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TOPOLOGICAL QUASITOPOS HULLS OF
CATEGORIES CONTAINING

TOPOLOGICAL AND METRIC OBJECTS

by E. and R. LOWEN

CAHIERS DE TOPOLOGIE VOL. XXX-3 (1989)

ET GÉOMÉTRIE DIFFÉRENTIELLE

CA TEGORIQUES

RESUME. La categorie des espaces topologiques et celle
des espaces métriques generalises se plongent "bien" dans
la categoric AP des espaces d’approximation (approach
spaces). Dans cet article, on construit un quasitopos to-

pologique enveloppe de AP. La construction se fait en

deux etapes : on construit d’abord une enveloppe topologi-
que extensionnelle, PRAP, de AP ; puis une enveloppe
cartesienne fermée topologique de PRAP. Les objets de ces
categories sont caractérisées en utilisant la notion de
fonctions limites.

1. INTRODUCTION.

We would like to motivate the contents of this paper on

two fundamentally different levels.
First there is the general motivation for the theory of ap-

proach spaces as developed in this paper and its forerunners
112,13,141. namely to introduce a unification of the theories of

convergence and topological spaces on the one hand and of
metric spaces on the other hand. AP, as introduced in E13L is a

topological categor3- with TOP and pq-METn° (extended pseudo-
quasi metric spaces and non-expansive maps) embedded as full

subcategories, and CAP is a topological quasitopos with Conv.

pqs-ME7’ (extended pseudo-quasi-semimetric spaces and non-

expansive maps) and AP embedded as full subcategories. These

"unification-categories" turn out to be advantageous in several

respects.
(1) They permit new viewpoints concerning the metrizabilitn

of topological spaces and give more faithful relations between
metrics and their associated topologies. Thus e. g. the natural
functor pq-ME7-TOP does not preserve products. Embedding
pq-MET00 and TOP in AP this functor extends to the TOP-core-
flector which does preserve products. However the product of
pq-MET00 objects in general is not a pq-MET00 object.
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(2) They permit unification of topological and metric con-

cepts. Thus e.g. connectedness and Cantor’s Kettenzussamenhang
(or uniform connectedness) are special cases of a categorical
concept of connectedness in AP in the sense of Preuss 1191, and
compactness and total boundedness both are special instances of
a generalization in AP of Kuratowski’s measure of non-compact-
ness in complete metric spaces [11].

(3) There are examples of topological and convergence spaces
prominently used in Probability Theory and Statistics, such as

spaces of measures with the weak topology and spaces of ran-
dom variables with the topology of convergence in measure or

the convergence structure of convergence a.e., which can more

naturally be equipped with structures in AP and CAP such that
the classical structures are obtained as certain coreflections.

Second there is the specific motivation for the present
paper. It has been recognized by an increasing number of ma-
thematicians that a category is no longer nice merely because it

is topological. For several reasons (see e.g. [6,16]) it is desira-
ble to have more convenience properties. In particular, wi-th res-

pect to function spaces or final sinks it is extremely nice to

work in a quasitopos in the sense of Penon 1181, i. e. an exten-

sional cartesian closed topological category. (See also 161; note

that in [6] "extensional" is called "hereditary".&#x3E; AP is topological
but not extensional, nor cartesian closed. The bigger category
CAP on the other hand is a topological quasitopos C4J. In this

paper we show that AP can be embedded in an even smaller to-

pological quasitopos. Taking into account that the smaller the
extension of a category A is. the more structure of A it will

preserve, it is interesting to find the topological quasitopos hull

TQ(A) of A (its Wyler completion) which is characterized as its

smallest finally dense topological quasitopos extension 161.

Important topological quasitopos hulls which have been found in

the last decade are e.g. TQ TO = the category of pseudotopolo-
gical spaces (0. Wyler 1201). TQ( UNIF) = the category of subme-
trizable bornological merotopic spaces (J. Adamek and J. Reiter-
man [1]). It is the purpose of this paper to describe TQ(AP).
the topological quasitopos hull of the category of approach
spaces.

2. PRELIMINARIES.

In this paper all subcategories are supposed to be full
and isomorphism closed. We denote P := [0,00]. Subtraction in P
is defined as the usual operation on PB{00}, if a E PB{00} then
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Negative values are truncated at 0, i. e., if a and b are variables
in P and possibly a  b then we always use and write (a - b) VO.

An approach space is a pair (X, d ) where X E |SET| and

where d: Xx2x-&#x3E; P is a map which has the properties:

The map 8 is called a distance. For A C X we put dA:=d(.,A).

Given approach spaces (X,8) et (X’,8’) a map f: X-X’ is
called a contraction if it fulfills the property that

The category AP of .approach spaces and contractions is a

topological category in the sense of Herrlich [51 and it was stu-
died extensively in E13L

In [12] the authors showed that AP could also be descri-
bed by means of a concept of limits. First some notations. Gi-
ven a set X, F(X) stands for the set of all filters on X; if
F E F (X) , then U(F) stands for the set of all ultrafilters finer
than F;

if F={X} then we write U(X) instead of U({X}). If A c 2x then

if A consists of a single set A we write stackX A and if more-
over A consists of a single point a, we write stackxa for short;
moreover if no confusion can occur we drop the subscript X.

If (Sj) jeJ is a family of sets then elements of their pro-
duct are often denoted functionally, i.e., s E IIjEEJSj means S(j) E Sj
for all j E J. If (Fj)jE J is a family of filters on X and A is a

filter on J then

is the Kowalsky diagonal filter [10] (with respect to (Fj)jEJ and
A). If the family of filters is a so-called selection, i.e., a family
(S(x))x E x of filters indexed by X, we write shortly D(S,A) for

D((S(x))x E X,A).
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A map y: F(X)-&#x3E;Px- is called an approach limit if it fulfills
the properties:

(CAL1) V X E X:y(stack.X)(x)=0.

(PRAL) For any family (Fj)jE J of filters on X:

(AL) For anB FE F(X) and an) selection S on X:

Notice that by (PRAL) an approach limit is completely determi-
ned by its restriction to ultrafilters.

2.1. THEOREM [12]. (1) If X E I SETI and 8 is a distance on X

then X8 defined by

is an approach limit on X : and vice versa iF y is an approach li-
mit on X then dy defined by

is a distance on X.

(2) ydy = y and dyd=d 
(3) If (X,8). (X’.8’)e E JAP | and if f: X- X’ then the following are

equivalent:
(i) f is a contraction.

Unless confusion can occur we write X for Xs and 8 for 8,.

The following alternative formulation of (D4) will someti-
mes be useful.

2.2. PROPOSITION. If X E |SET| and d:Xx2X-&#x3E;P fulfills (D1) - (D3)
then (D4) is equivalent to the properti-

PROOF. That (D4)’ implies (D4) follows from letting B:= A(E),
and that (D4) implies (D4)’ follows from letting
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Our main goal being the construction of quasitopos hulls,
we require a basic supercategory which is a quasitopos. Such a

category was introduced in [12]. For X E ISETI a map y : F(X) -&#x3E;PX
is called a convergence-approach limit (or shortly limit) if it
fulfills the properties (CALt), (CAL2) and

(CAL3) V F, GE F(X) : X(FnG = y(F)Vy(G).

The pair (X,X) is called a con vergence-approach space. Gi ven
two convergence-approach spaces (X,X) and (X’,X"), a function
f: X-4X’ is called a contraction if it fulfills the property

The category CAP of convergence-approach spaces and
contractions is a topological category. We describe its initial and
final structures, leaving verifications to the reader.

2.3. PROPOSITION, Let (Xj)j E J be a class of CAP objects. If

(fj:X -&#x3E;(Xj.Xj))jE J is a source then the ini tial limi t on X is

given bJ- 
.

and if (fj: (Xj.yj) -&#x3E;X)jE J is a sink then the final limit on X is

given by

It was shown in [12] that CAP is moreover a quasitopos
(or a topological universe in the sense of Nel [171). Since we
shall need its Hom-objects and what we shall call #-objects (see
Herrlich [7]), we now recall these.

Given (X,yX(Y,yY)E|CAP| the limit on Hom(X.Y) is de-
termined by

where wE F(Hom(X.Y)), fE Hom(X.Y).

By #-objects we mean the following: If (X.y)E |CAP| then

X*:= XU{N} where N E X and ÀU:F(XU)-4PXu is given by
X*(stackX*N) = 0 and if F # stack,u.B then
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where Fix stands for the trace of F on X.

3. FINAL DENSITY IN CAP AND INITIAL DENSITY IN AP.

It was shown in [12] that by means of the equivalence
between distances and approach limits given in 2.1, AP is em-

bedded as a bireflective subcategory of CAP. We now show that
moreover AP is finally dense in CAP. Hereto we need to intro-
duce a special class of AP objects. For any set X, any FE F(X)
and any f E Px we define À(F,fl: F(X) -&#x3E;Px by

3.1. PROPOSITION. (X,y(F,f))E|AP|. 
PROOF. (CAL1) and (CAL2) follow at once from the definition.
To verify (PRAL) let (Fj)jEJC F(X); then one inequality follows at
once from (CAL2). To prove the other one let XE X, then the

only case where X(F.f)( n F.)(v) is not necessarily equal to 0

occurs when .n F.t stacks. Under this assumption we consider
jEJ

the following two cases. Either Fn stacks c n Fj and thenjcj 

or F n stack x c n Fj and then there exists a jE J such that we
jci 

have F nstack x. c Fj. So in this case we clearly have

In order to verify (AL) let (S(y))yE X be a selection of fil-

ters on X. First we suppose UE U(X). Given veX the only case
in which

is not necessarily equal to co is when

Under these two assumptions we consider the following two ca-
ses. Either U= stack x and then D(S, U) = S( .x) from which (AL)
follows at once: or LI * stack x and then we have F C U and
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So in this case we have

Consequently (AL) is proved in the ultrafilter case.
Second let HE F(EX). Since

it follows from the ultrafilter case and upon applying (PRAL)
that

which proves (AL) in general, and we are done. ·

It is easily seen and worthwile to notice that in general
the spaces (X.y(F.f)) are "genuine" approach spaces in the sen-
se that they are neither topological nor metric.

3.2. THEOREM. AP is finall s dense in CAP.

PROOF. Let ( X .y) E |CAP| . For each F E F(X) , by 3.1 we can consi-
der the approach space (X.y(F.yF)) and the sink

It is easily verified from 2.3 that the final limit [t on X is de-
termined by

from which it follows at once that 03BC=y

We now introduce another special AP object which toge-
ther with its #-object we shall need repeatedly in the sequel.
The underlying set is P and for X E P and A C P we define

3.3. PROPOSITION. (P.dP)E |A P|. 
PROOF. (D1). (D2) and (D3) are quite trivial. As for (D4) we use
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2.2. If N E P and A. B C P then the only case where

occurs when v  00 and co ø B. Then the inequality we have to ve-

rify reduces to

which is clearly correct. ·

We shall need the approach limit associated with 8P. In

order to describe this explicitly- we recall the definition of the

right order topology T r on P. i. e..

The closure operator in this topology is denoted -r.

For FE F(P) and peP. F r-&#x3E; (3 means that F converges to B
in this topology. Notice that the set limrF of all limit points of
F is a closed interval [0.v] for some BEP. To be precise we
shall put

The following expression for f(F) will be useful.

3.4. LEMMA.

PROOF. If for some UEsec(F) we have supU f(F) then

£(F) ø. ar contradicting that F r-&#x3E;L (F) ,
On the other hand, first if £(F) = co then F r-&#x3E; co and thus for

any UE sec(F) we have sup U =00: second if L(F)  00 then for

anB y&#x3E; L(F). we have Fr-&#x3E;a y and thus there exists UEsec(.F)
such that s up U y·

3.5. PROPOSITION. The approach limit XP associated with dP is

gi ven b c

PROOF. Iminediate from the definition of 8P. 2.1 and 3.4.

3.6. PROPOSITION. If (X.8) E IAPI and A C X. then the map 6A:
(X.d)-&#x3E;(P.dP) is a contraction.

PROOF. Using the alternative formulation of (D4) which is given
in 2.2 this fol low s from an easy verification of cases. ·
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3.7. THEOREM. (P,8P) is initially dense in AP.

PROOF. Let (X, d) E IAPI, let X be its limit and consider the

source (8A: X-&#x3E;(P.yP))ACX. From 3.6 it already follows that if (l

stands for the initial limit on X then 03BCy .

Conversely let LI E U(X) and X- E X. For each LI E U we have

as it is easily seen verifying cases. Consequently from 2.3 we

obtain

By the arbitrariness of LI and X and the fact that both V and X
are approach limits we are done.

4 . THE EXTENSIONAL TOPOLOGICAL HULL OF AP.

Given a set X, a map X:F(X)- PX is called a pre-ap-
proach limit if it fulfills (CAL1), (CAL2) and (PRAL). The pair
(X.y) is then called a pre-approach space. Each pre-approach
space is a convergence-approach space, and we denote PRAP the
full subcategory of CAP with objects all pre-approach spaces.

A map d: X x 2x-&#x3E; Px which fulfills (D1), (D2) and (D3) is
called a pre-distance. In [12] it was shown that the same equi-
valence which holds between distances and approach limits in AP
is valid between pre-distances and pre-approach limits in PRAP.
Thus the formulas (2.1) and (2.2) turn a pre-distance into a

pre-approach limit and vice versa. giving equivalent characteriza-
tions of PRAP objects. We shall use whichever description is

more convenient. In [121 it was also shown that PRAP is an

extensional bireflective subcategorn of CAP containing AP. Note
that in [121 "extensional" is called "hereditary".

As a first step towards the construction of the topologi-
cal quasitopos hull of AP we now show that PRAP is actually)
the extensional topological hull of AP. It is well known that
PRTOP is the extensional topological hull of TOP. One wa) of

seeing this was given in Herrlich 171 where it was shown that
the #-object in PRTOP of the Sierpinski space in TOP is an

initiall) dense object in PRTOP. An analogous situation presents
itself here.
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Let Pø:=PU{p} and (XP)" be as defined in the foregoing
section. (P*. (yP)*) being a PRAP object (see 1121) it will be use-

ful also to describe its pre-distance (dP)*: P*)x2P*-&#x3E; P which is

fully determined as the unique distance extending 8P and which
fulfills

We leave it to the reader to verify that (yP)* and (dP)* are in-
deed equivalent in the sense of 2.1.

Again, when no confusion can occur, we often denote

(P*.(dP)*) simply by P". In analogy to 3.7 we then have the

following result.

4.1. THEOREM. (P*, (dP)*) is initially dense in PRAP.

PROOF. Let (X.dX,). (Y. Sy) E |PRAP| and let f: (X, 8x)-(Y,8y) not
be a contraction. Thus there exist v E X, A C X such that

dx(.;,A) (dY(f(X),f(A)). We define g: (Y,dY)-&#x3E;(P*,(dP)*) as fol-
lows :

To see that g is a contraction notice that for f° E Y and O # B C Y,
(dP)*(g(y),g(B)) is non zero only if

In that case however we have

Finally that g of is not a contraction follows from

and this completes the proof.

4.2. THEOREM. PRAP is the extensional topological hull of AP.

, PROOF. Since PRAP is extensional 1121, since by 3.2 AP is finally
dense in PRAP and since by 4.1 the class

is initially dense in PRAP, this follows immediately from Theorem
4 in Herrlich [7].
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5. THE CARTESIAN CLOSED TOPOLOGICAL HULL OF PRAP.

We use the notation and general construction from Bour-
daud 12,31.

Let C(P") be the full subcategory of CAP with objects
those spaces X which carry the initial structure of the source

5.1. PROPOSITION. C(P") is the cartesian closed hull of PRAP.

PROOF. By Bourdaud 131, C(P*) is cartesian closed topological
with Hom-objects formed as in CAP, C(P**) is bireflective in
CAP and P- E |C(P*)| and by 1121 PRAP is bireflective in CAP. So
it follows from 4.1 that PRAP is a subcategory of C(P*) closed
under the formation of finite products in C(P*). That PRAP is

finally dense in C(P*) follows at once from 3.2. Moreover since
the functor Hom (-,P*): CAP -CAP transforms final epi-sinks
into initial sources, 3.2 also implies that powers of PRAP ob-

jects are initially dense in C(P*).
Consequently, following Herrlich and Nel 181. C(P*) is the

cartesian closed topological hull of PRAP.

In order to give an internal characterization of C(P**) we
need an explicit formulation of the initial limit determined by
the source j: X -&#x3E; Hom(Hom(X,P*), P") where X E |CAP|.

We shall use the following notations:

-yPH for the Hom limit on Hom(X,P*),

- yPHH for the Hom limit on Hom (Hom (X, P*) . P*) .

Further for A C X and B E P we put

S.2. PROPOSITION. If g stands for the initial limit on X deter-
mined by the sotirce j: X- Hom (Hom (X, P*) , P*) , HE F(X), a E X
and « E P then we have (l ( H) (a) « iff the following condition (*)
is ful fill ed :

(*) For everi- w E F(Hom(X,P*)), for every fEHom(X,PU) such

that f(a) =*= p. stack ’fr(H) # stack p and yPH (w) (f)  00 and for
every B f(a)-(yPH(w)(f)Va) there exists H E H such tha t

H(B) E w. 
H

PROOF. For simplicity in notation let us denote by D the set of
those pairs (w. f) E F (Hom (X. P*)) H0111 (X .PU) which satisfy
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i.e.. precisely the conditions mentioned in (*). Then

5.3. DEFINITION. We define and denote bN PSAP the full subca-

tegory of CAP the objects (X.X) of which satisfy the following
supplementary condition:

An object (X.y)E| PSAP| is called a pseudo-approach space and
X is called a pseudo-approach limit.

In order to study PSAP in greater detail we need some preli-
minary results.

5.4. LEMMA. For (X, yX), (Y.yY)E |CAP|, w E F(Hom (X, Y)),
FE F(X) and W E U( stack w (F)) we have:

PROOF. Since (2) is analogous to (1), we only prove (1). Suppose
that for every U E U (F) there exists w E w and LI E U such that

w (U) E W. Appl) Proposition 2.1 in [12] to select a finite collec-
tion U1, ... ,Un in U(F) and corresponding sets w1,..., 4;n in T and
Ui E Ui for i E {1....n} such that

Then

which is a contradiction.

5.5. PROPOSTTION. i
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the following are equivalent:

PROOF. The implications (1)-&#x3E;(2)-&#x3E;(4) and (1)-&#x3E; (3)-&#x3E; (4) are evi-

dent. So the only implication we have to prove is (4) +(1). From
5.4 (1) and (2) and (PSAL) we obtain

5.6. COROLLARY. If (X.yX)E|CAP|. (Y.Ày)EIPSAP I and f:X-&#x3E;Y.
then the following are eciui val en t :

(1) f is a contr-action.

PROOF. Apply 5.5 for w:= stack f and a :=0.

5.7. PROPOSITION. PSAP is a bireflective subcategoi-i of CAP.

PROOF. Using S.6 it is immediately verified that if (X.y) is in

|CAP| its PSAP reflection is given bN idX: ( X.y)-&#x3E;(X.y) where
for all FE F(X) :

5.8. PROPOSITION. If (X.yX) E |CAP| and (Y,yY)E |PSAP| then

Hom(X,Y) equipped with its natural limit is a PSAP object.
PROOF. Let X stand for the natural limit on Hom (X. Y) as defi-
ned in 1121 (see also § 3). Let w E F(Hom (X.Y)). f E Hom (X.Y) and
put

Then for all f E U(w) and FE F(X) we have

which by 5.5 implies that for all FE F(X)

and thus y(w(F)) a.
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We have now gathered sufficient material to prove our main
result of this section, i. e. the internal characterization of the
cartesian closed topological hull of PRAP. Notice that this cha-
racterization is similar to that of the cartesian closed hull of
the category of pre-topological spaces as in Bourdaud [2].

S.9. THEOREM. C(P*) = PSAP .

PROOF. If (X, Xx) E |C(P*)| then it follows from 5.8 that

By 5.7 it then follows that also (X,yX)E |PSAP|. Conversely let

(X, yX) E IPSAPI and let 03BC stand for the initial limit on X deter-
mined by the source j:X-&#x3E;Hom(Hom(X,P*),P*). Then 03BCyX.
In order that V and Xx coincide, since they both satisfy (PSAL),
it suffices to show that they are equal on ultrafilters. Suppose
on the contrary that there exist a E X and HE U(X) such that

03BC(H)(a)  XX(H)(a). For all WE H put

In particular, for every Y E P, the two-valued function

is a. contraction and belongs to W. It follows that {W|W E H} is

a filter base on Hom (X. P*) . Let w be the filter generated by
this base. Further consider the two valued contraction

CLAIM.

Indeed, let U E U(X). If U * H then stack T (U) = stack p. therefore

11 U = H then stack w(U)# stack p and then

Thus it follows that for all l UEU(X):

Moreover since f(X)=p for X # a we final ly have

Our claim now follows from the arbitrariness of LI and upon

applyi ng 5.5.
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If we now put a:= (l(H )(a) then it is clear that T and f

satisfy all the conditions in the characterization (*) of 5.2. Since
a  f (a ) we can choose B E [O.f(a) -a[ and it follows from 5.2

that there exists H E H such that HB&#x3E; E w. Then let WE H be

such that W C HB&#x3E;. Since kWB E W it follows that

which is a contradiction, and we are done. ·

5.10. COROLLARY. PSAP is the cartesian closed topological hull
of PRAP .

 From 5.1 and 5.9..

6 THE TOPOLOGICAL QUASITOPOS HULLS OF PRAP AND AP.

6.1. THEOREM. PSAP is extensional.

PROOF. The proof is analogous to the proof of the fact that
CAP is extensional (see Theorem 4.3 in 1121). The only differen-
ce is that now the spaces (X.yX) and (Y.X) are in PSAP) and
one has to show that the #-object (Y*,y*) too is in |PSAP|.
This is an easy verification which we leave to the reader..

6.2. THEOREM. PSAP is the quasitopos hull of PRAP.

PROOF. By 6.1 and 5.10 PSAP is a quasitopos. Consequently it

follows from S.10 again that PSAP is the topological quasitopos
hull of PRAP. ·

6.3. THEOREM. PSAP is the quasitopos hull of AP.

PROOF. By 3.2 AP is finally dense in PSAP and by 4.2 PRAP is
the extensional hull of AP. Consequently it follows from 6.2
that PSAP is the topological quasitopos hull of AP.
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