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1. Introduction

The theory of algebraically completely integrable hamiltonian systems
demonstrates a fruitful interaction between dynamical systems and the
geometry of vector bundles over algebraic curves. Classically, dating back
to Jacobi’s work on the geodesic flow on the ellipsoid, algebro-geometric
methods have been used to solve differential equations arising from
mechanical systems, by linearizing the flow on the Jacobian of an algebraic
curve.

Hitchin discovered [H1], that the cotangent bundle of the moduli space
of stable vector bundles on an algebraic curve is an integrable system
fibered, over a space of invariant polynomials, by Jacobians of spectral
curves. These curves are branched coverings of the base curve, X, associated
to twisted endomorphisms of vector bundles on £ with values in the
canonical line bundle. This result plays a central role in recent work on the
geometry of the moduli space of vector bundles [ B-N-R], conformal field
theory [H2], and non abelian Hodge theory [Sim].

Several of these works suggest considering spectral varieties obtained
from endomorphisms twisted by vector bundles other than the canonical
line bundle. Simpson replaces the canonical line bundle by the cotangent
vector bundle. Beauville studied spectral curves over P! obtained by
twisting with any positive line bundle [B]. He found an integrable system
and showed that certain classical systems, such as Neumann’s system,
geodesic flow on the ellipsoid, and certain Euler-Arnold systems, embed in
his as symplectic leaves.

In this work we study families of Jacobians of spectral curves over
algebraic curves of any genus, obtained by twisting with any sufficiently
positive line bundle. We prove:
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MAIN THEOREM. Let ¥ be a nonsingular complete algebraic curve,Ks
its canonical line bundle. Let L be a positive line bundle on T satisfying
L> K;. Let My;,,, be the moduli space of L-twisted Higgs pairs (pairs
consisting of a vector bundle and an L-twisted endomorphism satisfying a
stability condition). Then

1. My, is fibered, via an invariant polynomial map Hp: M
Jacobians of spectral curves.

2. For every non zero seH°Z,L® K5 '), there exists a canonical
Poisson structure, €, on My;g,..

3. H;: M, — B, is an integrable system.

- BL: by

Higgs

Here are a few special cases:

1. When L = K; we get the Hitchin system.

2. Corollary: (Beauville [B]). GL(n) acts by conjugation on the space of
everywhere regular n x n matrices with polynomial entries of degree
<d. The quotient is an integrable system.

3. Corollary: (Reyman and Semenov-Tian-Shansky [R-S]). Let D be an
effective divisor on an elliptic curve, X, invariant under the subgroup,
X[n], of points of order n. The space of X[n]-invariant, meromorphic,
sl(n) valued functions, whose entries have poles dominated by D, is an
integrable system.

4. Corollary: (A. Treibich and J. L. Verdier [T-V]). The space of KP
elliptic solutions with fixed period lattice is an integrable system.

Many classical integrable systems embed as symplectic leaves of those in 2 and 3.

The moduli space % (r, d, D), of vector bundles with D-level structure (in
the sense of [Se]) is key to understanding the geometry of our systems. It
is the space parameterizing vector bundles together with a frame over D.
The Poisson structure on M,;,,, is obtained via Hamiltonian reduction
from the canonical symplectic structure on T*%(r, d, D).

The systems in Corollaries 2 and 3 have been extensively studied using
Lax equations with rational or elliptic parameter. A standard technique in
these studies, (see for example [R-S], [A-vM], [A-H-H], [A-H-P)), is to
construct an infinite dimensional Lie algebra of meromorphic (or analytic
or formal) sections of a Lie algebra bundle (loop algebra), and then to
reduce the Kostant-Kirillov Poisson structure to finite dimensional sub-
space of global meromorphic sections with poles of bounded order. The
meromorphic sections translate to Higgs fields in our dictionary.

The loop group approach has been successfully applied to the study of
finite dimensional algebraically completely integrable systems mainly in the
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cases of a rational or elliptic base curve X. Over P! there is a unique
semistable vector bundle of rank r and degree 0. Over an elliptic curve, the
endomorphism bundles of all stable rank r vector bundles are isomorphic.
Thus, the translation of Corollaries 2 and 3 and the related results in [R-S],
[A-vM], [A-H-H], [A-H-P] to the language of Higgs pairs involves special
cases of our results where the Higgs fields arise from a fixed bundle of Lie
algebras over a rational or elliptid base curve.

The moduli space approach enables us to study the higher genus base
curve case which requires varying the isomorphism class of the Lie algebra
bundle. This approach has both conceptual advantage of working with
finite dimensional algebraic varieties and the technical advantage gained by
using deformation theory to analyze the integrable systems.

Sections 2—5 contain preliminary material. In Section 6 we carry out the
main construction. We study the realization of a dense open subset of
M \4;ze. as the orbit space for the Poisson action of the level group on the
cotangent bundle |T*% (r, d, D)|. This realization endows an open set of
M ;e With a canonical Poisson structure.

Unfortunately, the geometric construction of the Poisson structure in
Section 6 does not exhibit its extension to the whole smooth locus of the
moduli space of Higgs pairs. From a dynamical system point of view, the
extension is of major importance since it assures that the Hamiltonian
spectral flow is a linear flow along the spectral Jacobians. The extension is
carried out in Section 7 via a study of the deformation theory of Higgs pairs
with and without level structure. We identify cohomologically the extension
of the Poisson structure over the moduli space of stable L-twisted Higgs
pairs using the duality theorem. We recommend to skip Section 7 on first
reading since the section is rather technical.

The main theorem (8.5) is proven in Section 8. In Subsection 8.1 we use
the cohomological identification of Section 7 to show that the invariant
polynomial map Hy: My;,,, — By is a Lagrangian fibration. This completes
the proof of the main theorem which is formulated in a canonical way in
Subsection 8.2. We conclude this section with the description of the
symplectic leaf foliation in Subsection 8.3.

Section 9 contains examples with rational, elliptic and hyperelliptic base
curves.

This paper is based on a PhD thesis written at the University of
Pennsylvania. I would like to express my deepest gratitude to my advisor
Professor Ron Donagi for introducing me to the problem and for many
invaluable discussions. I would like to thank my friends Ludmil Katzarkov,
Alexis Kouvidakis and Toni Pantev for many useful remarks and sugges-
tions. (Note: similar results were obtained independently by F. Bottacin).
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2. Spectral curves

Let £ be a smooth algebric curve of genus ¢g. Let L be a line bundle, E a
vector bundle of rank r on Z. Let ¢ € H%Z, End E ® L). We will review the
definitions of the spectral curve and characteristic polynomial associated to
¢. These are relative versions of the notions of eigenvalues and character-
istic polynomial for an endomorphism. For more details see [B-N-R].

The i-th characteristic coefficient b; of ¢ is (—1)'tr( A’ ). The character-
istic polynomial P,(y) of ¢, written formally as

Py(y):=y +byy '+ +b,

may be interpreted as a polynomial map from (End F) ® L to L®" for any
vector bundle F on X. By Cayley-Hamilton’s theorem P,(¢) = 0.

Let B, (r) := ®%-, H%(Z, L®"). B,(r) may be viewed as the space of char-
acteristic polynomials of L-twisted endomorphisms of vector bundles of
rank r. Denote by |L| the total space Spec(Sym(L ~!)) of the line bundle L.

For every be B,(r) there corresponds an r-sheeted branched covering
n,: X, — %, called a spectral curve. Z, is the subscheme P, ! (zero section)
of |L| where P, is interpreted as a morphism from |L| to |L®"|. The ideal
sheaf §, of X, is generated by the image of the ¢);-module homomorphism
f:L®"" 5 Sym(L™1), where f:=ZX{_q f, f;: L2 — L®¢" is tensoriz-
ation by b;(b, = 1). So Z, is Spec(Sym(L™')/f,) and m,.(05,) = Sym(L™"')/
f, as Cg-algebras and m.(05) = @iZ6L2 " as Op-modules. Thus, if
deg L > 0, the arithmetic genus gy, of Z,isdeg L-r(r — 1)/2 + r(g — 1) + L

B, (r) may be interpreted as an open affine subset of a linear system on
P(L @ 0 ) via a projective analogue of the above affine construction. It
may be regarded as the moduli space of r-sheeted spectral curves in |L}.

PROPOSITION 2.1. Assume L®" is very ample. Then for generic be B,(r),
X, is a smooth connected algebraic curve.

DEFINITION 2.2. An L-twisted Higgs pair (E, ¢) is a pair consisting of a
vector bundle E and a section ¢ € H(Z, End E® L).

PROPOSITION 2.3 [B-N-R]. Assume that X, is an integral curve. Then
there is a canonical bijection between:
1. Isomorphism classes of rank 1 torsion free sheaves on X, with Euler
characteristicd — r(g — 1).
2. Isomorphism classes of L-twisted Higgs pairs (E, @) of rank r and degree
d with characteristic polynomial b.

REMARK 2.4 [B]. The line bundles in the bijection above correspond to
everywhere regular Higgs pairs.
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REMARK 2.5. The line bundle ##(L) has a tautological section y,. Given
a rank 1 torsion free sheaf F on X, we may regard y, as an element of
Hom(F, F ® nf L). The Higgs pair corresponding to F is the pair
(e F, T 5))-

REMARK 2.6. The degree of the line bundle corresponding to an L-
twisted Higgs pair of rank r and degree d is 6(d) =d + r(1 — g) + g5, — 1.

LEMMA 2.7. Assume that X, is smooth. Let F be a line bundle on Z,. Let
(E, @) be the corresponding Higgs pair. Let A be the ramification divisor.
Then we have a canonical exact sequence:

e —®y,
0— F(—A) »nfE

TFHEQL)y—->FR®nfL—0. (1)

Proof. See [B-N-R]. O

REMARK 2.8. Ron Donagi has generalized recently the above definitions to
the case of principal bundles with a reductive structure group by using:
1. A definition of a pair (£, f: £ — L) of a spectral curve £ and a morphism
f associated to a principal Higgs bundle in a canonical way which is
independent of a representation. This gives rise to a generalized Hitchin
map.
2. Identification of the fibers of the Hitchin map with a generalized Prym
(an abelian variety isogenous to a subvariety of the Jacobian of the
spectral curve).

3. The moduli space of Higgs pairs

The moduli space of Higgs pairs are the underlying spaces of our integrable
systems. We will review their construction in this section.

Let L be a line bundle on Z.

DEFINITION 3.1. Let (E, ¢) be an L-twisted Higgs pair.
1. A Higgs subbundle (F, ) is a Higgs pair consisting of a ¢-invariant
subbundle F of E such that  is the restriction of ¢.
2. (E, @) is semistable (resp. stable) if every Higgs subbundle (F, ¢)
satisfies:

deg F < deg E
rank F  rank E

(resp. <).

The above definition can be generalized to Higgs pairs consisting of a
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vector bundle E over a smooth projective variety of any dimension and an
endomorphism twisted by another vector bundle L. Simpson [Sim] has
described a detailed construction of the moduli space of semistable Higgs
pairs twisted by the cotangent bundle. His construction is based on a general
construction of a moduli space of sheaves with support of pure dimension n
on the total space of a vector bundle over a smooth n-dimensional projective
variety. The moduli space of semistable L-twisted Higgs pairs is isomorphic
to the moduli space of semistable sheaves on |L| with support of pure
dimension n. We will describe the main existence result.
Any semistable Higgs pair (E, ¢) has a filtration

O0=EycE c---cE =E

of Higgs subbundles such that the quotients (E,/E;_,, @;) are stable with
the same slopes. This filtration is not unique but the isomorphism class of
the corresponding graded object:

gr(E, ¢):= ®(E,/E;-\, ;)

is unique.

DEFINITION 3.2. Two semistable Higgs bundles (E, @), (E’, ¢') are
equivalent if

gr(E, ) = gr(E', ¢’).

THEOREM 3.3 [Sim]. There exists a quasi-projective algebraic variety
M e, With the following properties:
1. The points of My;y,, represent equivalence classes of semistable L-
twisted Higgs pairs of rank r and degree d.
2. If & is a flat family of semistable L-twisted Higgs pair of rank r and
degree d parameterized by a scheme S then there is a unique morphism
S = Myipp.- Mysg,, is universal for this property.
3. There is an open subset My;ges © Myiges Whose points represent isomor-
phism classes of stable Higgs pairs. Locally in the etale topology on
M \yiges, there is a universal family such that if & is a family as in 2 whose
fibers are stable then the pullback of the universal family is isomorphic
to & dfter tensoring with a line bundle on S.
4. The function Hy: M., — By, which sends a Higgs pair to its charac-
teristic polynomial, is a proper morphism.

We will refer to My;,,, as a coarse moduli space (in the spirit of [N] Ch.
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5, Section 5), i.e., we identify any two families (&, ), (§ x p&F, ¢) over S
for any line bundle F on S.

REMARKS 3.4. (1) Let be B, such that X, is an integral spectral curve.
Let F be a torsion free sheaf of rank 1 on X, and let (E, ) be the
corresponding Higgs pair. Then (E, ¢) is stable. Thus, by Proposition 2.1,
if L®" is very ample then H, is dominant and its generic fiber is a Jacobian
of a smooth spectral curve.

(2) Let E be a stable vector bundle. Then any Higgs pair (E, @) is stable.

(3) Assume that L >~ K(D) for some effective divisor D of degree 6 = 0.
It follows that Mg, is nonempty if

(a) g=0and 6 =3 or

(b) g=1,5=0and ged(r,d) =1 or

(c) g=1land 6 >0 or

dg=2
We will restrict our attention to these cases. In all these cases H is
dominant and the generic fiber is the Jacobian of a smooth spectral curve.

Denote by Mjiiig,. the unique irreducible component of M., Which
dominates B;.

4. The moduli space of vector bundles with level structures

We will show in Section 6 that the moduli space Mg, of Higgs pairs is
birationally isomorphic to the orbit space of a group action on the cotangent
bundle of the moduli space % (r, d, D) of pairs of a vector bundle with level
structure. The relationship between the two moduli spaces introduces a
Poisson structure on the moduli space of Higgs pairs. We review the
construction of % (r, d, D) in this section.

Let D be a closed zero dimensional subscheme of £. We will denote also
by D the corresponding effective divisor. Let 0 be its degree.

DEFINITION 4.1. A vector bundle E is J-stable (resp. semistable) if every
proper subbundle F of E satisfies:

deg E 1 1
deg F _ deg <

— LK),
rank F rank E rank F rank E) (resp. <)

DEFINITION 4.2. Let E be a rank r vector bundle on . A D-level
structure on E is an isomorphism 5 € Isom,, (E| , ®}= 0Up). We will say that
a pair (E, n) is stable (resp. semistable) if E is d-stable.
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REMARKS 4.3. (1) If E is semistable and 6 > 0 or if E is stable then E is
o0 stable.

Q) Ifg=0andd=gq'r+p,0<p<rand E=0p(q)® " @ Opi(qg+1)®°
then E is d-stable if and only if 0 > p.

We will consider the moduli space % (r,d, D) parameterizing rank r,
degree d J-stable vector bundles with D-level structure. The construction of
this space is carried out by C. S. Seshadri in [Se]. The definition of D-level
structures in [Se] allows a nonzero homomorphism neHom,,(E,,

{-10p). Seshadri introduces an extended notion of semistability for a pair
(E,n) of a coherent sheaf E with D-level structure and the resulting moduli
space is projective. It turns out that if we consider only vector bundles and
only trivializations as level structures then a vector bundle E with D-level
structure 7 is stable (resp. semistable) in the sense of Seshadri if and only
if E is J-stable (resp. o-semistable). The construction in [Se] assumes g = 2
but it is valid (though possibly empty) for rational and elliptic curves.

REMARK 44. It follows from Remark 4.3 that %; (r, d, D) is not empty if
1.g=0and d>p
2.g=1land 6 >0
3. g=1and 6 =0 and ged(r,d) =1
4. g =2.

DEFINITION 4.5. A vector bundle E is D-simple if H°(Z,(End E)
(-=D)=0)if D>0o0r Cif D=0.

LEMMA 4.6. A J-stable vector bundle is D-simple for every divisor D of
degree 9.

Proof. Suppose E is oO-stable but not D-simple. Let f be a nonzero
section of H%(Z, (End E)(— D)). N :=Ker((f) is a proper subbundle of E(D)
and Q:= Im(f) is a proper subsheaf of E. Let u denote the slope function.

deg E(D) —deg N degE + J-rank E — degN

Q) = rank E — rank N rank E — rank N
deg E+0-rank E—rank N| w(E) + 61 + : !
"’”“:"‘y & K rank N rank E/ |
rank E — rank N
o kE kN(1+ L !
rank E — ran _
a ra rank N  rank E
= WE) +—

rank E —rank N
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1 1 1
= - 2 - .
HE) +0 (1 rank E> HE) + 0 <rank Q rank E)

This contradicts the -stability of E. O
DEFINITION 4.7. Let G:= [Aut, (®}-0,)]/C*. Let gj, be its Lie algebra.

We will refer to Gy, as the level group. If D is reduced then G, is isomorphic
to GL(r) x --- x GL(r)/C*.

G, acts on % (r,d, D). It follows from Lemma 4.6 that the stabilizer of
[(E,n)] €5 (r, d, D) is anti isomorphic to Aut(E)/C* (where an anti isomor-
phism means an isomorphism composed with the inversion map).

5. Symplectic geometry

We will review in this section a few basic facts in symplectic geometry. For
more information see for example [A-G] or [W7]. Throughout this section,
a variety will mean a complex algebraic quasiprojective variety.

DEFINITION 5.1. Let X be a smooth variety. A symplectic structure w on
X is an everywhere nondegenerate closed 2-form on X.

EXAMPLE 5.2. Let M be a smooth algebraic variety. Let p: |[T*M| —-> M
be its cotangent bundle. |T* M| admits a canonical symplectic structure o,
where w:=d0, 0e H(T*M|, p*(T*M)) = H(|T*M|, T*|T*M|) is the
tautological 1-form.

DEFINITION 53. Let X be a smooth algebraic variety. A Poisson
structure Q on X is a section Qe HO(X, ATX ) such that the Poisson bracket

{F, G} := {(dF, dG), Q)

defines a Lie algebra structure on the structure sheaf @y and satisfies the
Liebniz identity

{FG, H} = F{G,H} + {F,H}G.

Conversely any Lie algebra structure on Oy satisfying the Liebniz identity
arises in this way.

REMARK 5.4. Given a symplectic structure w on M we get an isomor-
phism TM =~ T*M and thus a section Qe A TX which defines a Poisson
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structure. Conversely, any nondegenerate Poisson structure is of this form.

EXAMPLE 5.5. Let G be a Lie group, g its Lie algebra. The dual g* admits
a canonical Poisson structure called the Kostant-Kirillov Poisson structure.
It corresponds to the Poisson bracket

{F,G}(&) := K¢, [dF, dG\1).
ie, Q () =<l D-

Given a Poisson structure Q on X we get a homomorphism
fo: T*X —» TX. Given a function F on X, &p:= fo(dF) is a vector field on
X which is called a Hamiltonian vector field. This defines a Lie algebra
homomorphism from (Oy, {, }) to (TX, [,]). If & is a Hamiltonian vector
field then the Lie derivative L; Q = 0 and dF(¢;) = 0. This corresponds to
the fact that F and Q are invariant under the Hamiltonian action of the
1-parameter group corresponding to &..

DEFINITION 5.6. A morphism f: X — Y of Poisson varieties is a Poisson
map if it preserves the Poisson bracket. i.e., f*{F,G}y = {f*F, f*G} or
equivalently df (Q,) = f*(Qy).

The rank of the Poisson structure at a point x€ X is the rank of the
homomorphism f,. It defines a stratification of X. Let X, be the stratum
of rank r. Then Q, € ATX . and is a Poisson structure on X,. Each stratum
has a canonical (analytic in general) foliation into symplectic leaves defined
by the involutive subbundle Q| (T*X,). If § = X, is a symplectic leaf, then
Q€ A TS and is nondegenerate (i.e., defines a symplectic structure).

DEFINITION 5.7. A Casimir function, or invariant function, on a Poisson
variety is a function F with zero Hamiltonian vector field.

Locally on X, the Casimir functions define the foliation into symplectic
leaves.

EXAMPLE 5.8. On the dual g* of a Lie algebra the symplectic leaves of
the Kostant-Kirillov Poisson structure are the coadjoint orbits. The global
Casimir functions are the invariant polynomials.

Let G be a connected algebraic group acting on a smooth connected
symplectic variety (S,w). We have a canonical homomorphism
g — H(S, TS). The action is Hamiltonian if the vector fields corresponding
to elements of g are Hamiltonian. This implies, in particular, that G acts
by Poisson automorphisms. Given &, neg we can choose corresponding
Hamiltonian functions H,, H,. If there is a consistent choice g — I'(S, Os)
which is a Lie algebra homomorphism, then the action is called Poisson.
The corresponding morphism u: S — g* is called a moment map.



Spectral curves and integrable systems 265

Suppose that u is submersive. Suppose that the quotient Q := S/G exists
and is smooth. Then Q has a canonical Poisson structure. Let ¢ < g* be a
coadjoint orbit. Given e 0 let G,:= Stabg (). Let S;:= 1~ Y(&). Then the
connected components of S,/G, are symplectic leaves of Q. If u has
connected fibers, then there is a canonical bijection between coadjoint
orbits in u(S) and symplectic leaves of Q. S;/G, is called the reduced space
and the above procedure is called Marsden-Weinstein reduction.

DEFINITION 509. Let (X,w) be a symplectic variety. An irreducible
subvariety Y < X is isotropic if for a generic y€ Y, the subspace T, Y is an
isotropic subspace of w, i.e., w|, = 0. It is Lagrangian if dim Y = 3dim X.

DEFINITION 5.10. Let (X,Q) be a Poisson variety. An irreducible
subvariety Y < X is isotropic (resp. Lagrangian) if it is generically an
isotropic (resp. Lagrangian) subariety of a symplectic leaf; ie, Y is
contained in the closure S of a symplectic leaf S = X and the intersection
Y n S is an isotropic (resp. Lagrangian) subvariety of S.

An algebraically completely integrable Hamiltonian system structure on
a family H: X — B of abelian varieties is a Poisson structure on X with
respect to which H: X — B is a Lagrangian fibration. We will extend this
definition to families of abelian varieties with degenerate fibers:

DEFINITION 5.11. Let X be a smooth algebraic variety (not necessarily
complete), B an algebraic variety, A a proper closed subvariety of B, and
H: X — B a proper morphism such that the fibers over the complement of
A are isomorphic to abelian varieties. A Poisson structure on X is an
algebraically completely integrable Hamiltonian system structure on
H: X — Bif H: X — B is a Lagrangian fibration over the complement of A.

REMARK 5.12. It follows from the definition that, away from A, the
Hamiltonian vector fields corresponding to functions on B are tangent to
the fibers of H and are translation invariant.

6. The moduli space of Higgs pairs as an orbit space

6.1. The cotangent bundle

We show in this section that a Zariski open subset of the moduli space
M ;g Of Higgs pairs is the orbit space of the action of the level group on
the cotangent bundle to the moduli space of vector bundles with D-level
structure.

This realization introduces a canonical Poisson structure on an open
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dense subset of M ;... In Section 7 the Poisson structure will be extended
to the smooth locus of M fjig,s.

We will first realize the cotangent bundle |T*%; (r, d, D)] as a moduli
space of triples (E, ¢,n) of L-twisted Higgs pairs with D-level structure
(Definition 6.5).

Let D be an effective divisor of degree ¢ = 0.

PROPOSITION 6.1. % (r,d,D) is a smooth quasi projective variety.
The tangent space Tyg%s(r, d, D) is canonically isomorphic to
H'(Z, End E(— D)).

REMARK 6.2. The isomorphism
Tem: T (r, d, D) - H'(Z, End E(— D))
depends on the representative (E, n) € [(E, n)]. Given f e Aut(E) we have:

Tey -y =H "(AA(S)) ° 7, )

Proof of Proposition 6.1. The smoothness follows from that of the bundle
over the Hilbert scheme of which it is a geometric quotient. One carries out
the construction of the infinitesimal deformation maps along the lines of
the construction for deformations of vector bundles alone (see [Se],
Appendix 3). The result is:

LEMMA 6.3. Let S be a smooth quasiprojective variety. Let (6,n) be a
family of rank r vector bundles of degree d with D level structure. There exists
a canonical sheaf homomorphism

©:TS » R} (End & ® Os, z(—S x D))

called the infinitesimal deformation map associated to the family.
Proof. Let A, , be the complex

Endé 15> Hom(@‘”‘, P (om,).

i=1

We first construct an infinitesimal deformation map t': TS — R} (X', ). Then
we use the quasi isomorphism induced by the injection of complexes:

((End €(—S x D) - 0) - A},

to obtain 1. O
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The proposition follows from the lemma via standard deformation theoretic
arguments. 0

REMARK 6.4. The cotangent space Tjf, ,3%; (r, d, D) is canonically isomor-
phic, by Serre’s duality, to H°(Z,(End E)* ® K(D)) and via the trace form to
H°Z, (End E) ® K(D)). This is the key observation relating the moduli space
s (r, d, D) with the moduli space My;,,, of K(D)-twisted Higgs pairs.

DEFINITION 6.5. Let L be a line bundle on X. A rank r L-twisted Higgs pair
with D-level structure is a triple (E, ¢, ), where o € H%(Z, End E ® L) and (E, 1)
is a rank r vector bundle with D-level structure.

Two L-twisted Higgs pairs with D-level structures (E,, ¢,,7,), (E,, ©5,15)
are said to be isomorphic if there exists an isomorphism f: E, 5 E, such that
nef=nyand g,° f =(f®id )°9,.

Let L = K5 (D). The closed points of |T*%; (r, d, D)| parameterize isomor-
phism classes of L-twisted Higgs pairs with D-level structure.

Let M. be the open subset of M jq,. Of stable Higgs pairs with a d-stable
vector bundle. Let |T*%(r, d, D)/ ~* be the open subset of |T*% (r, d, D)| of
triples (E, ¢, n) with a stable Higgs pair (E, ¢). Let

L T*g (r, d, D) ~* — M,

be the forgetful morphism. (It is indeed an algebraic morphism because Mfi;,,,
is a coarse moduli space and |T*% (r, d, D)| is the descent of a bundle over a
Hilbert scheme which is (by Proposition 6.1) the base of a family of Higgs
pairs).

REMARK 6.6. |T*%; (r,d, D)/" ~* is nonempty if

1. g =0 and é > max(2, p) (p as in Remark 4.3).

2.g=1and >0

3. g=1and 6 =0 and ged(r,d) = 1

4. g=22
We will restrict attention to these cases only.

Let I:‘I,_:[T*%2 (r,d,D)] - B, be the invariant polynomial morphism. (De-
fined in Section 2).

The Gp-action on % (r, d, D) may be lifted to |T*% (r, d, D)|. |T*%Us(r, d,
D)[¥~5 and T are G,-invariant. Moreover each fiber of I consists of a single
(closed) G,-orbit.

LEMMA 6.7. G, acts freely on |T*%; (r, d, D)|" .

Proof. Tt follows from Lemma 4.6 and Remark 6.2 that the stabilizer of
(E, ,n) is anti isomorphic to Aut(E, @) or Aut(E)/(C* -id) if ¢ = 0. But a
stable Higgs pair is simple. Here we call an isomorphism composed with the
inversion map an anti isomorphism. O
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By the general construction described in Section 5 we get:

COROLLARY 6.8. The open subset M5, of stable Higgs pairs with 5-stable
vector bundle has a canonical Poisson structure.

6.2. The action of the level group is Poisson

The lifting of a group action on a manifold U to its cotangent bundle T*U
is always Hamiltonian and has a canonical moment map (see [A-G]). We
will identify the moment map for the action of the level group (Definition
6.10 and Remark 6.11). The moment map will be used later (Proposition
8.8) to identify the symplectic leaves foliation of M ;..

The proof (Proposition 6.12) of this identification consists of a lengthy
unwinding of the cohomological identifications. We include it for the sake
of completeness, though the reader might prefer to be convinced by the
naturality of its definition and the a priori knowledge of its existence.

Let E be a vector bundle of rank r and degree d. We have a short exact
sequence:

0— (EndE) ® Oy (—D) 5 End E —» End E;, — 0.

Hence the long exact cohomology sequence:

He®)

0 - H%Z, End E(—D)) — H°Z,End E) > HD, End E,))
% H'(Z, End E(-D)) %> H'(Z, End E) — 0.
Using Serre’s duality we get the commutative diagram:

H'(i)

H'(, End E(— D)) H'(Z, End E)

H%i ® id)*

HOZ, (End E)* ® K(D))* ——= HYZ,(End E)* ® K)*
Thus we get canonical isomorphisms:
[HYD, End E|,)/H°(Z, End E)] = Ker[H%(i ® idg)*]

=~ [coker(H°(i ® idg))]*

= [H(Z, (End E)* ® K(D)/H°(Z, (End E)* ® K)]*.

Let a be the dual of the composition of the above isomorphisms.

DEFINITION 6.9. Let ug be the homomorphism defined by composing «
with the canonical projection and injection:
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H°Z, (End E)*® K(D)) —[H°(Z, (End E)*® K(D))/H°(Z, (End E)*® K)]
5 [H°(D, (End E),,)/H°(Z, End E)]* < [HD, (End E),,)/C]*

DEFINITION 6.10. Let pu:|T*% (r, d, D) - g} be the morphism sending

[(E, ,n)] to no(ugp) on~ .

Notice that although # is defined only up to an orbit of Aut(E),
ne(ugp)eon~' is well defined.

REMARK 6.11. u; and « are induced by the pairing

residue

H°(Z, (End E)* ® K(D)) ® H°(D, (End E),,) » H(D, K(D)),,) ——% C.

PROPOSITION 6.12. The morphism u is the canonical moment map for the
Poisson Gp-action on |T*%y(r, d, D)|.

Proof. Let G be a group acting on a manifold U. The canonical moment
map of the lifted action to T*U sends a pair (u,¢) of a point ueU and a
covector o€ T*U to dp}¥(p) where p,: G — U sends g€ G to gu (see [A-G]).

Let [(E,n)] €y (r, d, D) be a fixed pair and pg,: G, = % (r, d, D) the mor-
phism induced by the action onto the orbit of [(E,n)]. Lemma 6.13 identifies
the differential of pg .

LEMMA 6.13. The infinitesimal deformation map of vector bundles with level
structure gives rise to a right exact sequence:

ap - H'(Z, End E(— D)) - H'(End E) - 0.
depending canonically on a choice of a pair (E, n) in an isomorphism class [(E, n)].

The homomorphism ¢ is canonically identified with the differential of py ,.
Proof. Consider the short exact sequence of complexes:

0— (0 — Hom (E,D, @D (9,,)) 5 (Ag,) — (End E - 0) > 0.
i=1

The one dimensional hypercohomology of these complexes computes the
spaces of infinitesimal deformations of the space of level structures on E, the
moduli space of pairs of vector bundles with level structures (see Lemma 6.3),
and the moduli space of vector bundles respectively. The exact sequence

0 — H%Z, End E) > H® <D, Hom (E,D, ) %))
i=1

—H A g,) - H'(Z, End E) -0
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is part of the corresponding long exact hypercohomology sequence. The
induced homomorphism

i=1

a H° <D, Hom <E|D, @ (9,,)) / HO(Z, End E)
—~H\(A ) > H'(Z, End E(— D))

is the corresponding differential of the morphism from the space of isomorphism
classes of level structures on E to the moduli space of pairs % (r, d, D).
The level structure (E, n) induces a surjective homorphism

gp > H® (D, Hom <E,D, @ (9,,)) / HZ, End E).
i=1

Define o to be a-b. The differential of pg , is identified by o. O

Comparing Definition 6.10 with Lemma 6.13 we see that ¢* is equal to the
restriction of u to the cotangent space Tif, %y (r,d, D) = H'(End E(—D))*.
This completes the proof of Proposition 6.12. O

7. The Poisson structure

In this section we extend the Poisson structure to the smooth locus of the
moduli space M ;. of Higgs pairs (Corollary 7.15). As a result, the complete
Jacobians of smooth spectral curves will be contained in the Poisson variety.

In Section 7.1 we provide a cohomological identification of the tangent
spaces to points in the moduli spaces:

— My, of Higgs pairs (Corollary 7.9) and

— |T*%Us (r, d, D)| of Higgs pairs with D-level structure (Corollary 7.8).

In Section 7.2, we use the duality theorem to construct cohomologically an
anti symmetric bilinear form on the tangent bundle to the smooth locus of the
moduli space of Higgs pairs. We then show that it extends the Poisson structure
constructed in Section 6, Corollary 6.8 over a Zariski open subset.

The section is quite technical and one might prefer to skip it on his first
reading.

7.1. Deformations of Higgs pairs with level structure

Let D, D’ be two effective divisors of degrees d, ¢’ (possibly zero) and let
L = K(D). Assume that there exists a coarse moduli space M(D, D’) of
isomorphism classes of triples (E, ¢,n) of Higgs pairs (E, ¢) with D’-level
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structure #. We will identify the infinitesimal deformation spaces of such
triples. The case D’ = o will specialize to the case of Higgs pairs and the
case D =D’ will compute the tangent space to the cotangent bundle
| T* % (r, d, D)| of the moduli space of vector bundles with D-level structure.

Given a twisted endomorphism ¢ € H(Z, End E ® L) define ad ¢: End E
— End E® L by ad o())= @ oy — . Let s be the section 1eH(Z, Ox (D))
Let 0:= —ad ¢ °(®s) and let A , 1, be the complex:

(End E) ® Oz (—D’) 5 (End E) @ L.

PROPOSITION 7.1. Let [(E, @,n)] be a point of M(D, D’). A representa-
tive (E, @,n)e[(E, ¢,n)] determines a canonical isomorphism between the
Zariski tangent space Ty, M(D,D’) and the hypercohomology
HY (A g, p) of the complex.

REMARK 7.2. The isomorphism in Proposition 7.1 depends on the
representative (E, ¢,n) in the isomorphism class [(E, ¢,#)] in the same
manner as in Remark 6.2.

Proof. (of Proposition 7.1, the proof ends with Lemma 7.6). We first
prove it with the complex % ,, (defined below) instead of X% , .. We
then show that the two complexes are quasi isomorphic (Lemma 7.6).

Let S be a smooth quasiprojective variety. Let (&, ¢,n) be a family
of L-twisted Higgs pairs with D’ level structure. Let m,: End & —
Hom(&, ®i-, Usxp) be composition with 5. Let 9, ,:= —(ad ¢, m,). Let
A's ., bE the complex

End & > (End 8 ® p¥L) ® Hom (é", @ (QSXD’>'

i=1
LEMMA 7.3. There exists a canonical sheaf homomorphism
p: TS - Ril’y(‘%rd,(p,q)

called the infinitesimal deformation map associated to the family.

The construction of the infinitesimal deformation map is a straightforward
modification of the construction for deformations of vector bundles alone (see
[Sel, Appendix 3). We will describe the construction only in the case of an
infinitesimal family S = Spec(C[¢]/(¢%)):

Choose a Cech covering % := (U,) of Z. Let # := (W,) be the covering of
S x X by W, =S x U,. The definition of the complex 4%, , is motivated by:
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LEMMA 7.4. Fix a Higgs pair (Eq, o). A cochain (f,¢,7):= (f,), (@2)s (71,))
in CoW, A, ,.) is a cocycle if and only if
1. The cochain f is a cocycle in Z(#, End E),
2. The cochain @, + ¢ ¢ in CO#", pf(End E ® L)) is a global section ¢ of
End & ® p¥(L) where & is the infinitesimal family of vector bundles over
S x X defined by the new gluing transformations (f,5):= (id + ¢- faﬂ) for
p¥E, and
3. The cochain (1, + ¢-11,) in Co(#, Hom(pfE, ®i=,0s . ) is a global
section n of Hom(&, ®'-, U, ).
Moreover, two cocycles (( ﬂﬁ), (@) (1, ( f;ﬂ), (92), (2)) represent the same
hypercohomology class if and only if the corresponding infinitesimal families
(&, @,n) and (&', @', n") are isomorphic.
Proof. The cochain (f, ¢, 7) is a cocycle if and only if
(i) 8(f) =0 and
(i) —ad,,(f) = 8(¢) and
(ii)) —noe f = o(1).
In order to verify that 2 and (ii) are equivalent we need to show that
fupo@p° fus ' = o, if and only if —ad%(f’) = &(¢). Indeed,

fupo@pe fup ' =(d + & fip) (@0 + & Pp)o(id — & fp)
=@y +& Qg+ C(faﬁ(l’o - ¢ofazp) = Qo+ & @y — 8'ad¢o(ﬂﬁ)
= @0 + &, —e[ad,,(f,p) — (@, — Pp)]-

In order to verify that 3 and (iii) are equivalent we need to show that
1, = Ng° fop if and only if —#no° f = 5(7). Indeed,

Mg fa = o + & 115) 2 (d + & fp,) = ng + &1, + £[No° fp, — (1, — 7p)].

It remains to check that the cocycle (f, ¢, #) is a coboundary if and only if
the family (&, ¢, ) is a trivial deformation. Indeed, given a cochain g:=(g,) in
Co(f@%”o) (which is in fact in C%End E,)) it cobounds (f, ¢, #7) if and only if

L faﬂ =d.— 9

2. ¢, = —ad y(9,)

3. f’a = —Ho oga
if and only if the isomorphism g: p¥ E, > & defined by g,:= (id + ¢-¢,) relates
the family (&, @, n) to the trivial family (p¥ E, p¥ ¢, p¥1,)- O

Given a family (&, ¢,n) on S x X restricting to (E,, ¢q, 1) at 0 x Z we can
choose a cocycle (jf,,,) in Z'(%, End E,) such that & is the infinitesimal family
of vector bundles which corresponds to the new gluing transformations
(d +¢- f'a,,) for P¥E,. The cocycle ( Lﬂ) determines unique cochains (¢,), (7,)
such that ¢, n are the global sections (¢, + ¢ ¢,), (1o + ¢°7,). Lemma 7.4
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implies that (( jf,ﬁ), (@,), (11,)) is a cocycle. The infinitesimal deformation map
p in Lemma 7.3 sends the canonical tangent vector of S to the hyper-
cohomology class represented by ((f4), (¢,), (17,)).

Conversely, given a hypercohomology class in HY(Xg, ,,.,.) We get by
Lemma 7.4 an infinitesimal family (&, ¢,#) over S x £ and hence a tangent
vector in the Zariski tangent space to the coarse moduli space M(D, D’). Thus
we get:

COROLLARY 7.5. Let [(E, o,n)] be a point of M(D, D’). There exists a
canonical isomorphism

PE.om: TigomM(D, D) = H (A £ o)

Lemma 7.6 completes the proof of Proposition 7.1. d

LEMMA 7.6. Let (&, ,n) be a flat family of semistable L-twisted Higgs pairs
with D’-level structure parameterized by S. There exists a canonical quasi-
isomorphism identifying

j”r(fé,w,tl) = R‘;’x.(fﬂ,l/’.ﬂ')

for every i = 0.
Proof. Let qi: A,y = A% ,, be the morphism of complexes defined by

gio: End&(—D' x S) o End#& is the sheaf inclusion.

gi End& ® PtL 2% (Endé& ® P£L) ® Hom (6 D @,,,XS>.
i=1

L

One checks that gi is a quasi isomorphism. O

The following lemma relates the notions of stability to smoothness of points
in M(D, D'):
Let k(D, D) be the number of zero divisors among (D, D’).
LEMMA 7.7. The dimension of the Zariski tangent space Tg, ,M(D,D’)
at a point (E, @,n) is k(D,D') +r*((2g —2) + 6 + &) provided that either
(E, @) is stable or that E is min{J, &'}-stable. In particular, if dim M(D, D) =
KD, D) + r¥(2g — 2) + 6 + &') then such a point is a smooth point.

Proof. Consider the exact sequence of complexes:

0-0—-EndE®L)—> Ag,p—(End E(—D')—>0) -0

and its long exact hypercohomology sequence:
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0 — HO(A . p.p) » HY(End E(—D'))
— HYEnd E ® L) » H'(Xg.,.p) » H'(End E(— D))
— HY(End E ® L) » HX (A g.ppr) = 0.

If (E, @) is stable then H°(A#g, p) is isomorphic to (0) or C (depending
whether D’ = 0 or D’ > 0). The same holds if E is D’-stable. In this case Lemma
4.6 implies that H°Z, End E(—D’)) is isomorphic to (0) or C and thus
HO(A k,p,p') is isomorphic to HZ, End E(—D’")). A dual argument (using
Grothendieck duality as in Section 7.2) shows that H*(A% , p-) is isomorphic
to (0) or C (depending whether D = 0 or D > 0). Thus

dim H (A g,4,p) = K(D, D') — Y(HE.0.0')
— k(D, D') + z(End E® L) — x(End E(—D'))
=k(D,D’) +r¥(2g —2) + & + &). O

The cotangent bundle |T*%; (r, d, D)| may be regarded as the subset of a
moduli space M(D, D) (the case D = D’) parameterizing triples [(E, ¢, )] with
d-stable vector bundle E. Lemma 7.7 implies that |T*%,(r, d, D) is an open
subset. Let £, be the complex A , ,. Proposition 7.1 implies in this case:

COROLLARY 78. Let [(E, o,n)]€|T*%s(r,d,D). Fix a representative

(E, o,m € [(E, ¢, n)].
1. There is an isomorphism

Tig.om| T* % (r, d, D)) = H'(H ;)
(the hypercohomology of the complex) depending canonically on the repre-
sentative (E, @, n).

2. The differential dp of the bundle map p:|T* Uz (r,d, D) = U5 (r,d,D) is
canonically identified by the exact sequence:

0> HZ, EndEQ® L) > H\(A ;) & H'E, End E(— D)) — 0.
E.o

The moduli space of stable K(D)-twisted Higgs pairs may be regarded as the
moduli space M(D, 0). Let £, be the complex A , , i.e., the complex:

EndE —2% (End E)® L.

Proposition 7.1 and Lemma 7.7 imply in this case:

COROLLARY 7.9. The moduli space M3y, is smooth. Let [(E, ¢)] be a stable
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point in Mg, A representative (E, ¢) of an isomorphism class [(E, ¢)] deter-
mines a canonical isomorphism

Tie.onMtiges = H (A g )

We will need also the cohomological identification of the differential of the
forgetful morphism T: | T* Uy (r, d, D)" 5 > M3y, from the subset of the cotan-
gent bundle consisting of triples (E, @, ) with a stable Higgs pair (E, ¢) to the
moduli Mijigs.

COROLLARY 7.10. Let [(E, ¢,n)] be a stable Higgs pair with a D-level
structure. Assume that E is o-stable. The infinitesimal deformation spaces with
and without level structures are related by the following canonical exact sequence

0—-gp— HI(XE,(,;) % Hl(jE,¢) - 0.

The projection ¢ is canonically identified with the differential of the forgetful
morphism - | T*Uy (r, d, D)|¥ ™% - Miyiges-

Proof. This is part of the long exact sequence associated to the exact
sequence of complexes:

0—+IE’¢—>9_fE’¢—>(EndE|D—>0)—>O.

HO(A, £.0) = C because (E, @) is stable. The level structure induces a canonical
isomorphism g, = H°(End E,)/H°(A g ). O

7.2. Extension of the Poisson structure

The symplectic form on |T* % (r, d, D)| can be identified (Proposition 7.12)
using the duality theorem for hypercohomology (Grothendieck duality).
Throughout the discussion we will use the terminology of [Ha]. Let
(E, @,n)€|T*%5(r,d, D)]. There is a canonical symmetric Ad-invariant
bilinear form on gl(r, C). We get canonical isomorphisms:

[End E® L]* ® K > End E(—D)
[End E(—D)]* ® K > End E® L.

Given two bounded complexes of coherent sheaves F', G' define the
complex of sheaves Hom'(F', G') by

HOm"(F', G): H HOm(Fl” Gl’+n) and d = dF + (__l)n+ ld(;-

pezZ
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Given a bounded complex L of locally free sheaves let L'* := Hom'(L', O3 ).
Let X#,:= (A £, ® Ky ) [1]. 1t is the complex

HE, = (End E® L1* ® K —% [End E(— D)]* ® K)

where the sheaves are in degrees —2 and —1. By Grothendieck duality
theorem ([Ha] p. 210, Theorem 11.1), we have canonical isomorphisms:

[H]* (23 '}{E*f(p) —:> H_*(Z, %E,(p)*'

In particular gr: H'(4'% ,[ —2]) > H'(A g )*
Let (io, —i,): ##,[—2] - A, be the isomorphism of complexes. Let

f:= Hl(io, _’1) ogr‘lz HI(XE,«;))* - IH]I('){E,J,))'

It is an anti selfdual isomorphism.

DEFINITION 7.11. Let o’ be the global 2-form on |T* %, (r, d, D)| associated
with [~

PROPOSITION 7.12 w = w'. (Recall that w is the canonical symplectic struc-
ture).

Proof. We have functorial identifications of the pullback of both w and '
on any family of L-twisted rank r Higgs pairs of degree d with D level structure.
The proof reduces to a Cech cocycle calculation by pulling back both forms to
simple infinitesimal families.

Let (Eg, @o. o) €|T* Uz (r, d, D)|. Let 0,7€ Tg, pool T*%s (r, d, D). Denote
by o, 7 also the corresponding classes in H'(A, ). Let %:= {U,} be an affine
open covering of Z. Let

da_ da,, 6a‘_ 0a,, )
5;._< = ) az'_( . )eZ (U, End E(— D))

be cocycles representing dp(s), dp(z). Let

op _ (09,\ dp _ (0@,\ o
'a?—<05>’ ==\, )€ COU. End E, ® L)

be cochains such that

& 29\ (% 2
0s’ 0s ) \ot’ ot

are cocycles in Z'(#, A, E..p,) TEPTESENLING 0, T TESpECtively.
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Let X := Spec(C[s, t]/(s% st,t%)). Let # :={U, x X} be the affine open
covering of ¥ x X. Let

(o= (10 +5 22+ 28 2000 A )

0Os ot
op, O¢ o
0= (9,):=| 9o + 572 +1—=2|eCoW, pt End E, @ L),

n:=(n,):= (1o)-

Then (a, @,n) defines a deformation (&, ¢,n) of (Eg, ¢g, 1) Over £ x X (in
particular o€ HZ x X,End & ® p¥L)).

Let y: X — |T*%(r, d, D)| be the unique morphism such that dy sends (9/0s),
(0/0r) to o, (it is in fact the canonical morphism induced by the family into
the moduli space). The proposition follows from the following two lemmas:

LEMMA 7.13. (y*w)((0/0s),(0/0t)) is represented by the cocycle

do da do da L
t<as at) t(a a) eZ', Ky).

Proof.

vo(ld)-2lra(D)]-ra(@)]-rof2)

[0/0s,0/0t] = 0. By Corollary 7.8 dy(d/0s) is a section of R (1” ¢0) and
dpedy(d/ds) is a section of Rlx‘(End &(—D)) represented by (aa/as) (the
infinitesimal deformation map p in Lemma 7.3 involves partial differentiation
of (a, @, n) along X).

(€)oo (2 (e o)) -o(o)

Thus

0 ()= (22,28
wro(5)=v(5) 0

LEMMA 7.14. o'(o, 7)€ H'(Z, K;) is represented by

dp Oda dp oa
tr ('a— E) “(E a—)



278 E. Markman
Proof. The pairing o’

[H'Gig, —iy)) ™! @id
H' (A g,) @ H (Hg,) ———=— H'(HE,[-2]) @ H'(A},)

—H'(Z, K;)

is induced by the pairing (of degree — 1) on the level of complexes of sheaves:

i, =)' ®id
%E,q)®f£,tp - (ff,w KZ)[—-I] ®‘%fE,(p_' K):
where iy and i, are defined by the trace pairing. O
This completes the proof of Proposition 7.12. O

We are now able to extend the Poisson structure from the dense open subset
of M, parameterizing orbits of the level group action on the cotangent
bundle |T*% (r, d, D)| to whole of Mfj;u..

Using the canonical symmetric Ad-invariant bilinear form on gi(r, C) we get
canonical injections:

[EndE®LI*® K <> EndE.
[End E]* ® K <> End E® L.

Let
Ti= H'(Uo» —ji)ogr™ HH (Hp,)* » H'(H ).

. . 2
Let Q,, be the corresponding section of A TMiy;,,,-

COROLLARY 7.15. Q,, is a Poisson structure on Miy;,,,. It extends the Poisson
structure on Mijige, N Im(7) obtained via symplectic reduction.

Proof. We need to show that (a) Q,, satisfies the condition in the Definition
5.3 of a Poisson structure, and (b) it coincides with the reduction of the
symplectic structure w on |T*%; (r, d, D)| to the open subset Mﬂi_gfgs of Miiiges
(Corollary 6.8).

Clearly (b) implies (a). Part (b) follows from the cohomological identification
of @ (Proposition 7.12), the cohomological identification of the differential of
T: | T*%s (r, d, D))"~ — Miis. (Corollary 7.10) and the commutative diagram:

H'(, ) > HI(Hy,)

7)*
T(d ) ; ldT 0
IH]‘(JifE’q,)* — Hl(.%”mp)
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REMARK 7.16. Notice that j,j, are defined using the section
1e HY(Z, Oz (D)). In fact, letting j,:= (® s)°i, and j, := (® s) ° i, for any choice
of a nonzero section s gives rise to a Poisson structure ;. Notice that the map
s—Q is linear.

The cohomological identification of the Poisson structure enables us to
determine its rank on the symplectic leaf containing a given Higgs pair (E, ¢):

PROPOSITION 7.17. Let (E, ¢) € Miyigy be a stable Higgs pair. Assume that
D is an effective divisor of positive degree. The rank of Q,, at (E, @) is equal to

dim My, + 1 — lengthKer(ad ¢ : End E,, > End EQ L,)).

The maximal rank is dim My, + 1 — r-deg D. The pair (E, ¢) belongs to a
symplectic leaf of maximal rank if and only if ¢ is regular over D.

REMARK 7.18. Notice that on the image of I: |T*s (r, d, D) =% — Mg, this
agrees with the fact that length Ker(ad ¢|,) — 1 is equal to the codimension of
the coadjoint orbit of u(E, @, n).

Proof. (of Proposition 7.17). Consider the exact sequence of complexes:

oy J1)

_ _ —ad(p»
0-Ht,~2] 25 #,,—(EndE, —% EndE® L) —0.

HO(A #,[—2]) = (0) and H(A,) = C because the Higgs pair (E, ¢) is stable.
Thus Ker H'(jo, j,) = H(End E,, *2°2 End E® L,,)/C. a

8. The moduli space of Higgs pairs as a completely integrable system

In this section we assemble the previous results to a complete proof of the main
theorem (Theorem 8.5). In Subsection 8.1 we show that the proper morphism
H;: Mii,,, — By is a Lagrangian fibration (Proposition 8.3). Having developed
the required deformation theory, the proof reduces to an infinitesimal verifica-
tion. This is the last step in the proof of the main theorem.

Subsection 8.2 consists of the statement of the main theorem in a canonical
form. In Subsection 8.3 we describe the symplectic leaf foliation of Mj,,,
(Corollary 8.10) using the identification of the moment map for the level group
action.

8.1. The Lagrangian fibration

We begin by an infinitesimal identification of the embedding of the spectral
Jacobians in M\;,,,.
Let L:= K; (D). Let m,: X, > X be a smooth spectral curve. Let F be a
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line bundle on X, E:= n,.F, ¢:= n,.(® y,) where y, is the tautological
section of ¥ L. Let s = 1€ HY(Z, Oy (D)).

LEMMA 8.1. We have the following canonical exact sequence:
0 - M0, > End E 2% End E® L - m,u(K 5, )(D) —0. @)

Proof. Lemma 2.7 implies that we have a canonical exact sequence:

ro®id—id .
00y, > E® F* (A) " 812520

¥ E ® L) ® F*(A) - nFL(A) — 0.
We know that K, (nfD) is canonically isomorphic to =nfL(A). Pushing
forward the above sequence we get the sequence 2. O

PROPOSITION 8.2. Let [(E, ¢)] € Mijiges correspond to a smooth spectral
curve X,. The differential of the embedding i,:J¥® & My, is canonically
identified by the exact sequence:

dip

0> H'(Z, m,.05,) —> H'(A g ,) > HOZ, m,o(Kg, YD) 0. 3)
Proof. We have a short exact sequence of complexes
0—-(npls,—0)— J—fmﬂ — (Im(ad ¢) & End E® L) — 0.

The complex (Im(ad ¢) » End E® L) is quasi isomorphic to the complex
(0 - m.(Kg,)(D)). The exact sequence (3) is part of the corresponding long
exact hypercohomology sequence.

The image of H'(Z, n,.(,) consists of isospectral deformations since its
hypercohomology classes are represented by Cech cocycles (( jfw), 0) where the
Higgs field is not deformed. Conversely, let ((f,,), (¢,)) be a cocycle in
Z\u, A, £.o) T€presenting an infinitesimal isospectral deformations of the Higgs
pair (E, @) with respect to a Cech covering % as in the Proof of 7.1. Being
isospectral is equivalent to the fact that (¢,) is a cochain in the cochain group
C°, Im(ad,)) of the subshpaf Im(ad,) of End E® L. It follows that the
hypercohomology class of ((f, ), (¢,)) is in the kernel of the homomorphism
to HOZ, m,.(K £,XD)) in the sequence 3 and is hence in the image of
H'(Z, n,. Oy ). O

PROPOSITION 8.3. Let X, be a smooth spectral curve. Then the fiber Hf '(b)
is Lagrangian (in the sense of Definition 5.10).

Proof. Let @ be the differential —ad ¢ of the complex % .o L€t d be the
differential of the complex 4§ ,[ —2]. Proposition 8.2 implies that the conor-
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mal space to a point in H™!(b) is identified with H°(Z, coker d)*. Corollary
7.15 reduces the proof to checking that

F(H°(Z, coker )*) = H'(Z, Ker d).

(f = H'(jo, — j1) o gr ). The equality follows from the commutative diagram:

= H'(jo))
—_—

HOcoker(d))* e H'(Ker(d)) H'(Ker(d))

Lo l

H' (1)

H(F g )t <— HWFE[-2) —> H'(Fy,)

l l |

> H(j,)

H'(Ker(d))* -~ HOGcoker(d) ——= H°coker(d)).

H'(jop) is the homomorphism H'(n,.0s,(—D)) — H'(n,.(s,) induced by the
sheaf inclusion. It is thus surjective. O

REMARK 8.4. Let £, be an integral spectral curve. The fiber Hy !(b) is
isomorphic to the compactification of the generalized Jacobian by its embed-
ding in the moduli space of (stable) rank 1 torsion free sheaves on X,. It is
hence an irreducible subvariety of M, (see [A-I-K]) with stratification
indexed by the lattice of partial normalizations of ;. Let v: £, — X, be a partial
normalization. It is natural to ask when is the stratum Lagrangian in its
symplectic leaf. Proposition 7.17 implies that this holds only for normalizations
of points in the support of D. The general condition should depend on the type
of the singularity and the multiplicity of xe D. We claim that if v: £, —» I, is
the normalization of a normal crossing singularity x, over a point xeX
appearing with multiplicity one in D and if 7, o v is unramified over x then the
stratum is Lagrangian. To see that let (E, ¢) € Mij;,,, correspond to the torsion
free sheaf F on X, such that F =~ v*}~7 for some line bundle F on ,. We need
to show that

length(Ker(ad ¢,))) — length(Ker(ad ¢))) = 2(g5, — g5,)-

If x, € X, is the crossing of ¢ branches over x e supp(D) then it contributes ¢* — ¢
to both sides.

8.2. The main theorem
Let £ be a curve of genus g. Let L be a line bundle on X. Let

6:=deg(L) — (29 — 2). Assume that g,r,d, § satisfy the nonemptiness con-
dition 6.6. Let &:= (H°(Z, L® K~') — {0}). We will show that for any
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choice of a section se &, there is a canonical Poisson structure ; on Mg,
making (M., €, Hy) an integrable system. More canonically:

THEOREM 8.5. (1) The generic fiber of id x Hy: & X Mijjgee > & X By is
a complete Jacobian of a spectral curve; (2) There exists a canonical Poisson
structure Q on S X Mijiges; (3) (& X Miiiges, Q,1d,, x H}) is an algebraic-
ally completely integrable Hamiltonian system.

Proof. (1) Follows from Proposition 2.3 and Remark 3.4, Part 1.

Let s€ %, D its zero divisor. Corollary 7.15 implies that there exists a
canonical Poisson structure Q,, on Miy;,..(K(D)). The section s induces an
isomorphism My, (K(D)) = Miyig.(L) and a Poisson structure Q; on
Migao(L).

The map s+ Q; is linear (Remark 7.16), in particular algebraic, so the
Poisson structure glues as a global structure Q. (3) Proposition 8.3 implies
that the generic fiber of H; is Lagrangian. O

REMARK 8.6. It seems that Theorem 8.5 generalizes to principal bundles
with reductive structure group via Donagi’s definition of the spectral curve
and its Prym (see Remark 2.8) using essentially the same techniques.

REMARK 8.7. The case of SL(r)-bundles follows from Theorem 8.5. Let
B? be the space of traceless polynomials ®;-,HZ, L®) < B,. Let yeJ¢.
Let Mg, be the moduli space of traceless semistable rank r L-twisted
Higgs pairs with fixed determinant y. It is a subvariety of My,... and has
an induced Poisson structure Q.. Let HY: M{y,. , — Bf be the restriction
of H;. Then (Mg, > .., HY) is an ACIHS. For generic be B, the fiber
of HY is canonically isomorphic to the Prym (det ° 7,.) ™ (y).

8.3. The foliation by symplectic leaves

Fix an isomorphism L = Ky (D) giving rise to a Poisson structure. The
foliation of the Poisson moduli space Mjiy;,,, of stable L-twisted Higgs pairs
by symplectic leaves is induced generically by a foliation of the space of
characteristic polynomials. This is a consequence of the fact that the
Jacobian of a smooth spectral curve is Lagrangian and is contained in the
strata of Miy;,,, of maximal rank (Proposition 7.17), hence, contained in a
single symplectic leaf. The foliation of the space of characteristic poly-
nomials turns out to be simply a coset foliation.

Let B, = H°(Z, [®}=, L®'] ® O3 (—D)). Let g: B, — B, /B, be the quo-
tient map.

PROPOSITION 8.8. There is a canonical isomorphism B;/B, = g%/G,
giving rise to the following commutative diagram:
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B, —> B, /B,

H,

i

|T*%; (r, d, D)]

c.q.
gb — a3/Gp.

Proof. Fix (E,n)€[(E, n)] e (r, d, D).

goH,:HZ,End EQ L) - B, /B, factors through HOZ, End E® L)/
H°(Z, End E ® K) and thus through [H(D, (End E),,)/C]* (see Definition 6.9).
The rest follows from the definition of u and of the categorical quoteint
95/Gp. O

REMARK 8.9. Let R < |T*%; (r, d, D)| be the open subset of isomorphism
classes of triples (E, ¢, n) with a stable Higgs pair and which maps to the
smooth locus of M. There is a bijection between coadjoint orbits of g}
in p(R) and symplectic leaves of Mf;,,, intersecting 1(R).

COROLLARY 8.10. The foliation of My by symplectic leaves is a
refinement of the foliation by fibers of q° H;. Every fiber contains a unique
symplectic leaf of maximal rank.
Proof. In view of Proposition 8.8 we may identify g° H, with ¢.q.op.
O

9. Examples

A remarkable fact about the integrable systems H: M{y;,, — By, is that many
classical as well as recently discovered integrable systems are in fact
symplectic leaves of them for suitable choices of X, L, r and d. This section
is devoted to the demonstration of this general phenomena.

9.1. Rational base curve

The moduli space of semistable vector bundles over P!, %p:(r, d), is empty
if r does not divide d. If r|d then it consists of the single isomorphism class
of the semistable vector bundle E:= ®/=10p(d/r). In this case
Aut(E) = GL{(r, C).

Let D = P! be an effective divisor of degree >3. Let L:= Kpi(D). Let
Upi(r, —r, DY be the Zariski open subset of % (r, —r, D) parameterizing
isomorphism classes of semistable vector bundles with D-level structure.
Up(r, —r, D) is isomorphic to Isom, (E , ®i= Op)/Aut(E). It is a homo-
geneous G -space of dimension r*(deg D — 1). By Proposition 6.1, given an
isomorphism class of level structures [(E,n)], Tils, ;e (r, —r,D) is
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canonically isomorphic to H(P', (End E)* ® L). Stabg [(E, n)] = PGL(r).
So an element x = [(E, ¢, n)] €|T*%p (r, —r, D) | is regular w.r.t the lifted
Gp-action if and only if it is regular w.r.t the PGL(r) action. G, acts freely
on the fibers of H, over polynomials of integral spectral curves (Lemma
6.7).

Let Bi™ < Bi™ < B, be the Zariski open loci of integral and smooth
spectral curves. Let

| T*%p: (r, —r, DY |y, < | T*Upi(r, —1, DY |;y < | T*%Up:(r, —r, DY |# ¢

int
be HZ Y(By™), Hf '(B¥™) and the locus of stable Higgs pairs. Since G, acts
transitively on %p:(r, —r, D), then

M p:=|T*%Up:(r, —r,DY|"™*/G p = [Tg.oye:(r, —r, D)]"~*/Stabg,(L(E, n)])
~ [HO(P', End E ® L)]"~$/AUT(E).

M, embeds as an open subset of My;,,.. The moment map u induces also
a Poisson embedding of M, into the categorical quotient g3/PGL(r). See
[Ar] Section 12 for the analysis of this action when D is reduced.

[H°(P!, End E ® L)],,,/AUT(E) is exactly Beauville’s system (see [B]).
Let d = deg D — 2. If we choose coordinates on P! and set L:= Opi(d - o0),
Theorem 8.5 has the following explicit form: Let se H'(P!, L® Kp'). Let
D be its zero divisor. A section ¢ € H(P', End E ® L) is just a polynomial
matrix. Let Q be

{A(x): A(x) is an r x r polynomial matrix with entries of degree

<d}H5/PGL(r).

The section s induces an isomorphism between M, and Q.

THEOREM 9.1 [B].

1. The fiber of H : Q — B, over a polynomial of an integral spectral curve
is canonically isomorphic to the complement of the theta divisor in the
compactification of the generalized Jacobian of the spectra curve.

2. There exists a canonical Poisson structure Q on Q such that (Q, Q, H;)
is an ACIHS.

3. The foliation by symplectic leaves is a refinement of the foliation by the
fibers of q° H; . The generic fiber is a symplectic leaf.

Beauville shows that several classical ACIHS, such as geodesic flow on
the ellipsoid, Neumann’s system, and certain Euler-Arnold systems, embed
in his system as symplectic leaves.
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9.2. Elliptic base curve, stable bundles

9.2.1. Moduli space approach. Let X be an elliptic curve. Assume that r and
d are relatively prime. A vector bundle of rank r and degree d is stable if
and only if it is indecomposable (see [Tu]). The determinant morphism
det: %y (r, d) = J¢ is an isomorphism (see [At]).

Let D be an effective divisor on X. Let L:= K(D). Theorem 8.5 applies
and we have a canonical Poisson structure ), such that (M55, Qp, Hy)
is an ACIHS. Let M, be the geometric quotient |T*%, (r, d, D)|//Gp. It is a
trivial vector bundle over %; (r, d) which embeds as an open subvariety of
M. Since p is Gp-equivariant, it descends to a surjective vector bundle
homomorphism ju: M, — My := [(8%),¢.40]/Gp (the quotient w.r.t the
Adg, -twisted action). i factors through an isomorphism of M, /T*%; (r, d)
with M, .

Let M{ be the subbundle of M, of traceless Higgs pairs. [t restricts to an
isomorphism of M2 5 [(sI$) 4, ¢-.4.01/Gp-

The SL(r) version of Theorem 8.5 becomes:

THEOREM 9.2. Let (E, n) be a stable rank r vector bundle of degree d with
D-level structure. Let y:= det(E). Then (notation as in Remark 8.7).

1. There is a Poisson isomorphism between M3?, and sl} depending
canonically on (E, n).

2. The fiber of HY:slf — B over a generic polynomial b is canonically
isomorphic to a Zariski open subset of the Prym(dete m,.)” '(y) of the
spectral curve m,: X, — X.

3. (sl§, HY) is an ACIHS.

4. q°< H: s15 — BY/B) is the categorical quotient of the coadjoint action.

REMARK 9.3. This integrable system was discovered by A. G. Reyman
and M. A. Semenov-Tyan-Shansky (see [R-S]). They have shown that
several ACIHS arising from mechanical systems such as spinning tops,
n-interacting spinning tops and movement of a body in a liquid, embed as
symplectic leaves in slj.

We will compare their approach with ours in Subsection 9.2.2.

9.2.2. Comparison with the bialgebra approach. Consider a Physical system
whose phase space can be identified with coadjoint orbits of a Lie algebra
isomorphic to slp. Its equations of motion are usually given by a Hamil-
tonian. One may try to solve these equations by exhibiting it as a
completely integrable system. The spectral construction introduces the “rest
of the conserved quantities”, i.e., a maximal involutive algebra of Hamil-
tonian functions.
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The bialgebra construction embeds slf in the dual of the infinite
dimensional Lie algebra £:= @ ,coupppC((4) ®csl(r). The rest of the
Hamiltonian functions are obtained by restricting the invariant poly-
nomials on £* to sl3.

Let Z be an elliptic curve with a fixed point p,. Let Z[r] be the subgroup
of points of order r. The discussion in [R-S] does not involve a stable
vector bundle. Instead they consider X[r]-invariant sl(r)-valued functions
with poles dominated by D. The following is a translation of the result of
[R-S] to the language of vector bundles:

PROPOSITION 9.4. Let E be a stable vector bundle of rank r and degree
d on . Assume that gcd(r,d) = 1. Let u,: (%, py) — (£, po) be multiplication
by r. Then p¥(End E) = gl(r, C) ® ;.

Proof. End E = @ {L,:acJ?[r]} (see [At]). O

Let L:= K (D). Choose a section se HYZ, K;). We get a canonical
isomorphism O; = K.

COROLLARY 9.5. The space of J2[r]-invariant sections of gl(r, C) ® u* L
is isomorphic to H°(Z, (End E) ® L).

9.3. Elliptic base curves, semistable bundles

9.3.1. General discussion. Let £ be an elliptic curve. Let h:= ged(r,d). If
h#1 then %:(r,d) is empty. My, has a Zariski open subset Mz,
parameterizing Higgs pairs with semistable vector bundle. Mj,;,,, maps
canonically to the moduli space % (r,d) parameterizing S-equivalence
classes of semistable vector bundles.

Uy (r, d) is isomorphic to Sym”Z. A choice of a point g€ X determines this
isomorphism canonically (see [Tu]). The generic point of % (r, d) repre-
sents an S-equivalence class @”_, F, where the summands F,; are distinct
stable vector bundles of rank r':= r/h and degree d':= d/h. It consists of a
unique isomorphism class.

A Zariski open subset of My, is Poisson isomorphic to an open subset
of the quotient of |T*%s (r, d, D)| by the level group G,. Let := deg(D).
Thus

dim M., =2dim%; (r,d,D) —dim G, =2r*-6 —(r*-6 —1)=r?-d + 1.
The dimension of the generic symplectic leaf is
dim M ;40 — rank G, = (r* — r)d + 2.

9.3.2. KP elliptic solitons. Let A be a rank 2 lattice in C. Let X:= C/A.
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DEFINITION 9.6. A A-periodic KP elliptic soliton of order r is a solution
of the equation:

0? 0 0 0 0?
3a—)ﬂu—é;{4au+6ua—xu—-é?u}
of the form

u(xs Y, t) =2 Z g(x - xi(y’ t))’

i=1

where & is the Weierstrass function with period lattice A and
{x;}: C* -> Sym"(Z) is an analytic function.

Let geX be the zero point. Let L:= K;(g). Let e L, be the point with
residue 1. Let Sol(A, r) be the space of A-periodic KP elliptic solitons of
order r. Let M(KP, r)™ be the subset of M, parameterizing isomor-
phism classes of L twisted Higgs pairs (E, ¢) of rank r and degree 0 with
integral spectral curve m,: %, —» X such that ¢, is conjugate to diag(—/,
~2y..., —4, (r — 1)A). A. Treibich and J. L. Verdier have demonstrated in
[T-V], using results of 1. M. Krichever, a bijection between Sol(A,r) and
M(KP, r)i™.

REMARK 9.7. Such a Higgs pair corresponds to a torsion free sheaf F on
a spectral curve X, with two points — A, (r — 1)2 over g. When r > 2 the
point — 2 is singular and F is the push forward of a torsion free sheaf F on
the normalization v: £, » Z, of — . m,°v: £, > X is unramified over gq.

REMARK 9.8. A beautiful description of KP elliptic solitons is given in
[T-V] by an intermediate bijection with isomorphism classes of triples
(T, k, £) where m: I — X is a minimal tangential morphism of degree r, k a
tangential function on I and & is a torsion free sheaf of rank 1 with zero
Euler characteristic.

Let Orb(K P) be the coadjoint orbit in g} of

Killing form

diag(—1, —1,..., — 1, r — 1)esl(r) ~ sl(r)* =~ g3.

Let M(KP, r) be the symplectic leaf of M, corresponding to Orb(KP)
(see Remark 8.9). Sol(A, r) embeds in My;,,, as the open subset M(KP, r)'™
of M(KP,r).

As a result of Theorem 8.5 we get:

COROLLARY 9.9. The space Sol(A,r) of A-periodic KP elliptic solitons of
order r is endowed with a canonical ACIHS structure.
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REMARK 9.10. In the absence of Theorem 8.5, the symplectic structure
on Sol(A, r) was introduced in [T-V] via a rather long auxiliary construc-
tion of a birational isomorphism with T*Sym"X.

The dimension of a generic symplectic leaf in My, is r> —r + 2. The
dimension of the coadjoint orbit Orb(KP) is (r — 2)(r — 1) less than the
generic one. Thus the dimension of M(KP,r) is (r* —r+2)—
(r — 2)(r — 1) = 2r. (See also Remark 8.4). It is the symplectic leaf over the
coset be B, /HZ, ®-, K2') where b is the coefficients vector of the
polynomial Py(y) = (y + A~ !(y — (r — 1)A). (The generic symplectic leaf
consists of spectral Jacobians over a coset of H(Z, @', K2 (i — D).

9.4. Hyperelliptic base curves

The moduli spaces of rank 2 semistable vector bundles over a Hyperelliptic
curve of genus g have been described explicitly by M. S. Narasimhan and
S. Ramanan in [N-R] in the case g =2 and by U. V. Desale and S.
Ramanan in [D-R] for arbitrary genus. As a result we obtain an explicit
description of the phase spaces of our integrable systems.

Let W = {w,,...,w,,4,} = Al = P'. Let X be the nonsingular Hyperel-
liptic curve of genus g branched over W. Let y be a line bundle on X. Let

2g+2 2g+2

Q,:= Y X?=0, Q,:= ) wX{=0

i=1 i=1

be the quadrics in the 2g + 1 projective space P:= P(Z,,. 7.)-

THEOREM 9.11 [D-R] (degy is odd). % (2, y) is isomorphic to the variety
of (g — 2)-dimensional linear subspaces of P contained in Q, and Q,.

THEOREM 9.12 [D-R] (degy is even). Let y = 0Os. Let i: LU (2) —>
SPUs(2) be the automorphism induced by pulling back via the Hyperelliptic
involution. U (2)/i is isomorphic to the variety of g-dimensional linear
subspaces of P which belong to a fixed system of maximal isotropic subspaces
of Q, and intersect Q, in quadrics of rank < 4.

Note that when g = 2 or 3 the second condition is always satisfied.
The case of even determinant and g = 2 has a further description:

THEOREM 9.13 [N-R] (g = 2). &% (2) is canonically isomorphic to
PHO(JL,20) = P3 (the 2@-linear system, ® = the Riemann theta divisor).

Let M?, be the open subset of M{,,., of Higgs pairs with a semistable
vector bundle.
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EXAMPLE 9.14 (g =2, even determinant, L = K). The ACIHS
(M%,,Q,,H}) lives on the cotangent bundle of #%; (2) =~ P3. Choosing a
nonzero element fe(BY)* we get that Hf (B) e HY(S Uz (2), S>T* S U5 (2))
corresponds to a meromorphic “metric” on P*® (need not be positive
definite on R P?) with “geodesic” flow along 3-dimensional Prymians of
spectral curves of genus 5.

EXAMPLE 9.15 (g = 2, odd determinant, L = K). Same as Example 9.14
with P replaced by Q, N Q, = P°.

EXAMPLE 9.16 (g =2, even (odd) determinant, L = K(p,) for some
Po€X). MP, is a rank 6 vector bundle over P3 (resp. Q; n Q,) and the
generic symplectic leaf is a subbundle of quadric hypersurfaces.

It would be interesting to find out if suitable choices of Hamiltonian
functions on the systems with hyperelliptic base curve give rise to differen-
tial equations with physical interpretation. In view of their explicit descrip-
tion one may hope to write solutions to such equations in terms of theta
functions.
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