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CAHIERS DE TOPOLOGIE ET Volume XXXVII-1 (1996)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

BOOLEANIZATION
by B. BANASCHEWSKI and A. PULTR

Résumé : Cet article est une étude des aspects différents de la
procédure qui associe & un cadre L ’algebre de Boole compléte BL
des éléments réguliers a = a**. En particulier, nous étudions des
applications entre cadres qui induisent des homomorphismes entre
ces Booleanizations, et des propriétés de quelques foncteurs associés
comprenant des homomorphismes faiblement ouverts. De plus, nous
considérons des propriétés de limites et colimites dans le contexte de
ces homomorphismes.

Recall that the well-known result in topology that the regular open
subsets of any space form a complete Boolean algebra naturally ex-
tends to arbitrary frames, as originally observed by Glivenko [11] and
later put in proper perspective by Isbell [13]. This associates with each
frame L the complete Boolean algebra BL, consisting of the elements
a = a**, together with the homomorphism S, : BL — L taking each
element a to its double pseudocomplement a**. This paper studies
various aspects of this Booleanization. In particular, we investigate
maps (not necessarily homomorphisms) between frames which induce
a homomorphism between their Booleanization so that the correspon-
dence L — BL become functorial, or even a reflection. The frame
homomorphisms arising in this context, called weakly open here are
familiar from topos theory (Johnstone [15]) and have a natural topo-
logical origin connected with the Gleason cover (Mioduszewski - Rudolf
[18]). We show that the reflection given by Booleanization for both
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the category Frm,,, of all frames and weakly open homomorphisms
and the corresponding category of completely regular frames, does not
have a left adjoint. This is of interest because in the case of uniform
frames there is indeed such an adjoint, provided by completion (Ba-
naschewski - Pultr [8]). Finally, concerning general properties of the
category Frm,,,, we prove that it has products and coequalizers, the
former inherited from the category given by all frame homomorphisms
but the latter not. It fails to have equalizers (Niederle [19]) ; in ad-
dition, we establish that certain frame coproducts are coproducts in
Frm,,, while others are not.

0. Preliminaries

0.1 A frame is a complete lattice L satisfying the distributivity law
aAN\/S =V{aAt|te S}foralla e L and S C L, and a frame
homomorphism h : L — M is a map preserving all finitary meets
including the top 1, and arbitrary joins including the bottom 0. The
resulting category will be denoted by

Frm.
Thus, for instance, the lattice X of open sets of a topological space
is a frame, and if f : X — Y is a continuous map, Qf : QY — QX
defined by Qf(U) = f~}(U) is a frame homomorphism. For general
facts concerning frames, see [14], [23].

0.2 Another example of a frame is a complete Boolean algebra.
Note that frame homomorphisms between Boolean algebras coincide
with complete Boolean homomorphisms, that is, they also preserve
complements and arbitrary meets. On the other hand, although each
frame is a Heyting algebra since the distributivity ensures the existence
of an operation a — b for which a Ab < ciff a < b — ¢, frame
homomorphisms do not generally preserve the operation —, let alone
arbitrary infinite meets.

0.3. The pseudocomplement of an element z of a frame L is z* =
V{y | y A = = 0}, which is the largest y such that y Az = 0. One
has z < z** and z*** = z*. We write ¢ < y if z* Vy = 1, and
z << y if there are z, for each rational r between 0 and 1 such that
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T = z9,y = x; and z, < z, whenever r < s. A frame is said to be
reqular (completely regular) if

Va€ L, a=V{x|z<a (z << a)}.

A frame L is called compact if for each subset C C L such that \/C =1
there is a finite E C C such that already \/ E = 1.

0.4. A frame homomorphism h: L — M is called dense if h(a) =0
implies @ = 0. An element z € L is dense if 2** = 1. A compactification
of a frame L is a dense surjection K — L with compact regular K.

0.5. The system of all congruences on a frame L is again a frame
and will be denoted by €L. The mapping V : L — €L associating
with @ € L the congruence V(a) = {(z,y) | £ Va = y V a} is a one-
one frame homomorphism and each V(a) is complemented in €L; in
fact, if A(a) = {(z,y) |  Aa = y A a} then V(a) V A(a) = 1 and
V(a) A A(a) = 0 (see [14]).

0.6. For any frame L, the subset
BL={z€L|z=2""}

is a complete Boolean algebra, with meet as in L and join (\/ a;)**,
called the Booleanization of L. We will denote join in *BL by

I_lai, alb, aU---Ua,, etc
i€J

The map
Br:L— BL

given by Br(z) = z** is a frame homomorphism. Obviously it is a
dense surjection. (See [11], [13].)

0.7. In the last section we will make a few points on coproducts of
frames. The reader can learn more about them e.g. in [14].

From category theory, only basics (as, say, in the first half of [17])
are assumed.
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1. Booleanization as a functor

1.1. Although the construction B and the homomorphisms Jy, :
L — *BL are canonical in some sense, and (1 even has a certain
universality property as the least dense surjection ([13]), one cannot
extend B to a functor on Frm behaving naturally with respect to the
Br- The following extends the fact on spaces from [15] (Lemma 3.2)
for general frames :

Proposition. Let ¢ : L — M be a frame homomorphism. Then there
18 @ homomorphism 1 : BL — BM such that

I —2 . M

ﬂLl ﬂMl

L4
BL —— BM
commutes iff for each a € L, ¢(a**) < o(a)**.

PROOF: If 9 exists then p(a)** = Py(a) = ¢YB(a) = P(a**), hence
also p(a™)**= $(a****) = (a**), and finally p(a™) < p(a*)"

=9(a**)= p(a)**. On the other hand if the condition is satisfied, it is
easy to check that the formula ¢ (a)=¢(a)** determines a homomor-
phism BL — BM with the desired property. O

Homomorphisms ¢ such that p(a**) < ¢(a)** will be called weakly
open. As (L is onto, ¥ in the diagram above is uniquely determined.
We will denote it by By. Thus, we have the formula

Bp(a) = p(a)™.

1.2. The condition in 1.1 makes good topological sense. Its spa-
tial counterpart has appeared in the literature under various names :
skeletal in [18], demi-open in [12]. We prefer the term weakly open as
it appears to us to be a particularly natural weakening of the openness
condition (compare (7) below with 1.3); it should be noted, however,
that this term has been used in [15] for what is called nearly open in
[21] - see (1.3.1) below.

The following statement which summarizes some of the discussion
from (7] may be useful.
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Theorem. The following conditions on a frame homomorphism ¢ are
equivalent :

(1) ¢ is weakly open,

(2) p(a**)™ = ¢(a)™,

(3) ¢(a*)* < p(a)™,

(4) ¢(a*)* = ¢(a)™,

(5) for each dense a, p(a) is dense.
If o = Qf for a continuous f : X — Y, this i3, further, equivalent to

(6) for each non-void open V C X, int f[V] is non-void,

(7) for each open V C X there is an open U C Y such that f[V] =
U.

1.3. Of course, By can be defined for any choice of morphisms
satisfying a condition stronger than weak openness ; notably for

(1.3.1) nearly open homomorphisms, satisfying

p(a”) = p(a)7,

which corresponds for spaces to the condition that, for each
open U, f[U] is dense in some open set - see [21],
(1.3.2) feebly open homomorphisms, the ¢ : L — M such that there is
a mapping ¥ : M — L such that
(a) ¥(b) # 0 for b # 0, and
(B) p(a) A b < p(c) implies a A (b) <
(for spaces this corresponds to the condition that, for each open
U, there is an open set dense in f[U] - see [9)]),
(1.3.3) open homomorphisms, that is, complete Heyting homomorph-
isms (see [7], [16]) which corresponds for spaces to the condition
for each open U, f[U] is open.

Although the feebly open homomorphisms fit well into the topo-
logical picture, their algebraic nature seems to differ from that of the
other three. They probably merit a separate study ; in this article we
will mention them only in passing.

The categories of frames with weakly open, nearly open, feebly open,
and open homomorphisms will be denoted respectively by
Frmy,, Frm,,, Frmfo, Frm,.
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Thus, if BFrm is the category of Boolean frames, that is, complete
Boolean algebras, we have :

For any of the categories C above, B can be extended by the formula
from 1.1 to a functor

B:C - BFrm .

Note also that if L, M are Boolean, any frame homomorphism ¢ : L —
M is complete Heyting ; thus,
BFrm is a full subcategory of any of the C.

1.4. The question naturally arises whether we could not make B
functorial by restricting the objects rather than the morphisms - to be
immediately dismissed, since we have :

Proposition. If a frame L has the property that all p : L — B into
Boolean B are weakly open then L i3 Boolean.

ProOOF: Consider the composition

v B
¢p:L— CL — BCL.

As each V(a) is complemented, ¢ is one-one. Now if ¢(a**) < ¢(a)**,
we have V(a**) < V(a), hence (V is one-one) a** < q, that is, a** = a.

a

2. Booleanization as reflection

2.1. Lemma. (see [15], p.227) Each dense surjective homomor-
phism ¢ : L — M 1s nearly open.

PROOF: Take a € L. Choose a b € L such that ¢(a)* = ¢(b). We
have 0 = ¢(b) A p(a) = ¢(bA a). By density, bAa =0, that is, b < a*
and we conclude that p(a)* = ¢(b) < p(a*) < p(a)*. g

2.2. In particular, the By : L — BL "are nearly (and hence also
weakly) open. Thus, we easily conclude
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Theorem. The category BFrm is reflective in both Frm,, and
Frm,,,, with reflection functor ‘B.

2.3. A pp is, however, seldom open. Here we characterize the
frames L for which it is.

First (see, for instance, [7]), ¢ being open means there is ¢ € L such
that

e(z)=¢(y) ff cAz=cAy.
Thus, B is open iff there is a ¢ € L such that

(%) chz=cAy iff " =y™.

Theorem. The following statements on a frame L are equivalent :
(1) BL: L — BL is open,
(2) L has a smallest dense element,

(3) there is a dense ¢ € L such that |c = {z | ¢ < ¢} 1s a Boolean
algebra.

PROOF: (1)=(2) : Take the c from (*). In particular, cAz = ciff z
is dense.

(2)=(3) : Let c be a smallest dense element, let z < ¢, f y A ((c A
z*)Vz) =0 we have y < z* and yAcAz* =yAc=0sothat y = 0.
Thus, (¢ A z*) V z is dense and we have

c<(cAz*)Ve<Le

and hence ¢ A z* is the complement of z in |c.
(3)=>(1) : Denote the complement of z in |c by —z. As obviously

V{y|0§y§c, y/\a:=0}=V{z/\clz/\x=0},

we have
—z=z"Ac

for any = €|c. Since |c is Boolean, we obtain, for any z € L,

TtAc=-"(zAc)=(z*Ac)"Ac>z" Ac>zAc
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and hence z A ¢ = B(z) Ac. As Br(z) = BrBL(z) and Br(c) =1, we
immediately infer that

ztAc=yAc iff Br(z)=PL(y).

O

2.4. Note : To have a better idea how rare the openness of L,
is: It is easy to prove that, for a To—space X, f: Q(X) — BQUX) is
open iff there is a dense open discrete subset C C X.

3. Non-existence of left adjoints

3.1. ‘B, as a reflection functor, is a left adjoint in the weakly and
nearly open cases. Now, in the metric and uniform setting, again with
the choice of weakly open homomorphisms, B is also a right adjoint
(6], [8]), and hence it is natural to wonder whether this might also
hold for ordinary frames. In this section we show this is not the case.
First, a simple reason for this at quite a general level.

Theorem. For C=Frm,, , Frm,, , Frm¢, and Frm, , B has no
left adjoint.

PROOF: Consider the two frames

%
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and

N
.\ /.\
/NS
. /.

/
N

and the embeddings ¢, : L — M determlned by the subframes of M
indicated by () and x :

N SN S
N S

which are clearly weakly open.

Then, the equalizer of ¢ and % is the initial 2 — L. On the other
hand, the Booleanizations of L and M are

BL : / \

.49.-
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and

\
/

BM : O

N
NN

\

NSNS
O

AN
O

while By = B is the isomorphism BL — BM ; the equalizer of By
and By is therefore the identity BL — BL but B(2 — L) =2 — BL.

(Note that ¢ and ¢ do not preserve pseudocomplements; in partic-
ular, they are not open.) O

3.2. The theorem above leaves much to be desired. The initial
question involved comparing the situation in frames with that in uni-
form frames. Now the underlying frames of uniform frames are of a
very special nature : they are, as is well known, exactly the compact-
ifiable frames, or, allowing the use of non-constructive principles, the
completely regular frames ([4], [5], [22]). Thus, if the question is re-
interpreted to ask whether the existence of a left adjoint to B in the
uniform case really depends on the uniform structure, as opposed to
just the special nature of the frames in question, we should rather ask
whether the restriction of B to the completely regular frames,

B : CRegFrm,,, — BFrm

has a left adjoint or not. This is the problem we shall deal with in the
remainder of this section.

Note that a procedure similar to that in 3.1 would not apply here: in
the regular case the 3, are monomorphisms by denseness, and hence
if By = B, one also has ¢ = 1p.

3.3. Now let

T : BFrm — CRegFrm,, (resp.CRegFrm,, )
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be a hypothetical left adjoint to B, with adjunction transformations
e:TB —1d p:1d— BT.

Let J : BFrm — CRegFrm,, be the identical embedding, right
adjoint to B. As now BoT is a left adjoint to B o J= Id, we conclude
easily that

p 18 a natural equivalence.

In view of the adjunction identity

Tp eT
T —TBT —T

we obtain further

Corollary. Each er(p) is an isomorphism.

3.4. Lemma. If B is a Boolean algebra, ep is dense onto.

PROOF: Since B is isomorphic to BT(B) it suffices to prove that
esT(B) is dense onto. Consider the commutative diagram

TBT(B) ——, T(B)

idT'BT(B):-T(%(ﬂT(B))l lﬂT(B)
€8T (B)
TB(BT(B)) —— BT(B)
As ep(p) is an isomorphism and fr(p) dense onto, so is egr(p). U

3.5. Proposition. A complete Boolean algebra is continuous iff it
18 atomac.

PRrROOF: The “if ” part being obvious, let B be a non-atomic complete
Boolean algebra. Then a = (\/{z | z atom in B})* is not zero and
hence we have a non-zero b << a. Further, as there are no atoms
below a, we have a decreasing sequence

b=by >by>--->b,>....
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Now the partition
a=(anb})V \/ (ba Abns1)*V )\ ba
n=1 n=1

obviously contains no finite cover of b, contradicting b << a, O

(This fact is implicit in the diagram of lattice properties on page
96 of [10]. There does not seem to be any reference to it in the text,
though.)

3.6. Theorem. Let C be CRegFrm,, or CRegFrm,, . Then
B : C —-BFrm has no left adjoint.

PROOF: Suppose it has and use the notation of 3.2. For any B €
BFrm let | : K — T(B) be a compactification and put

id=T(8p)

k= (K - T(B) 7(8B) =2 B).

By 3.4 this is a compactification of B. We will show it is a smallest
one, meaning that for any compactification h : M — B we have a

¢ : K — M such that
hop =k.

Indeed : As h is dense onto, Bh defined in 2.1 is also dense onto and
hence an isomorphism by Booleanness. Then, for

p=epmoT((Bh)™)oT(BB)ol,

we have

hop=hoepy oT((BhR) )oT(Bp)ol=
=eg o T(Bh)o T((Bh)™ ") o T(Bp)ol=k.

Now, a frame with a smallest compactification is continuous by [3],

Proposition 4, but only atomic Boolean algebras possess this property
by 3.5. O
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4. Other maps

4.1. The argument from 3.2 - 3.6 cannot be used for the feebly
open and open cases. Of compactifications we know only that they
are nearly open (2.1), and indeed they often are not open, or feebly
open. Furthermore, one cannot use the argument of 3.3 as 3 is not a
reflection. On the other hand, if one asks just about the existence of
a left adjoint, this is refuted for all cases by 3.1. Note that we have
discussed the completely regular case primarily to contrast the frame
situation with that of uniform frames, where the left adjoint exists in
the weakly open case only anyway.

Still, a study of Booleanization as a functor from the category of
Heyting algebras with special properties (and with complete Heyting
homomorphisms = open frame homomorphisms) probably merits some
interest, including, of course, the existence or non-existence of a right
adjoint (recall 2.3).

4.2. Denote by JL the ideal lattice of L, with intersection as meet
and join given by
\/JiZ{:ElV---V:L‘n | z; € J,'j},
]

and put, for o : L = M, Jo(J) =le[J].
One easily sees that

for any J € JL, hence J** =|(\/ J)**, and in particular J** =|\/ Jif L

is Boolean. Thus, for Boolean algebras we have a natural equivalence
pB:B=BJB

defined by pp(b) =|b. One also has somewhat canonical maps
pL:JBL - L

defined by pr(J) = \/ J. These py, are generally not homomorphisms.
They do, however, satisfy “adjunction identities ”

k(L) B(pL) .
(BL —— BIB(L) —— BL) =1id,
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J(eB) P3(B)

(JB —— JBJ(B) —— JB) =1id
and therefore one is tempted to consider the category of frames with
morphisms sufficiently relaxed to include these py. One can, for
instance, take as morphisms those maps (not necessarily homomor-
phic) for which the square in 1.1 can be completed by a homomor-
phism . (This results in the conditions: ¢(0) = 0, ¢(1)** = 1,
o(a A B)™ = p(a)™ Ag(b)™ and w((V a;)™)™ = (\ ¢(a;)*™)*" ; only
the last relaxation is necessary for the py, since they do preserve meets.)
But this does not help either since the p;, do not form a transforma-

tion anyway. In the special case discussed in the next paragraph they
do, but there they are actually homomorphisms.

4.3 A frame L is said to be DeMorgan (or eztremally disconnected)
ifa*Va** =1 for all a € L, or, equivalently, if (a** V b**)** = a** Vv b**
for all a.b € L. The category of all DeMorgan frames with weakly open
homomorphisms will be denoted by DMFrm,, . Trivially, BFrm is
a full subcategory of DMFrm,, and 8 :DMFrm,,, —‘BFrm is a
left adjoint to the embedding. We have

Theorem. 1. py : JBL — L s a frame homomorphism iff L s
DeMorgan.

2. The systems p and p from 4.2 constitute an adjunction between
B :DMFrm,,, —»BFrm on the right and J : BFrm -DMFrm,,, on
the left.

PrOOF: 1. Since JBL is the frame freely generated by the lattice
BL, pr : 3'BL — L is a frame homomorphism extending the identical
embedding BL — L iff the latter is a lattice homomorphism, and this
holds iff L is DeMorgan.

2. First note that, for any Boolean frame B, JB is DeMorgan since
J*v I =|(\VJ)*Vv |V J = 1. Further, for any ¢ : B — C in BFrm,
Jo : JB — JC is weakly open since an ideal J in B (or C) is dense
iff \/J = 1 while \/ Jo(J) = ¢(V J). Hence J may be viewed as a
functor BFrm—DMFrm,,,.

On the other hand, B is a functor on DMFrm,,, such that the
identical embeddings BL — L are lattice homomorphisms natural in
L: for any ¢ : L - M in DMFrm,, and a € BL, p(a) = p(a)**
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since 1 = a* V a** = a* V a implies ¢(a) V ¢(a*) = 1 and hence
o(a) = p(a*)*. As a consequence, the py, : JBL — L are also natural
in L.

Finally, the adjunction identities

(BprL)psr =idsr, p3pIps =id3s

are easily verified. O

For the somewhat related connection between Frm,,, and DMFrm,,,
see [15].

5. Appendix : Some categorical properties

5.1. Since the categories Frm,, and Frm,, contain BFrm as
a reflective subcategory they cannot be cocomplete. Frm,,, is not
complete either : By [19], some pairs of weakly open homomorphisms
do not have equalizers in Frm,,, .

5.2. Frm,, coincides with the category of complete distributive lat-
tices with pseudocomplements, with homomorphisms preserving 0,1,A,
V and *. Frm, coincides with the category of complete Heyting alge-
bras and complete Heyting homomorphisms. Thus, both of them are
equationally presentable (in the terminology of [14] - see, e.g., [1]) and
hence are complete with limits as in sets and therefore as in Frm.

5.3. Proposition. Frm,,, has products and they are the usual
frame products.

PROOF: Let p; : L = [[L; — L; be a frame product. Then, for
¢ = (z;); € L obviously z* = (z});, and hence the p; are nearly
open. Now consider weakly open h; : M — L;. For the map h :
M — []L; satisfying p;h = h;, that is, h(y) = (hi(y))i, we have
h(y™) = (hi(y™))i < (hi(y)™)i = h(y)*. -

5.4. Proposition. For any weakly open (nearly open, open) ho-

. . p .o .
momorphism h: L — M, if L - K L M is its usual image factor-
ization, then p and ¢ are also weakly open (nearly open, open).

PROOF: As Frm,, and Frm, are varieties of algebras, it suffices to
prove the statement for weakly open h. For any dense a € L, the fact
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that p(a) = h(a) is dense in M trivially implies that it is dense in the
subframe K of M. Further, if h(a) is dense in K for some a € L then
h(a*) = 0 since h(a) A h(a*) = 0 in K. Now h(a V a*) is dense in
M since h is weakly open, but this is just h(a). Hence the identical
embedding : : K — M is weakly open. O

5.5. Since any frame has, up to isomorphism, only a set of ho-
momorphic images, and hence, a fortiori, only a set of homomorphic
images in Frm,, , Frm,, or Frm, , a familiar argument constructs
coequalizers in these categories from products and factorizations, and
we have

Corollary. Each of Frm,, , Frm,, and Frm, has coequalizers.

5.6. The coequalizers need not coincide with those in Frm. Here
is an example covering all the three cases :

Let L = Q(R) for the real line R, f : R — R sending z to —z,
and ¢ = Q(f), obviously an open homomorphism L — L. Then, by
regularity, the coequalizer of ¢ and idy is a closed quotient of L and
hence spatial. Thus, it corresponds to the equalizer {0} of f and idg in
spaces, making it the map L —2 given by 0 € R, and this is obviously
not weakly open since it takes the dense open R \ {0} to 0.

5.7. In the remaining three paragraphs we will add a few remarks
on some coproducts in Frm,,, . The following properties of coproducts
will be used

(1) if L 5L oM & M are the coproduct injections, L & M is
\ — generated by the z ® y = i(z) A j(v),
(2) 2y =0iff z =0 or y = 0 ; consequently,
(z@y) =("el)vV(ley’)

and from this it is easy to infer that

(x @y)** — x** @y**.
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Lemma. For any regular frame L, if s = \/{z @ z* |z € L} in EDL
then s* = \/{a @ a | a atom in L}.

PROOF: To compute s*, let 0 # a @ b be such that (a®b)As=0. As
then also (a®b)**As = (a**®b**)As = 0, we can assume that a = a**
and b = b**. Now (a® b) A s = 0 means that (aAz) D (bAz*) =0 for
all z, hence either a Az =0 or b A z* =0, that is,

either a < z* or b < z**, for any z.

In particular for = a we obtain b < a** = a and similarly a < b
for z = b*. Thus a = b, and it remains to prove that each such
a is an atom. Let 0 < ¢ < a. By regularity, there is d such that
0 < d = d** < c and by the property above,

a<d*ora<d.

Now, the first implies d < a*, and as we already have d < ¢ < a, this
cannot be since 0 < d. Thus, a < d < ¢ < q, and hence a = c. O

5.8. As is well-known, the coproduct maps L N/ oM a M
are open for any frame coproduct L @ M (see Pitts [20], also Joyal -
Tierney [16]). This makes it natural to ask whether such a coproduct
is also the coproduct in Frm,, , Frm,, or Frm, . The following
proposition shows this is often not the case.

Proposition. For K= Frm,, , Frm,, , or Frm, the following are
equiva lent for any Boolean L :

(1) L is atomic,

(2) L@ M 1is the coproduct in K for any M, -

(3) L@ L the is coproduct in K.

PROOF: (1)=(2) : If X is the set of atoms of L then L ~2X and
L& M = MX, with coproduct maps 2X — MX determined by the
initial 2 = M and M — M™ the diagonal embedding, such that the
homomorphism k : MX — N for any given f: L - N andg: M — N
is given by

h((as)sex) = \/{g(as) A f(s) | s € X}.

-57-



BANASCHEWSKI & PULTR. BOOLEANIZATION

Further, N = [[{lf(s) | s € X}, taking z € N to (z A f(s))sex, and

we may read h as

h((as)sex) = (9(as) A f(s))sex-

Now, f is open because L is Boolean, and since relative pseudocom-
plements and meets in product frames are taken componentwise, this
makes it immediately evident that h is weakly open, nearly open, or
open whenever ¢ is of the corresponding type.

(2)=(3) : trivial.

(3)=(1) : Since the codiagonal V : L @ L — L is at least weakly
open, V(s V s*) is dense for s in 5.7, and thus V(s*) = V(sVs*) =1
because V(s) = 0 and L is Boolean. It follows by 5.7 that

1= V{V(a ®a)|aatomin L} = \/{a | @ atom in L},

showing L is atomic. g

Remark 1. Joyal and Tierney [16] characterize the complete atomic
Boolean algebras as those frames for which (the initial map into L

and) the codiagonal L & L — L are open, giving part of the above
(3)=(1).

Remark 2. If L @ L is Boolean, for any frame L, then it is the
coproduct in Frm, while L itself is Boolean as homomorphic image of
L@ L. Hence, by the proposition, L is then also atomic, and therefore
L@ L is Boolean iff L 1s Boolean atomic
- a recent result of Dona Strauss.

5.9. Proposition. For a finite frame L, all L ® M are coproducts
n Frm,,, .

PROOF: If ¢y,cg,...,c, are the elements of L then any u € L® M
has the form u = (¢ ®21) V- -V (cn ® z,) with zx € M so that (recall
5.7.(2))

W= Dz1) A Aen D 2n)* =

=((@e)Vvea)A - Algel)V(1dz,)) =
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=\{cs@2515C{1,2,...,n}}

where cs = /s ks 25 = Vkes zk. Thus, u is dense iff all 5@ 25 = 0,
that is ¢ = 0 or z5 = 0, and hence

for any S, either cg or zg is dense.
Now let h : L ® M — N result from weakly open f : L — N and
g: M — N. Then

h(u) = (f(er) Ag(21)) V-V (f(en) Ag(zn)) =
= /\{f(cs)Vg(Zs) I SC {1,2,...,72}}

where each term in the latter meet is dense since either f(cs) or g(zs)
has to be dense for each S. Thus, h(u) is dense as a meet of finitely
many dense elements. O
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