map, can be factorized as the com-
posite of a Hurewicz fibration and a homotopy equivalence. It follows
fr6m [D, thm.6.1] that the homotopy equivalence is a fibre homotopy
equivalence. This result enables us to derive a classification theory for
Hurewicz fibrations from that for Dold fibrations.

(ii) Principal Fibrations. Let G be a topological monoid. We take
both 9 and F to be the category with G-spaces that are G-homotopy
equivalent to G as objects, and G-homotopy equivalences between such
G-spaces as morphisms. Then A will again be the empty space, and

U£ : £ --&#x3E; T will be the functor that forgets G-actions. We notice that
UA is again the identity functor on T. If X is a G-space, then we define
X x£I to be the space X xl, with the action (g, (x, t)) -+ (gx, t), where
g E G, x E X, and t E I. Then it may be seen that (£, U£, {XxI}) is
a category of well enriched spaces.

Let X be a space. Then the actions G x X-&#x3E;X correspond to the con-
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tinuous homomorphisms from G into the group of self-homeomorphisms
of X. Hence there is only a set of such actions, and our category of well
enriched spaces is proper. So theorem 5.3 applies to principal fibrations.

(iii) Sectioned Fibrations. Let us take £ to be To, the category
of pointed spaces and pointed maps, A to be a singleton space and U£
to be the identity functor 1° on T°. Then UA : T0-&#x3E; T is the functor
that forgets base points. If (X, *) is a pointed space, then the associated
cylinder is defined to be the quotient space X x I/{*} x I. It can be seen

that (T0, 10, {X x I/{*}x I}) is a category of well enriched spaces.
The additional structure required to make a pointed space into an

£-space is empty, so the class of associated £-structures on any given
space is just a singleton set. Hence this category of well enriched spaces
is proper.

Let F be a given pointed space. We define the corresponding F to
consist of all pointed spaces that are pointed homotopy equivalent to
F, and all pointed homotopy equivalences between such pointed spaces.
Then theorem 5.3 applies to sectioned fibrations.
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