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ORTHOGONALITY AND CLOSURE OPERATORS
by Lurdes SOUSA

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVI-4 (1995)

Résumé 1

ttant donn4 une sous-catégorie pleine et replete A d’une
cat6gorie X, nous d4finissolis un operateur de fer meture
qui nous permet de caract4riser la classe A 1. (colistitu4e
par tous les X-morphismes qui sont orthogonaux a A) et
la sous-cat6gorie pleine O(A) des X-objets orthogonaux
a A1., en termes de densite et fel’lllettlre, respectivement.
En utilisant cette car acterisation, nous obtenons, inter
alia, des conditions suffisantes pour que la sous-categorie
soit 1’enveloppe r6flexive de A dans X. Nous donnons
aussi des relations int6ressantes entre l’opérateur de fer-
meture introduit et l’op6rateur de fermeture regulier.

Introduction

Given a category X and a full subcategory A of X , let A1 be the
class of X-morphisms which are orthogonal to A, i. e., of mor phisms f :
X - Y such that, for each A E A, the function X(f,A): X(Y, A) -&#x3E;
X(X,A) is a bijection. Let O(A) denote the orthogonal hull of A in
X, i. e., the full subcategory of X consisting of all X E X such that
every f E Al. is orthogonal to X. Let L(A) and TZ(,A) denote the
limit-closure and, assuming existence, tlle reflective hull of A in X,

1 Ke ywords: orthogonal closure, r eflective hull,. closure operator, orthogonal clo-
sure operator, regular closure operator, A-strongly closed object.
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respectively. It is well-known that A C L(A) C O(A) C R(A). Each
of these inclusions lnay be strict but, under suitable conditions, the
equalities R(A)=O(A) and O(A)=L(A) hold. There is an extensive
literature on this subject (cf. [6], [12], [16], [17]; for a more complete
list see references in [17]). More recently, J. Adamek, J. Rosický and
V. Trnkova showed that the problem of the existence of a reflective
hull of a subcategory may have a negative answer even when we deal
with very reasonable categories, such as the category of bitopological
spaces (where the subcategory of all spaces in which both topologies
are compact Hausdorff does not have a reflective hull, see [2]), and the
category of topological spaces (see [18]). In [7], H. Herrlich and M.
Husek present several problems in Top related to orthogonality and
reflectivity.

On the other hand, a categorical notion of closure operator, intro-
duced by D. Dikranjan and E. Giuli in [3], has proved to be a useful
tool in investigating a variety of problems in several areas of category
theory (see [5] and references there).

In this paper we introduce a new closure operator which allows us
to characterize completely the class Al. and the orthogonal hull O(A)
(for suitable A) and to give rather "tight" sufficient conditions for the
orthogonal hull to be the reflective hull.

The motivating example described next, which was taken from [8],
provides a first approach to the problem we are dealing with.

Let X be the category with objects the separated quasi-metric spaces,
i. e., sets X equipped with a function d : X x X -&#x3E; [0, +00] such that,
for every x, y, z E X , d(x,y) = 0 iff x = y, d(x,y) = d(y, x) and
d(x, z) :5 d(x, y) + d(y, z); morphisms of X are non-expansive maps, i.

e., maps f : (X, d) - (Y,e) such that e(f(x), f( y))  d(x, y), for every
(x, y) E X x X . Let A be the full suhcategory of X whose objects are the
complete metric spaces. In this case we have that R(A)=O(A)=L(A).
The class Ai is the class of all dense embeddings, i. e., all dense in-

jective maps f : (X,d) -&#x3E; (Y, e) such that d(x,y) = e(f (x), f (y)) for
every (x, y) E X x X. The orthogonal hull of A, O(A), is the subcate-
gory of all complete separated quasi-?net7ic spaces, i.e., spaces (X, d) in
x in which every Cauchy-sequence converges. Furthermore, we have
that the complete separated quasi-metric spa.ces are just the objects
X which are "strongly closed" , in the sense that, for every Y E X,
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whenever ,X is a subspace of Y, X is closed in it.
The orthogonal closure operator in a category X with respect to a

convenient class of morphism M and a subcategory A of X , which we
shall define in section 1, gives us, under suitable assumptions, the means
to characterize of AL and O(A) in terms of denseness and closedness
like in the example refered to above.

Throughout this paper, when it is appropriate, we relate the ortho-
gonal closure operator with the corresponding regular one (see [13], [5]).
In particular, we show that the orthogonal closure operator induced by
a subcategory is, in general, less or equal to the regular one induced
by the same category. On the other hand, under mild conditions on
A, the subcategory of strongly closed objects relative to the orthogonal
closure operator induced by A is always contained in O(A), whereas the
subcategory of absolutely closed objects relative to the regular closure
operator induced by A has a very irregular behaviour in what concerns
its relation to O(A) or R(A) (see [14] and remark in 4.5.2).

Some examples are given in 4.5.

I would like to thank Professors 1B1. Sobral, W. Tholen and 1B1. W.
Clementino for many suggestions that greatly contributed to make the
paper clearer and more readable.

Our references for background on closure opera.tors are [3] and [5].
In order to make the paper selfcontained we recall here the definition
of closure operator as well as solne basic related notions.

Let X be an M-coniplete category where M is a class of morphisms
in X which contains all isomorphisms and is closed under composition.
We recall that X is said to be M-complete provided that pullbacks of
M-morphisms along arbitrary morphisms exist and belong to M, and
multiple pullbacks of families of .M-morphisms with common codomain
exist and belong to M. The pullback of al M-morphism 111 along a
morphism f is called the in verse image of 111 under f and it is denoted
by ¡-l(m).

Under the above conditions over X and M, «le have that every
morphism in M is a monomorphism and M is left-cancellable, i. e., if
n . m E M and n E M, then 111 E M. It is clear that, for ea.ch object
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X E X, the preordered class Mx of all M-morphisms with codo1ain
X is large-complete. Furthermore, there is a (uniquely determined)
class of morphisms 6 in X such that (E,M) is a factorization system
of X.

Now, let M be a class of monomorphisms in X which contains all
isomorphisms, is closed under composition and is left-cancellable. Let
us consider M as a full subcategory of X2 and let U : M -&#x3E; X be the
codomain functor. A closure operators on X with respect to M consists
of a functor C : M -&#x3E; M, such that UC = U, endowded with a natural
transformation 6 : IdM -&#x3E; C such that Ub = Idu.

If X is M-complete, the closure operator C : M -&#x3E; M may be

equivalently described by a family of operators (CX : MX -&#x3E; MX)XEX,
where CX(m) = C(m) for each m, satisfying the conditions:

1) m  Cx(m), m E MX;
2) if m  n, then CX(m)  CX(n), m,n E M x;
3) CX(f-1(m))  f-1(CY(m)), for ( f : X -&#x3E; Y) E M or (X) and

m E My.
For each (m : X - I,"’) E M we put C(n1.) = ([m] : [X] -&#x3E; V)

and we denote by d(m) the morphism such that 6,,1 = (d(m), 1Y), i. e.,

[m] . b(m) = m.
A morphism (m : X -&#x3E; Y) E M is called C-dense (respectively,

C-closed) if C(m) = 1Y (respectively, C(m) = m).
We say that C is weakly hereditary (respectively, idempotent) if, for

each m E M, b(m) is C-dense (respectively, C(111) is C-closed).

1 The orthogonal closure operator
Throughout this paper X is an M-complete category with pushouts,
where M contains all isomorphism and is closed under composition,
and (E, M) is the existing factorization system of X.

All subcategories of X are assumed to be full and isomorphism-
closed.

Let A be a subcategory of X. In order to define the orthogonal
closure operator induced by A, we consider, for each 771 : X - V in

M, a morphism [m] : [X] -&#x3E; V in M obtained as follows:
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(C) For each (g : X -&#x3E; A) with A in A, we form the pushout
(m, g’) of (m, g) in X. Let m’ . e be the (E, ,M )-factorization
of m and (mg , g*) the pullback of (m’,g’).

Let P(m) be the class of all111g : Xg -&#x3E; Y obtained that
way. The morphism [m] : [X] -&#x3E; Y is the intersection of

P(m). It is clear that it is in M.

Proposition 1.1 With CA(m) = [m], ni E M, one obtains a closure
operator CA with respect to M.

Proof. Let (p, f ) : (m : X - 1’) - (11 : Z - W) be a morphism
in the category M. We are going to define CA(p,f). For ( h : Z -&#x3E;

A) E X(Z,A), let (n, h’) be the pushout of (7t, h), let n’ . q be the

(£,M)-factorization of n and let (nh, h*) be the pullback of (n’, h’).
For g = h . p, let the morphisms 111, g’, 111’, e, mg and g* be as in (C).
Since

and (m, g’) is the pushout of (?7z, g), there is a unique morphism d
such that h’ . f = d . g’ and n = d . 111. From the last equality, we
get n’ . q = d . m’ . e and, by the diagonal property, there is a unique
morphism k such that k . e = q and n’ . k = d . m’ .
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Then we have

Since (nh, h*) is the pullback of (n’, Iz’), there exists a morphism rh such
that

Now, for each h E X(Z, A) let th be the unique morlliism that fulfils
mh.p . th = [m]. Then, since’[n] : [Z] -&#x3E; W is the intersection of P(n)
and the equalities

hold, there is a unique morphism u : [X] -&#x3E; [Z] such that f . [1n] = [n] . u.
Taking

it is easy to see that CA : M - M is a functor for which UC = U,
where U is the codomain functor from M to X.

Let (m : X - Y) E M. For each g E X(X, A), there is a unique
morphism dg : X - Xg such that my . dg = m and g* . dg = e . y. Then,
since [m] : [X] -&#x3E; Y is the intersection of P(m), from the first equality,
there is a unique morphism b(m) : X - [X] such that [m] . b(m) = m.
The family of morphisms

defines a natural transformation 6 : IdM -&#x3E; C such that Ub = IdU . M
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Definition 1.2 We shall call the closure operator CA : M - .M the
orthogonal closure operator of X with respect to M induced by A.

As in the above proof, throughout this paper d(m) always denotes
the unique morphism such that n1 = [m] d(m). We use 6A instead of
6 when it is necessary to specify what subcategory A is involved.

Next we state some properties of the orthogonal closure operator.

Proposition 1.3 For subcategories A and B of X, we have that:
1) The orthogonal closure operator induced by a subcategory A is

discrete in the subclass of morphisms with domain in A.
2) If A C B then CB  CA.
3) Under the assumption SplitMono(X) g M, for each pair of

morphisms a, b : Y -&#x3E; A, with A E A, if a . m = b . m, with (m : X -
Y) E Nl, then a - CA (m) = b. CA(n1).
Proof. 1) and 2) are immediate.

3) Let g = a - m = b . m and let (111, g’), n1’ . e and (my, g*) be
as in (C). We are going to show that a - 111g = b . nig. The equality
1A . g = a . m implies the existence of a unique morpliism t such that
t . m = lA and t . g’ = a; hence t . m’ . e = t . m = 1A and so, since e E 6,
e is an isomorphism. Analogously, there is a unique morphism t’ such
that t’ . m = lA and t’ . g’ = b. Then

Let tg be the morphism that fulfils the equality mg . tg = CA(m). Hence

Using 1.3.3), one may relate this closure operator to the regular
closure operator induced by the same category.

We recall that, for a subcategory A of X and RegMol1,o(X) g M,
we define a closure operator RA : M -&#x3E; M assigning, to each 111 E M,
the intersection of all n such that m  n and n is the equalizer of
a pair of morphisms with codomain in A. Such closure operators are
called regular closure operators. They were introduced by Salbany [13]
for x= Top and M the class of embeddings, and have been widely
investigated (see [3], [5] and references there).
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Proposition 1.4 If RegMono(X) g M, then for eacla subcategory A
of X we have that CA  RA.

Proof. It is a consequence of 1.3.3). 0

Given a closure operator C : M -&#x3E; M on X, a morphism is called
C-dense provided that the morphisln of M which is part of its (El M)-
factorization is C-dense. If RA : M - M is a regular closure operator
on X and X has equalizers, then the RA-dense morphisms of X are just
the A-cancellable morphisms, i. e., mor phisms f such that if a. f = b. f
with the codomain of a and b in A, then a = b (cf. [3] and [5]).
The same is not true, in general, for orthogonal closure operators: if

A = X, then the class of CA-dense morphisms coincides with the class
of E-morphisms and this one can obviously be different from that of
epimorphisms. One example with A #* X and such that A-cancellable
morphisms are not necessarily CA-dense is given in 4.5.2 below.

Now we are going to see that CA-dense morphisms play all impor-
tant role in characterizing AL-morphisms, for suitable subcategories
A.

Proposition 1.5 Under the assumption SplitMono(X) 9 M, every
CA-dense morphisms in M is A-cancellable.

Proof. Let a. m = b. m, where a and b ar e morphisms with codomain
in A and m : X - Y is a dense mor phism in M. Then [m] = 1Y and,
from 1.3.3), it follows that a = b. 0

Corollary 1.6 Assuming that E is a class of epimorphisms, every CA-
dense morphism is A-cancellable.

2 Dense morphisms and A..L-morphisms
From now on we assume further that X is an (E, M)-category, with lM
a conglomerate of monosources. It follows that M = M n Mor(X) and
that 6 is a class of epimorphisms. (cf. [1], [16]).

Let A be a subcategory of X. By M(A) we denote the full sub-
category of X consisting of all X E X such that the source X(X, A)
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belongs to M which, as it is well known, is the £-reflective hull of A in
X (cf. [1]).

We remark that an X-morphism f is orthogonal to A if and only
if the image of f by the reflector in lM(A) is orthogonal to A, and
that the orthogonal hull of A in X coincides with the orthogonal hull
of A in M(A) ([15]). So, in order to look for a characterization of
the orthogonal hull as well as for conditions under which O(A) is the
reflective hull, we can assume without loss of generality that M(A) =
X. This is often assumed for the rest of the paper.

In the sequel, we will often make use of the following

Lemma 2.1 If A is a subcategory of X such that M(A) = X, then a
morphisms of X is A-cancellable if and only if it is an epimorphism.

Proof. If f : X -&#x3E; Y is an A-cancellable morphisms and a, b : I’ -&#x3E; Z

are a pair of morphisms such that a. f = b. f, then, for each g E X (Z, A),
g . a . f = g . b . f and so g . a = 9 . b. As X(Z,A) is a monosource, it
follows that a = b. 0

We denote by PS(M) the subclass of M consisting of morphisms for
which the pushout along any morphism belongs to M. It is clear that
the class PS(M) is pushout stable and that, since M is closed under
composition and left cancellable, the same holds for PS(.M). The class
PS(M) plays a crucial role in almost all the results presented in the
rest of the paper. This is due to the fact that the class AL is pushout
stable and that, under the assumption that M(A) = X, AL C .M.

For a subcategory A of X, let Inj(A) be the class of all morphisms
f : X -&#x3E; Y such that, for every A E A, the mal X(f, A) : X(lr, A) -&#x3E;
X(X, A) is surjective.

Lemma 2.2 If lM(A) = X, we have that:
1) Inj(A) consists of all m E M such that every pushout of m along

a morphism with codornain in A is a split monoTnorplaism.
2) AL consists of all m E PS(M) such that every pushout of rra

along a morphisms with codornain in A is an isomorphism.

Proof. 1) It is clear that an X-morlllism f belongs to I?tj(A) if
and only if the pushout of f along a morphism with codomain in A
is a split monomorphism. It remains to show that 17ii(A) g M. Let



332

(f : X - Y) E Inj(A) and m. e be the (E,M)-factorization of f. Let
(fi)I be the source of all morphisms from X to A. For each i E I, there
is some f; such that II. f = fi. Then we have (II. m). e = Ii 1X, i E I.
Since (fi)I E M and e E 6, there is a morphism d such that d’e = 1X.
Hence, since e E E, it is an isomorphism and so f E M.

2) If f E Al, then f is A-cancellable and so, by 2.1, it is an epimor-
phism. Hence, using the fact that epimorphisms are pushout stable, it is
easily seen that a morphism f belongs to AL if and only if the pushout
of m along a morphism with codomain in A is an isomorphism. On the
other hand, from 1), Al C M and, since Al is stable under pushouts,
it follows that A1 C PS(M). 0

Theorem 2.3 For a subcategory A of X such tliat M(A) = X, AL
consists of all CA-dense morphisms in PS(M).

Proof. Let m E AL. Then, by 2.2.2), 111 E PS(M) and every 111g E
P(m) is an isomorphism, which implies [in] 83f 1Y, i. e., m is dense.

Conversely, let m : X - Y be in PS(M) such that [111] ly. Hence
every mg E P(m) must be an isomorphism. Now, let us recall that every
pullback of a pushout is a pushout, i. e., if (1n’,g’) is the pushout of
(m, g) and (m*, g*) is the pullback of (111’, g’) then (m’, g’) is the pushout
of (m*, g*). Then, for each g E X(X, A), the pushout of (1n,g) is the
pushout of mg along a certain morphism, thus it is an isomorphism..
Therefore, by 2.2.2), rrz E Al. 0

Corollary 2.4 Let D be the class of all morphisms n siccla that n =

bA(m) for sorrze 111 E PS(M). Then D C Inj(A) and, whenever

M(A) = X, a D-morphism is CA-dense if and only if it is an epi-
morphism.

Proof. If (d(m) : X -&#x3E; [X]) E D and g : X - A is a morphism.
with codomain in A, let (77ig,g*) be the pullback of the pushout of
(m,g) and let dg be the morphism such that  mg . dg = [m]; then we
have g = (g*. dg). d(m). Thus d(m) E Inj(A). Now, since M(A) = X,
AL=Inj(A)nEpi(X) (using 2.1) and AL C D(by 2.3); so we have that
A’ =D n Epi(X), from what follows that every epimorphism belonging
to D is dense. 0
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3 Strongly closed objects and the ortho-
gonal hull

For a closure operator C : M -&#x3E; M of X, an object X E X is said
to be C-absolutely closed if every morpliism in M with domain X is
C-closed. For the case in which C is a regular closure operator, the
C-absolutely closed objects were studied in [4] and in [14].

In order to characterize the orthogonal hull of a subcategory of X
by means of the orthogonal closure operator, we consider the following

Definition 3.1 An object X E X is said to be A-strongly closed pro-
vided that each morphism in PS(M) with domain X is CA-closed.

We denote by SCl(A) the subcategory of all A-strongly closed ob-
jects.

We shall prove that, under convenient assumptions, the subcategory
SCl(A) of A-strongly closed objects and tlle orthogonal liull O(A) co-
incide.

It is obvious that every object in A is CA-absolutely closed and that
SCI(A) contains all CA-absolutely closed objects. Next we show that,
when X is the 9-reflective hull of A, we also have that SCl(A) 9 O(A).

Proposition 3.2 For A such that M(A) = X, we laave that SCI(A) C
O(A). 

Proof. Assume that M(A) = X and let X be an A-strongly closed
object of X; in order to show that X E O(A), consider (111 : I’ -&#x3E; Z) E
AL and f : Y -&#x3E; X; let (n : X -&#x3E; W, f’ : Z -&#x3E; W) be the pushout of
(m, f). Then (n : X - W) E AL and so, by 2.3, it is CA-dense, i.e.,
[n] = lyy. Since X is strongly closed, [n] = 11. Hence we have n = 1w
and (n-1 - f’) . m = f . Therefore X is m-injective and, since, by 2.1,
m E Epi(X), X E O(A). 11

Remark 3.3 The inclusion of A in the subcategory of all CA-absolutely
closed objects and the inclusion of this one in SCl(A) may be strict (see
4.5 below). But we do not know any example with O(A) # SCI(A).
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We recall that the class PS(M) is said to be CA-stable provided
that CA(m) E PS(M) for every m E PS(M). In what follows we show
that the assumption that PS(M) is CA-stable implies some relevant
properties of O(A).
Theorem 3.4 For A such that M(A) = X, the orthogonal closure
operator CA is weakly hereditary in PS(Nf ) if and only if PS(M) is
CA-stable. In this case, CA : PS(M) -&#x3E; PS(M) is an idempotent
weakly hereditary closure operator and O(A) = SCl(A).
Proof. If CA is weakly hereditary in PS(.M), consider morphisms
(m : X - Y) E PS(M) and f : [X] - Z, and let (77tO, f 0) be the
pushout of ([m], f ). The morphism d(m) : X -&#x3E; [X] is an epimorphism,
from 2.4 and the fact that it is dense. Hence, since (m#, f#) is the

pushout of ([m], f ), it is easy to see that (m#, f#) is also the pushout of
(m, f. 6(m)). Then m# E M.

Conversely, let (m : X - Y) E PS(M) be sucli that CA(m) E
PS(M). We want to show that [d(m)] = 1[X]. For each 9 E X(X, A),
let (n,g) be the pushout of (8(1n),g). Since PS(M) is left-cancellable,
b(m) E PS(M) and, then,’ n E M. Let (mg,g#) be the pullback
of (n 9 (r, g’) be the pushout of ([m],g), (s, h) be the pullback of
(r, g’) and (d, g*) be the pulback of (n, h) as illustrated in the following
diagram.

Then (s. d, g*) is the pullback of the pushout of (rra, g). So s’ d E P(m)
and then, there exists some morphism tg : [X] -&#x3E; Xg such that s.d.tg =
[m]. Thus, we have 
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It follows that 9 .1[X] = n . g*. tg, because r E M. Then, since (mg,g#)
is the pullback of (n ,9 there is a morpliism w : [X] -&#x3E; Xg such that

mg *W 1 IXI - Thus, for each g E X(X, A), we have that mg = 1[X], so
[d(m)] = 1[X].

Now, let CA : PS(M) - PS(M) be a weakly hereditary closure
operator. By 2.3 and taking into account that AL is closed under com-
position, we have that the CA-dense PS(M)-morphisms are closed un-
der composition. With the fact that CA : PS(M) -&#x3E; PS(M) is weakly
hereditary, this implies that CA : PS(M) - PS(M) is idempotent
(see [5]).

In order to show that O(A) 9 SC1(A), let X E O(A). If (m : X -&#x3E;
Y) E PS(M), b(m) is a dense PS(M)-morphism and, then, by 2.3, it
belongs to AL. The fact that X E O(A) and (6(m) : X -&#x3E; [X]) E AL
implies that b(m) is an isomorphism and, then, [m] = m. Thus X is
A-strongly closed. Therefore, from 3.2, we have that O(A) = SC1(A).
0

Corollary 3.5 If M = PS(M) and M(A) = X, then CA : M -&#x3E;
M is an idempotent weakly hereditary closure operator and O(A) =
SC1(A).

We note that, for instance, in Topo and in the category of sepa-
rated quasi-metric spaces described in the Introduction, we have M =

PS(M) for M the class of all embeddings. However, this relation
does not hold for any epireflective subcategory of T contained in Topl
and having a space with more than one point’: To prove this as-

sertion, we first recall that, under these conditions, the subcategory
X contains necessarily the 0-dimensional Hausdorff spaces. Now, let
X = [0,1] n Q (with the euclidean topology), and consider the em-
bedding m : XB{1/2} -&#x3E; X. Let D = {0,1} be discrete, and let

f : XB{1/2} -&#x3E; D be defined by f(x) = 0 for all a;  1/2 and f(x) = 1
for all x &#x3E; l. Then the pushout of m along f in X is D -&#x3E; {*}, so
m E PS(M).

Remark 3.6 Let X have equalizers, RegMono(X) C M, M = PS(M)
and M(A) = X. If the regular closure operator RA is weakly hereditary

2M. M. Clementino, private communication
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and all X-epimorphisms are CA-dense, then RA = CA. Indeed, under
these conditions, the RA-dense morphisms are just the X-epimorphisms
and, since, by 3.5, CA is an idempotent weakly hereditary closure oper-
ator, X has an orthogonal (CA-dense, CA-closed)-factorization system
with respect to M (cf. [5]). Let m E Jvt; then CA(m) . 6A(M) is
a (CA-dense, CA-closed)-factorization of m. By 1.4, there is a mor-
phism d such that m = RA(m) . d - dA(m). Since RA is weakly hered-
itary, the morphism d - dA(m) is an epimorphism, so it is CA-dense.
Thus, from the diagonal property, there is a morlhism t such that
t. d. 6A(M) = dA(m), from what follows that d is an isomorphism and,
consequently, RA(m) = CA(m).

This is what holds in example 4.5.1 below. On the other hand,
in example 4.5.2 we have that RA = CA as a consequence of the fact
that the class of X-epimorphisms is different from the class of CA-dense
morphisms.

In the following proposition we state some relations between the
orthogonal closure operator and the orthogonal hull relative to different
subcategories of X.

Proposition 3.7 Let A and B be subcategories of X witla M(A) = X.
Then:

1) If CA  Cu when restricted to PS(M) then O(B) 9 O(A).
2) If PS(M) is CA-stable and B C O(A) then CA  Cu when

restricted to PS(,M).

Proof. 1) If CA  Cu in PS(M), then every CA-dense PS(M)-
morphism is CB-dense. Thus, using 2.3, 2.4 and 1.5, we have that

and so O(B) C O(A).
2) Let (m : X - Y) E PS(M); CØ(111) is the intersection of all

mh : Xh -&#x3E; Y such that, for some h*, (mh, h*) is the pullback of the
pushout of (m, h), with h E X(X, B). We are going to show that, for
each such mh, CA(m)  mh, from what follows that CA(m)  Cu(m).
Let (h : X - B) E X(X, B), let (m’, g’) be the pushout of (m, g) and let
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(mh, h*) be the pullback of (m’, g’). Since PS(M) is CA-stable and left-
cancellable, 6A(m) E PS(M) and, by 3.4, and 2.3, bA(m) E Ai. Then,
since B E O(A), there is a morphism hO such that bA(m) = h. Thus,
we have that h’. CA(m). dA(m) = m’. h#. dA(m) and, from the fact that
dA(m) is an epimorphism (by 2.1), it follows that h’ . CA(ni) = m’ . h#.
Hence, as (mh, h*) is the pullback of (m’, g’), there exists a morphism
t such that Mh - t = CA(m), that is, CA(m)  Mh- 0

Corollary 3.8 If M = PS(M) and A and B are subcategories of X
such that M(A) = M(B) = X, then CA = Cu if and only if O(A) =
O(B). 

4 The orthogonal closure operator ver-
sus reflectivity

Let M(A) = X. It is clear that if O(A) is reflective in X then, for each
X E X, the reflection of X in O(A) is a morphis111 of PS(M) with
codomain in O(A). The next theorem, which is the main result of this
section, states that, when PS(.M) is CA-stable, the existence, for each
X E X, of a morphism (ni : X -&#x3E;* I’) E PS(M) with I’ E O(A) is also
a sufficient condition for O(A) to be the reflective hull of A.

Theorem 4.1 If A is a subcategory of X such that IN4(A) = X, PS(M)
is CA-stable and for every X E X there is a morphism in PS(M) with
domain X and codomain in O(A), then O(A) is the reflective hull of
A in X.

Proof. Firstly, we are going to prove that if I’ is an A-strongly closed
object and (m : X -&#x3E; Y) E PS(M) then [X] (i. e., the domain of

[m]) is an A-strongly closed object. Consider such and n1, and let
n : [X] --j Z be a morphism in PS(M). We want to show that [n] = n.
Let the diagram
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represent the pushout of (n, [m]). Then n’ E PS(M) and [n’] = n’.
The X2 -morphism ([m], u) : n -&#x3E; n’ is a morphism in the category
PS(M). Let CA(([m], u)) = (t, u) : [n] - [n’]. Since [n’] = n’, we have
that, for a suitable t’, the following diagram is commutative

Hence

n’ . [777] ’ b(m) = u . n - b(m) = u - [n] . 6(n) . d(m) = n’ . t’ . 6(7t) - d(m).

Since n’ is a monomorphism, then [1n] 6(in) = t’ . d(n) . d(m). The
morphisms 8(n) and 8(m) are CA-dense PS(M)-morphisms, hence its
composition is a CA-dense PS(M)-morphism. Since, by 3.4, CA :
PS(M) - PS(M) is an idempotent weakly hereditary closure oper-
ator, X has an orthogonal (CA-dense, CA-closed)-factorization system
with respect to PS(M) (cf. [5]). Thus there exists a morpliism s such
that s . (6(n) - b(m)) = b(m); hence s - b(n) = 1[xl, from what follows
that b(n) is an isomorphism and, consequently, [n] = n.

Now, let X E X and (m : X - Y) E PS(M) with Y E O(A).
Then, from 2.3 and 3.4, it follows that d(m) : X - [X] is a reflection

from X to O(A). D

It is clear that a subcategory A of X is .M-reflective in X if and
only if A is reflective in X and IM(A) = X. It is easy to see that, if
A is M-reflective in X, the corresponding orthogonal closure operator
CA with respect to PS(M) is defined as follows:

For each (m : X -&#x3E; Y) E PS(.M), let rx : X -&#x3E; RX be the
reflection of X. Form the pushout (771 r’) of (1n, r¿y). Then CA(7n) is
just the pullback of m’ along r’.

Proposition 4.2 If A is A4 -reflective in X and PS(.M) is CA -stable,
then the corresponding reflector preserves morphisms of PS(.M).

Proof. Let (m : X - A) E PS(M) with A E A; let m# be the unique
morphism such that m# rX = 111, where rX: X - RX is the reflection
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of X in A. Since A is reflective, the equality A = O(A) holds and
then, following proof of 4.1, we have that rX = b(m) and, thus,([m] :
[X] -&#x3E; A) = (mU : RX -&#x3E; A). Now, let (m : X -&#x3E; Y) E PS(M) and let
rY : Y -&#x3E; RY be the reflection of Y in A. Since rY E Al, ry E PS(M)
and so ry - m E PS(M). Then, we have that Rm = Iry - ml and, as
PS(M) is CA-stable, Rm E PS(M).

M

Corollary 4.3 If ,M = PS(M) and A is M -reflective in X, then the
corresponding reflector preserves morphisms of M.

Remark 4.4 Let M satisfy the following condition:

If m, n, d E M and m = 11 . d with 111 E Epi(X) then
d E Epi(X).

Then, for every M-reflective subcategory of X, PS(M) is CA-stable.
Indeed, let (m : X -&#x3E; I’) E PS(M) and consider the pullback of the
pushout of (m, rx) as illustrated by the diagram

Since rx E PS(M), r’ E M and so r* E M. Hence, using the above
property of M and the fact that rx E Epi(X) (by 2.1), it follows that
b(m) E Epi(X) and, thus, by 3.4 and 2.4, H E PS(M).

Examples 4.5
1. Let X=Topo, i. e., X is the category of all To spaces and continu-

ous maps, and let M be the conglomerate of all initial monosources.
Then M is the class of all embeddings and it coincides with

PS(M). We can consider every (m : X -&#x3E; I") E M as an
inclusion of a subspace X in Y and identify m witli X. Thus, if
C : M -&#x3E; M is a closure operator, we identify C(m) with the
corresponding subspace of I’ which we denote by C(X).
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Let S be the full subcategory having the Sierpinski spaces as its
only objects; it is well known that M(S) = X. It was shown in

[13] that the corresponding regular closure operator Rs : M -&#x3E;
M is the b-closure, i. e., given Y E T op0, for every subspace
X of Y, RS(X) = {y E Y |{y} n H n X # 0 for every op en
neighborhood H of y in Y}. As we proved in 1.4, CS(X) g RS(X)
for every subspace X of Y. We are going to show that RS(X) C
Cs(X), so that Cs(X) = Rs(X).
Let y E RS(X). Let S be the Sierpinski space f 0, 11 with I I I the
only non-trivial open set. Then X(X, S) = IXG : X -&#x3E; S G is
an open set in X}, where

For a given open set H of I", let 9 = XIInX. If W is the pushout
object of the inclusion of X into Y along g, then it is easily
checked that: if y E H, y is identifyed with 1 in W; if y g H, y
is identifyed with 0 in W. Thus y E Xg and, since this holds for
every g E X(X,S), y E CS(X).
By 3.5 we have that SCI(S) = O(S), a.nd that SCl(S) is the
reflective hull of S in X which, as it is well-known, is the subcat-
egory of all sober spaces, i. e., spaces in which every non-empty
irreducible closed set is the closure of a unique point.
The example mentioned in the Introduction provides a situation
similar to the last one, that is, for X the category of separated
quasi-metric spaces, M the conglomerate of initial monosources of
X and A the subcategory of complete metric spaces, it holds that
M = PS(M), M(A) = X, CA = RA and SC1(A) is the r efiective
hull of A in X. In this case, we have that, for a subspace X of
Y, CA(X) coincides with the usual closure in Top of X in Y.

2. Let X and lM be as in 4.5.1 and let N be the full subcategory of
T op0 having as objects those spaces which are isomorphic to N,
where N is the set N = {1,2,...} with the upper topology with
respect to the natural order.

Since M(N) = X, we have that RN = RX (cf. [5]), i. e., Rv is
the b-closure. But the inequality CN  RN is strict; in fact, let Y
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be the set NU{oo} endowded with the topology whose non-empty
open sets are all n l U {oo}, n E IN . Thus N is a subspace of Y;
it is clear that RN(N) - Y and, on the other hand, CN(N) = N,
since N E N (see 1.3.1)).
As in 4.5.1, the subcategory SC1(N) is the r eflective hull of N in
Topo.
Remark. Obviously, in this and the above examples, the notions
of A-strongly closed and CA-absolutely closed object coincide.
We observe that, in some sense, this concept of closedness for
objects has a better behaviour when we deal with orthogonal
closure operators than when we deal with regular ones. Indeed, as
we have seen, under mild conditions, A C SCl(A) 9 O(A) and,
adding the CA-stability of PS(M), O(A) = SC1(A); whereas,
with respect to the regular closure operator, we have that, for
instance, N is not RN-absolutely closed although it belongs to N
(cf. [14]).

3. The following categories X and A were given in [11] (see also [12]).
Let A have as objects all pairs (X,x) where X is a non-empty
set and x = (xi)iEOrd is a collection of elements of X, indexed
by the class of all ordinals, such that, if xz - Xk for some pair
(i, k) with i  k, then, for all j &#x3E; i, Xj = xi; the morphisms
f : (X, x) -&#x3E; (Y, y) are the maps f : X - Y for which f(xi) = y;,
i E Ord. Let X be obtained from the coproduct of A with Set
by adding the morphisms f : X - (V, y) where (Y, y) E A and
f : X -&#x3E; Y is a map. The category is concrete over Set.

Let M be the conglomerate of all initial monosources of X; clearly,
IM(A) = X. In this case we have that M # PS(M); in fact, let
X be a set, let Y = X U {a} and let y = (yi)iEOrd with yz = a
for every i. Then m : X - (Y, y), where m is the inclusion of
X in Y, is a morphism of MBPS(M). It is easy to see that
the closure operators CA and RA coincide in M, that the class
PS(M) is CA-stable and the CA-dense PS(M)-morphisms are
just the isomorphisms, hence SC1(A) = X.
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