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STACKS AND EQUIVALENCE OF INDEXED CATEGORIES

by Marta BUNGE and Robert PARE 1)

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX -4 (1979)

0. INTRODUCTION.

The purpose of this paper is to study the various notions of equival-
ence of indexed categories and how they relate to Giraud’s stacks [4 and 5]. 

This research was motivated by the study of Morita equivalence for

category obj ects in a topos and its relationship with stack completions (the

results of which appear in [2] ). First of all, the stack completion o f an int-

ernal category may not be internal, and we are forced to consider indexed

categories. Secondly, various notions of equivalence of categories appear

(because of the absence of the axiom of choice ) and are closely related

to the notion of stack. In order to properly understand stacks it is first ne-

cessary to sort out the properties of equivalence of categories. This is done

in Section 1.

In Section 2 we then give the basic properties of stacks and their

relationship with equivalence of categories. Some examples are given in

Section 3.

The results of this paper are necessary for [2], but we believe they
are also of independent interest.

Giraud’s notion of stack is given relative to a base site. This no-

tion is not intrinsic to the topos of sheaves on the site, in the sense that

two sites may have equivalent categories of sheaves but non-equivalent cat-

egories of stacks. To make the notion independent of the site, we consider

only stacks relative to the regular epimorphism topology on the topos itself.

Although most applications are for toposes, we only need the base category
to be a regular category [1]. Since this seems to be the right level of gene-

rality and the proofs are no more difficult, we work in this context.

We gratefully acknowledge useful conversations with Andr6 Joyal
and Bill Lawvere.
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1. WEAK AND LOCAL EQUIVALENCE.

Let S be a finitely complete regular category in the sense of [1],
i. e., S has finite limits and regular coimage factorizations that are stable
under pullback. Let A and B be S-indexed categories ( s ee [7] ).

(1.1) DEFINITION. An S-indexed functor F: A -&#x3E; B will be called a weak

equivalence functor if 

( i ) for each 16 S I , FI: AI -&#x3E; |BI| is fully faithful, ( ii ) for each I e | S | 
and b e |BI| , there exist a regular epi or;J-&#x3E;-&#x3E; I in S, or e |AJ|, and an

isomorphism 0: FJ a - a* b in BJ.

By the 2-pullback of the follo wing diagram of categories

we mean the category A’ whose obj ects are triples ( a, b’, 8) where

or e |A|, b’e |B’| and 8: Fa 4 G b’ is an isomorphism in B ,

and whose morphisms are pairs of morphisms making the obvious squares
commute. We have functors F’: A’ -&#x3E; B’ and G’: A’ -&#x3E; A defined by

and

and a natural isomorphism

defined by

There is an obvious universal property, which need no t concern us here.

This whole discussion extends easily to the case of indexed categories.

( 1.2 ) L EMMA, Weak equivalences are closed under composition, and stable
under 2-pullbacks.

PROOF. If F : A -&#x3E; B and G : B - C are weak equivalence functors, then

so is G F : A -&#x3E; C. Firstly, since FI and GI are fully faithful for each 1, so
is GIFI . Secondly, given I and c 6 I f I I , there exist

or :J -&#x3E;-&#x3E; I and b e |BJ| I with 8 : GJ b -&#x3E; or* c an isomorphism,

,8 : K --, J, ac 14KI | with tfr: FK a 4 f3* b an isomorphism.
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Hence, we have crf3: K - I and a e |AK|, with

an isomorphism, where the unlabeled arrows are canonical isos.
Assume that

is a 2-pullback of S-indexed categories and that F is a weak equivalence
functor. Let (a, b’, 0) and (â, b’, 8 ) be any two obj ects in A’1 where I is
so me obj ect of S . For any v : b ’ - b’ there exists a unique w making

commute, since 0 A is an isomorphism and FI is full and faithful. Thus F’I
is full and faithful. Also, for any b’ £ I B’Il | there exist 

cr: J - I and Of 14/ | and an isomorphism

This gives an obj ect

of and Thus F’ is a weak equivalence func-

tor. 0

(1.3) DEFINITION. Given S-indexed categories A , B, say that they are

weakly equivalent ( and write 4 = B ) if there exist weak equivalence func-
w

tors as in

for some S-indexed category E .

(1.4) PROPOSITION- If eak equivalence is an equivalence relation.
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PROOF. If A = B and B = C then we have weak equivalence functors
w w

and

Forming the 2-pullback and composing in

gives transitivity. The relation is trivially reflexive and symmetric. 0

If C is an internal category in S , its externalization [C] is an

indexed category. For such special categories, we wish to know the internal

meaning of weak equivalence functors. For this, we need the following con-

struction : For any internal category C we have the obj ect of isomorphisms
of C :

with the domain and codomain morphisms. This is easily constructed as a

finite limit from the data of C .

( 1.5 ) PROPOSITION. Let C and D be internal categories in S, and
let F : C -&#x3E; D be an internal functor. Then the corresponding S-indexed func-
tor [F]: [C] -&#x3E; [D] is a weak equivalence iff

is a pullback, i. e., F is internally full and faith ful, and
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al p 1 is a regular epimorphism.

PROOF, (i) The diagram in ( i ) is a pullback iff for each I in S,

is a pullback. This means exactly that for every pair of obj ects cl , c2 in

[C], and every morphism 6: [ F]I(c1 ) -&#x3E;[F]I(c2) in [D]I, there exists

a unique morphism

in such that

that is to say [F]I is full and faithful.

( ii ) The mo rphism a 1 p 1 is a regular epimorphism iff fo r every d : I - Do

there exist a regular epi a : J - I and J -&#x3E; Co X Iso ( D ) such that
Do

commutes ( if 8 1 p i is a regular epi, take or = d*(a1p1 ); if the property

holds, take d = 1D 
0 

to see that a1p1 is a regular epi ). Thus, a 1 p 1 is a

regular epimorphism iff for every obj ect d of [D]I there exist a regular epi
a : J-&#x3E;-&#x3E;I, an obj ect c of [C]J and an iso 8: [F]J c-&#x3E; or*d. o

Note that according to our definition, internal categories C and D

are considered weakly equivalent whenever there exist an indexed category
E and weak equivalence functors

where E need not be small.

(1.6) PROPOSITION. With no tation above, if C and D are weakly equi-

valent, then the E may be chosen to be small.

P ROO F . Let F: E-&#x3E; [C] and G: E -&#x3E; [D] be weak equivalence functors.
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Since F is full and faithful and [ Cl has small homs, E also has small

homs. Let g e| [C] Co| I be the generic family of obj ects o f C ( i. e.,
id : C0 -&#x3E; C0 ). Then there exist a regu lar epi y : C ’ - Co , an o bj ect

eo e | E C’| and an iso 8: FC’ e0 -&#x3E; y*g . Consider Full ( eoJ , the full sub-

category of E generated by the family eo (see [7], Section 2.1). By Corol-

lary 3.11.2 of [7], Full (e0) is small.

’The inclusion Full(eo)-E is full and faithful by construction. "We

wish to show that it is a weak equivalence functor. Let e6 |EI|, then
FI e 6 [C]I and so there exists a unique f : I 4 Co such that f*(g) = FI e .

Taking the pullback

we get a regular epi a : J -» I . Then

is an isomormism, and since FJ is full and faithful there exists an iso in

EJ, f’* eo 4 a* e. Since f’* e0 is in Full(e0)J , the inclusion is a weak

equivalence functor. []

In [7], all categories were considered as having a specified sub-

groupoid of isomorphisms, called canonical, and the isomorphisms appear-

ing in the definitions of indexed category and indexed functor were required
to be canonical. The motivation for this was that for  large categories » such

as S and categories constructed from S , the substitution functors are only
defined up to isomorphism while for small categories ( i. e. of the form [C] )

they are defined «up to equality», and to recover C from [C] we must re-

member this information. Since we are only interested in equivalence of cat-

egories, we are now content to recover C up to strong equivalence ( see

( 1.8 ) ). Thus we deviate from the conventions of [7] and assume here that

all isomorfhisms are canonical. In practice this means that the isomorphisms
in I, 1.1 and I, 1.2 of [7] can be arbitrary, even for categories of the form
[C] . As a consequence, we no longer have a bij ection between indexed
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functors [C]-&#x3E;[D] and internal functors C -&#x3E; D . However, we have the

following:

( 1.7) P ROPOS ITION. The functor which takes an internal functor F : C - D

to its externalization [F] : [ Cl [D] is an ( ordinary) equivalence o f the

category o f internal functors C -&#x3E; D with the category of indexed functors
[C]-&#x3E;[D].

P ROO F. That this functor is full and faithful follows from the fact that in-

dexed natural transformations ( see Definition ( I, 1.3 ) in [7] ) are not equip-
ped with  structural isomorphisms - as indexed categories and functors are,

and so we can apply a Yoneda Lemma argument.
In general, if C is an indexed functor with coherent isomorphisms

ca : CJa*-&#x3E;=a*CI , and if HI are any functors with natural isomorphisms

tl : HI =-&#x3E; GI , the n H becomes an indexed functor if we let

and ti is automatically an indexed natural isomorphism. Now, if we have

G: [C] -&#x3E;[D] , define HI as follows: for any o bj ect [f] of [C]I ( i. e.,

Then HI extends uniquely to a func-
tor such that

is a natural isomorphism HI =-&#x3E; GI. Then by the above definition

where the third equality follows from the coherence conditions which the

ca satisfy. Since the ca are all identities, the Yoneda Lemma tells us that

H = [F] f or some internal functor F : C 4 D . o

(1.8) DEFINITION. Two indexed categories A and B are said to be equi-
valent (or strongly equivalent, for emphasis) if there exist’indexed functors
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and indexed natural isomorphisms CF= idA and FC= idB . We shall write
A = B to indicate that A and B are equivalent.

This definition is equivalent to saying that there is an indexed func-
tor F : A -&#x3E; B such that for every I , FI: AI -&#x3E; BI is an o rdinary equivalence
functor ( since we are assuming the axiom of choice in the meta-language,
we can choose « inverses » GI: BI -&#x3E; A I , and the coherence conditions are

automatic ).

If S satisfies the axiom of choice ( i. e., regular epis split ), a weak

equivalence functor is a strong equivalence functor. Indeed, if &#x26;6 IBIJ | there

exist or: J -&#x3E;-&#x3E; I , or e | AJ| , and an isomorphism 0: FJ a -&#x3E;=or* b. If s : I - J

is a splitting for a , then 

Fl s * a = s*FJa = s *or* b = (or s ) * b = b,

and since FI is fully faithful it is an equivalence functor. The converse

also holds : if every weak equivalence functor between S-indexed categories
is an equivalence, then S satisfies the axiom of choice. Given a regular

epi e : B -&#x3E;-&#x3E; A , consider the weak equivalence functor Fe : Be -+’4 as in

the proof of Proposition ( 1.12 ) later on.

There is yet another notion of equivalence, not agreeing in general,
with the notion of strong equivalence, but equivalent to it if S satisfies

the axiom of choice. This is the notion of local equivalence, introduced

by G.Wraith in [8] for S-toposes and internal categories, and further studied

in [9].

( I.9) DEFINITION. Two S-indexed categories A and B are said to be loc-

ally- equivalent if there exists an obj ect U with global support ( i. e., U - 1

is a regular epi ), such that the localizations (see [7] page 16) A/ U and

B/ U are strongly equivalent as S/ U-indexed categories. We write A - B to

indicate that A and B are locally equivalent.

If A/ U is equivalent to B/ U , and if V is a refinement of U ( i. e.

there is a regular epi V -- U ) then A/ V is easily seen to be equivalent to
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!1 / V. It follows that local equivalence is an equivalence relation (for tran-

sitivity, take a common refinement of bo th covers). For internal categories
C and D in S, [C]= [D] means that U * C and U*D are equivalent cat-

egory o bj ects of S/U for some U with global support. When A and B are

S-topoi, with their canonical S-indexing, this definition also agrees with

that of [9].

(1.10) EXAMPLE. Let I and J be objects of S , and consider the corres-

po nding discrete category obj ects I and J

all morphisms identities). I is strongly equivalent to J iff I = J . Thus,

1=l J means that I and ,T are locally isomorphic (e.g., in Sh(Sl )thehelix

over S1 is locally isomo rphic to the constant sheaf AZ ). For I and J to

be weakly equivalent means that there exist an internal category C and

weak equivalence functors

(by Proposition ( 1.6 ) ). Since I is discrete, Iso ( I ) = I and condition (ii)
of Proposition (1.5) says that Fo must be a regular epi. Condition ( i ) says
that

is a pullback, and so

is the kernel-pair of Fo . Therefore I = co eq( a 0’ a 1). Similarly

and so

This shows that
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iff

So local equivalence does not imply weak equivalence even for internal cat-

egories. We do have the following result, however.

( 1.11 ) PROPOSITION. The fo llowing conditions o n a regular category S
are equivalent :

( i ) Every object of S with full support has a global s ection.
(ii ) A = B implies A - B.

PROOF. (i)=&#x3E; ( ii ). Let U have full support and assume that F :A/ U-B/ U
is an S/ U-indexed equivalence functor, with inverse G: B/ U -&#x3E; A/ U . Let
u: 1 -&#x3E; U be the element given by ( i ). Define an S-indexed functor

by

where ul denotes the morphism

It is easily seen that M*F is an S-indexed equivalence with inverse u* G .

(ii ) =&#x3E; ( i ). Assume that U has full support an d let

be the indiscrete category on U , deno ted Uind . Then Uind l= I by the func-

tors

given by

Thus, by ( ii ), Uind = 1 , and so there must exist 1 -&#x3E; U. 0

Say that a regular category satisfies the internal axiom of choice
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if for every regular epi a : I - I there exists a U with full support such

that U*a splits ( i. e., regular epis split locally). Te then have :

( 1.12 ) PROPOSITION. The fouo wing co nditions on S are equivalent :
( i ) S satis fies the internal axiom o f choice.

( ii ) for every pa,ir o f internal categories C , D in S, every weak equi-
valence functor F: C -&#x3E; D is a lo cal equivalence functor.

P ROOF. (i)=&#x3E; (ii). Let F: C- D be a weak equivalence functor. Let

I = Do , and let d : I - Do be the identity. There exist

and

as well as an iso 0 with

By the internal axiom of choice, or : J -&#x3E;-&#x3E; I is locally split, i.e., there

exists U -» 7 with

Hence, for U - 1,

and so, U X Fo has a left quasi-inverse ( U Xc) u . Since U X F is internally
fully faithful ( as F is ), it gives an equivalence U*C 4 U*D .

(ii)=&#x3E; (i). Let e : B -+ A be a regular epi in S . Let Be be the intern-
al category in S given by the complex
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where

Let A be the discrete internal category on A, i. e., given by

all identity morphisms. Then, e : B - A is the o bj ect part of an internal

functor Fe : Be 4 A , clearly a weak equivalence functor. By assumption,
there exists U -&#x3E;&#x3E; 1 in S , with

and Go « inverse» to U X e. Since U* A is discrete, e splits Iocally. 0

REMARK. There is also the concept of local weak equivalence A = B,
 wl

which means that there exists an obj ect U with full support such that:

A/U --- B/ U . We shall not use this concept here.
w

REMARK. The following diagram illustrates the inter-relationship between

the various notions of equivalence with the various axioms of S , where

( AC ) and ( IAC ) denote, respectively, the axiom of choice and the internal

axiom of choice, whereas ( 3 r’ ) denotes the axiom which states that every

o bj ect of S with full support has a global section.
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2. STACKS FOR THE REGULAR EPIMORPHISM TOPOLOGY.

In [4] and [5], J. Giraud considers the notion of stack (called champ
in French ) over a site A : a fibred category p : F -&#x3E; A is a stack over A

iff it satisfies an additional condition expressing that obj ects and mor-

phisms satisfying descent conditions (cf. [6]) descend. Specifically p: F - A

is a stack iff, for each covering crible R C A/ X , the induced functor

is an equivalence of categories. If for an obj ect X of A , _FX denotes the

fibre above X , this canonical functor can be described, roughly, as follows.
A cartesian functor A/ X -&#x3E; F determines an obj ect a of FX ; for each

f : Y-&#x3E; X in R, f * a is an o bj ect of Fy , and the obj ects obtained in this

way are compatible up to isomorphism. To say that p : F - A is a stack is

to say that, given any covering fa : Yor -&#x3E; X}oreI and any family {aor}or e I, o f

o bj ects aor of Fyor, compatible up to coherent isomorphisms, there exists
a

an obj ect a of FX with

for each

and this obj ect is unique up to unique compatible isomorphisms. A similar’

co ndition must hold for maps.

Any regular category S may be regarded as a site if one takes for

coverings exactly the regular epimorphisms (this is the regular epimorphism

topology of [1] ). We shall say explicitly what it means for an S-indexed

category A (which is essentially the same as a fibred category o ver S ) to

be a stack over S ( or j ust a stack » from here on, as we shall consider no

others ). First, we need to recall some definitions o f [6]. Let cr: J -&#x3E;-&#x3E; I be

a regular epimorphism in S , and let

be the canonical proj ections arising from taking pullbacks. One has the

equations:



386

An obj ect a of AJ has descent data relative to or: J -&#x3E;-&#x3E; I if there is given
an isomorphism e: II*0 a =-&#x3E; 17j a such that the diagram

commutes in 4J" (where the labeled isomorphisms are the canonical iso-

morphisms o f the indexed category A , and J " denotes ,I IX JI X J ). If we are

given obj ects a, b of 1: 1 , both with descent data as above, a morphism

f: a -&#x3E; b is said to be co mpatible with the descent data provided the diagram

commutes in Aj’ (J’ denotes JXJ ).
I

For any tic 1411, a*â comes equipped with descent data

(the compatibility condition above follows from the coherence conditions

which the canonical isomorphisms w*O* = (Owi)* satisfy). Also for any

morphism f : â -&#x3E; b in 4 I, ac* f : a*â -&#x3E; a* b is compatible with the descent

data. Thus cr* gives a functor at*: AI-&#x3E;Da, into the category of o bj ects

equipped with descent data.

( 2.1 ) DEFINITION. An S-indexed category A is a stack over S ( or simply
a stack ) if for every regular epimorphism a: J-&#x3E;-&#x3E; I of S , the functor cr*,

ac*: AI 4 D is an (ordinary) equivalence functor.
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( 2.2 ) PROPOSITION. For any ,S-indexed category A, the following are equi-
valent :

(i) A is a stack.

(ii) For every regular epi a: J -&#x3E;-&#x3E; I, the canonical functor Foc: Ja 4 I

(see 1. 12) induces an equivalence AFoc: AIdis -&#x3E; A Ja of S-indexed categ-

ories.

P ROO F. The category Ja was described earlier ; its d ef ining complex is

none other than the diagram

involved in stating descent. An object of A Joc (see [7], page 27) is given
by a pair (a, 0), where

and in

satisfying the conditions

where it is understood that canonical isomorphisms are to be inserted wher-

ever necessary for these equations to make sense. Condition (ii) is exact-

ly (*) above, and we shall show that in the presence of ( ii ), ( i ) is equi-
valent to 0 being an isomorphism.

Assume that (i) and (ii) are satisfied and let O: J X IJ-&#x3E; J Ix J Ix J be

the morphism (II0,II1 ,II0). Then
and

so applying 95* to ( ii ) we get

(we leave to the reader the task of checking that the canonical isomor-

phisms give no problem). Repeating the same argument with W = (II1, II0, II1 )
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we see that 0 (W*II01 (8)) = 1 , and so 0 is an isomorphism.

Now, assume that 0 is an isomorphism and (ii) holds. Let

d: J -&#x3E; J Ix J Ix J be the diagonal and note that IIij d = 6 for all i, j . Ap- 
plying d* to (ii) we get

i. e.,

and since 8*(0) is an isomorphism, 8*(0) = 1 a .
Thus an object of A Jr is the same as an object of Aj equipped

with descent data. A morphism in A Joc is exactly the same as a morphism

compatible with the descent data, so A Joc = Doc (above). A ldis = AI and
AFa is the functor oc* of (2.1). This proves the proposition. 0

(2.3) PROPOSITION (Bénabou and Roubaud [101). Let A be an S-in-

dexed category for which I (or II) exists and satisfies the Beck con-
dition. Then .4 is a stack iff for every regular epi oc: J -&#x3E;-&#x3E; I, the func-
tor a*: AI -&#x3E; AJ is tripleable (resp. cotripleable).

PROOF (sketched). Let T be the triple on AJ which is induced by the
adjoint pair E oc-| oc*. There is a comparison functor O in

We compare (AJ)T, with the A Ja of ( 2.2 ) and find that they are equi-

valent categories ; moreover, modulo this equivalence, O corresponds

to AFoc. The result then follows from ( 2.2 ). The case with fl follows

by duality ( being a stack is self-dual).

A T-algebra is a pair (a, 6) with

and

satisfying the unit and associative laws. The Beck condition, applied
to the pullback
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says that the canonical morphism

is an isomorphism. Thus 6 corresponds to

which, by the adjointness I11 1 -1111 , corresponds to 0 : uj a -&#x3E;II*1a. It

is now a computation to show that the unit and associative laws for

correspond to conditions (i) and (ii) of the proof of (2.2), thus making
(a, 8 ) into a functor from Jet to A . 0

(2.4) COROLLARY. Any finitely complete exact category S, indexed

by itself in the usual way, is a stack.

PROOF. An exact category is a regular category in which equivalence
relations are kernel pairs (see [1] ). For a : J -&#x3E; I , S/I and S/Jare ex-
act categories [1, page 19] and a*: S/I -&#x3E; S/J is exact. Since a* has a

left adjoint S and the E satisfy the Beck condition, we are in a posi-
tion to apply (2.3). If a is a regular epi, a* is faithful and so reflects

isomorphisms. Duskin’s Theorem [3, page 91] shows immediately that
a* is tripleable. 0

If S and S’ are regular categories and A : S -&#x3E; S’ an exact func-

tor, then S’ can be indexed by S by defining S’1 = S’/AI.

(2.5) COROLL ARY. With the above notation, if S’ is a finitely complete
exact category, then it is a stack over S.
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P ROOF. For a regular epi oc :j -&#x3E;-&#x3E; I in S,

is

Since Aoc is also a regular epi, and S’ has E, (Aoc)* is tripleable. o

(2.6) COROLLARY. I f S is a topos and E an S-topos, then E is a

stack over S . o

We pointed out in the proof of ( 1.12 ) that, if a: J --.. I is a reg-

ular epi in S , the internal functor Fa : Ja 4 I is a weak equivalence
functor. Then in (2.2) we saw that to be a stack, A must have the pro-

perty that A Foc be an equivalence for all regular epis oc. We may ask

whether arbitrary weak equivalence functors do not play the same role,
and indeed they do, as the following shows.

The notation A B , where both A and B are indexed categories,
indicates (see [7, page 61] ) the internal category of indexed functors
from B to A . Given indexed categories A , B, C and an indexed func-

tor F : B -&#x3E; C , there is an indexed functor A F: A C -&#x3E; AB. In fact, all

the usual theorems about manipulating functor categories are true in the

context of indexed categories. We may now prove the following charac-

terization of stacks, by means of a statement actually proposed by A.

J oyal (in public lectures, unpublished) as a definition of « stack». Re-
mark that its contents suggest that the stacks should be viewed as the

«2-sheaves» for the «2-topology» (on account of (1.2)) of weak equi-

valence indexed functors on S-indexed Cat .

(2.7) PROPOSITION. An indexed category A is a stack iff for every
weak equivalence functor F: B -&#x3E; C, the functor AF: AC -&#x3E; AB is an

equivalence of indexed categories.

PROOF. By the above remarks and ( 2.2 ), the condition is sufficient.

Let A be a stack and F: !l4 C a weak equivalence functor.

We shall show that AF is an equivalence at 1 , and the result will fol-

low by localization since all concepts are stable under localization (see

[7, page 16] ). We shall construct a functor G : AB -&#x3E; AC which is «in-



394

v ers e » to 4 F . .
Let 4$ : B -&#x3E; A be an indexed functor. We wish to construct an in-

dexed functor

such that

Let c e if, I then there exist a regular epi oc: J-&#x3E;-&#x3E; I , an object b e |BJ I
and an isomorphism 0 : Fl b 2::’ oc*c. Since a*c has descent data for oc
and since FJ b = or*c , so has FJ b . Since FJ’ and FJ" are fuily faith-

ful, b also has descent data for or. Thus 4$J( b ) has descent data and
since A is a stack there exists

such that

This a is unique up to a unique isomorphism compatible with the descent

data. If we choose some other a and some other b as above, by taking
a common refinement of the two covers ( e. g., the pullback) and using
the uniqueness just mentioned, we see that there is a unique isomor-

phism between the new a and the old one, compatible with the respec-
t ive de scent data. Choose one a and define WI(c) = a. If h: c -&#x3E; c’ in

Cj, then by choosing a common refinement, we can assume that the same
ct : J -.. I works for c and c’ . Thus there exist b and b’ in BJ such

that

and

Since FJ is fully faithful there exists a unique g: b - b’ such that

commutes. Furthermore, g is compatible with the descent data on b and

b’ . Thus OJ (g): OJ (b ) -&#x3E; O J( b’) is compatible with the corresponding
descent data. Thus there exists a unique f : a - a’ ( a and a’ are the

objects chosen for c and c’ before ) such that the following diagram
commutes. Define WI ( g ) = f . It is routine to check that W is an in-

dexed functor.
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We define G(O) = W. In a similar manner we define G ( t) for in-

dexed natural transformations t: O-&#x3E; 4Y ’ . Then

F or any b E BI|, to calculate WI FI ( b) as above, we may choose
since

Then WIFI(b) = a for some a e IAII such that II*a =OI(b), thus
tp I FI( b) = (DI(b). Sim i la rl y, for m orph is m s b -&#x3E; b’ and so

i. e.,

For any indexed functor W’ :C-&#x3E; 4 , let

To calculate WI (c) we choose, as above, 
and such that

and then find the « unique - ca e |AJ| such that ’I’ ,I FJ (b) = a*a . But

so WI (c)= W’I ( c ). This isomorphism is natural, and so Y = W’, which
shows that G A F = 1 AC, once we have checked the naturality. Hence,
AF is an equivalence. a

( 2 .8 ) CO ROL L A R Y . For any weak equivalence functor F : B C between
S-indexed categories., where S is exact, the induced functor SF : SC -&#x3E; SB

is an equivalence. Also, i f S satisfies the axiom o f choice, every 5-in-
dexed category A is an S-stack. 0

(2.9) COROLLARY. 1 f A is a stack and D is any indexed category,

then AD is also a stack.
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PROOF. If F: B -&#x3E; C is a weak equivalence functor, then so is D X F:

DXB -&#x3E; DXC and so 4DXF: ADXC-&#x3E;ADXB is an equivalence. But

ADX F =(AD) F. []

(2.10) DEFINITION. Let.1 be an S-indexed category. The associated

stack, or stack completion, of A (if it exists) is given by an indexed

functor F: A-&#x3E; A where A is a stack and such that for any other stack

X , composition with F gives an equivalence of the category of indexed

functors d 4 4’ with the category of indexed functors A -&#x3E; X.

In more concrete terms, this definition means that for every in-

dexed functor G : A -&#x3E; X (X a stack), there exists an indexed functor

H : A- 4 X , unique up to a unique isomorphism, such that

commutes to within isomorphism. It follows that any two stack comple-

tions of A must be strongly equivalent categories.

( 2 ,11 ) COROLLARY. L et F: A - B be a weak equivalence functor bet-

ween S-indexed categories where B is a stack. Then F: A -&#x3E; B is « the »

associated stack o f A .

P ROO F . If X is a stack, ( 2.7 ) says that X F is an equivalence of cat-

egories and therefore an equivalence at 1. This is exactly Definition

(2.10). o

(2.12) COROLLARY. Let A and B be indexed categories and let

and

be weak equivalence functors with A and B stacks. I f A = B, then
w

A = b, and conversely.
P ROOF. If A - B , because of the weak equivalence functors

w
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then by (2.11), F H : E - A and G K : E - il are both stack completions
ofE, so A=B. D

In [2], the associated stack of any locally internal S-indexed cat-

egory A is constructed. From the nature of the construction it will be

seen that F: A -&#x3E; A is always a weak equivalence. The construction

also gives a large class of examples.

3. EXAMPLE.

We end up by illustrating the notions just introduced in the case

where S is the topos Set2. An internal category A in Set2 consists of

two categories and a functor F: A0-&#x3E; A1 . An internal functor 4Y : A 4 B
is a commutative square of functors

A n internal natural transformation t : O-&#x3E; O’ consists of a pair of nat-

ural transformations

and such that

All the constructions involved in Proposition (1.5) are finite

limit constructions, and so are pointwise in Set2 ( i, e., are performed

independently on the domain and codomain ). Since epis are also point-

wise, (1.5 ) tells us that 4J : A-&#x3E; B is a weak equivalence functor iff

(Do and O 1 are ordinary equivalence functors. This does not imply that

for every object I of Set2 , the externalization [O]I is an equivalence

functor, as the following example shows. Let

Ao = Bo = discrete category with two objects,
A1= indiscrete category with two objects, Bl - 1 ,

F: A0 -&#x3E; A1 the inclusion, O: A0 -&#x3E; B0 the identity,
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and the unique functor into 1 .

If I = ( 2 - 1 ) , then ([ A] 1)o is the discrete category with two objects
whereas ([ B] I)0, is the discrete category with four objects.

if (D : A - B is a weak equivalence, then (O0 and O1 have« in-

verses » W0 and W1 respectively, but

only commutes up to isomorphism, and so is not an internal functor. If

there exist ’llo and ’I’ 1 making this square commute (up to equality)
then O is a strong equivalence functor. This is equivalent to saying
that for every I in Set2 , [O] I is an equivalence functor.

Since supports split in Set2 , local equivalence is the same as
strong equivalence.

(3.1) PROPOSITION. If O: A - B is a weak equivalence functor and C

any internal category, then CO: CB -&#x3E; C A is full and faithful.

P ROO F . Let ’I’ , ’I’ ’: B -&#x3E; C be two internal functors and t : 9 4$ + 9 ’ 4Y

an internal natural transformation. Thus we have

such that

Since (Di is an equivalence functor, there exist unique natural transfor-

mations

such that
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Then,

so by uniqueness Hu0 = u1 G . Thus there is a unique internal natural
transformation u:W-&#x3E; W’ such that u 4$ = t . This shows that cc) is full

and faithful. 0

Note that this proof used the fact that the proposition is true in

Set . This is easily seen since weak equivalences are strong equival-
ences and in this case CO is also an equivalence.

(3.2) DEFINITION. Say that a functor H: Co - Cl has the isomorphism

lifting property (ILP) if for every co c |C0 1 and every isomorphism
6 : C1 =-&#x3E; H C0 in C, , there exist c’ c I C-0 I and an isomorphism

such that

(3.3) THEOREM. If H: C0-&#x3E; C1 has the ILP, then 

is a stack.

P ROO F . Let 4fi : A + B be a weak equivalence functor. We shall prove

that CO is an (ordinary) equivalence functor. By Proposition (3.1),
C is full and faithful. Let P : A -&#x3E; C be an internal functor. Since 0i
is an equivalence of categories, there exists
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such that

Ti is unique up to isomorphism. Now

and so by uniqueness there is an isomorphism

such that

For every b0 f I B0|, a b0: W1 G bo 2:- HTO bO’ so by the ILP , there

exist 0 bO: qt Ó bo 2-’ ’P 0 bo such that

and

Now, 9j extends uniquely to a functor such that 0 is natural. Then

HW0 =W1G as functors, and we get an internal functor 9 ’: B 4 C . We

also have an isomorphism

and

so ( oc’0, a 1) gives an isomorphism a’: W’O=-&#x3E; r . Thus C is an equi-

valence functor and so C is a stack. 0

If H : C0-&#x3E; C1 is any functor, construct a category C0 whose

objects are triples ( co , c1 , a) where

and is an isomorphism.

A morphism is a pair where

and

and
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There is a functor it : C0 -&#x3E; fl defined by H ( co’ c1 , 6 ) = cl . There is
also a functor O0: C0-&#x3E;C0 given by O0 ( c0 ) = ( c0 , H c0, 1Hc0), and

commutes. Thus for every internal category C we have constructed

4Y : C - C . It is easily seen that $ is a weak equivalence functor and

that H has the ILP and so C is a stack. Thus by Corollary (2.11), C

is the stack completion of C . Then C is a stack iff 4Y : C - C is a

strong equivalence. For example, it is easily seen that the category A

introduced at the beginning of this section is not a stack.

1) Both authors wish to acknowledge partial support from the National Research
Council of Canada, and the first author from the Ministere de I’Education du Que-
bec.
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