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1. Introduction

The theory of algebraically completely integrable hamiltonian systems
demonstrates a fruitful interaction between dynamical systems and the
geometry of vector bundles over algebraic curves. Classically, dating back
to Jacobi’s work on the geodesic flow on the ellipsoid, algebro-geometric
methods have been used to solve differential equations arising from
mechanical systems, by linearizing the flow on the Jacobian of an algebraic
curve.

Hitchin discovered [H1], that the cotangent bundle of the moduli space
of stable vector bundles on an algebraic curve is an integrable system
fibered, over a space of invariant polynomials, by Jacobians of spectral
curves. These curves are branched coverings of the base curve, 03A3, associated
to twisted endomorphisms of vector bundles on 03A3 with values in the

canonical line bundle. This result plays a central role in recent work on the
geometry of the moduli space of vector bundles [B-N-R], conformal field
theory [H2], and non abelian Hodge theory [Sim].

Several of these works suggest considering spectral varieties obtained
from endomorphisms twisted by vector bundles other than the canonical
line bundle. Simpson replaces the canonical line bundle by the cotangent
vector bundle. Beauville studied spectral curves over P’ obtained by
twisting with any positive line bundle [B]. He found an integrable system
and showed that certain classical systems, such as Neumann’s system,
geodesic flow on the ellipsoid, and certain Euler-Arnold systems, embed in
his as symplectic leaves.

In this work we study families of Jacobians of spectral curves over
algebraic curves of any genus, obtained by twisting with any sufficiently
positive line bundle. We prove:
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MAIN THEOREM. Let Y- be a nonsingular complete algebraic curve,K03A3
its canonical line bundle. Let L be a positive line bundle on 03A3 satisfying
L &#x3E; K03A3 . Let M Higgs be the moduli space of L-twisted Higgs pairs (pairs
consisting of a vector bundle and an L-twisted endomorphism satisfying a
stability condition). Then

1. MH;ggs is, fibered, via an invariant polynomial map HL : M Higgs BLI by
Jacobians of spectral curves.

2. For every non zero s E HO(03A3, L Q Ki 1), there exists a canonical

Poisson structure, S2S, on M Higgs.
3. HL : MHigg, ---&#x3E; BL is an integrable system.

Here are a few special cases:

1. When L = K03A3 we get the Hitchin system.
2. Corollary: (Beauville [B]). GL(n) acts by conjugation on the space of

everywhere regular n x n matrices with polynomial entries of degree
_ d. The quotient is an integrable system.

3. Corollary: (Reyman and Semenov-Tian-Shansky [R-S]). Let D be an
effective divisor on an elliptic curve, 1:, invariant under the subgroup,
03A3[n], of points of order n. The space of 03A3[n]-invariant, meromorphic,
sl(n) valued functions, whose entries have poles dominated by D, is an
integrable system.

4. Corollary: (A. Treibich and J. L. Verdier [T-V]). The space of KP
elliptic solutions with fixed period lattice is an integrable system.

Many classical integrable systems embed as symplectic leaves of those in 2 and 3.
The moduli space 0Jtr. (r, d, D), of vector bundles with D-level structure (in

the sense of [Se]) is key to understanding the geometry of our systems. It

is the space parameterizing vector bundles together with a frame over D.
The Poisson structure on M Higgs is obtained via Hamiltonian reduction

from the canonical symplectic structure on T*V03A3’ (r, d, D).
The systems in Corollaries 2 and 3 have been extensively studied using

Lax equations with rational or elliptic parameter. A standard technique in
these studies, (see for example [R-S], [A-vM], [A-H-H], [A-H-P]), is to
construct an infinite dimensional Lie algebra of meromorphic (or analytic
or formal) sections of a Lie algebra bundle (loop algebra), and then to
reduce the Kostant-Kirillov Poisson structure to finite dimensional sub-

space of global meromorphic sections with poles of bounded order. The
meromorphic sections translate to Higgs fields in our dictionary.
The loop group approach has been successfully applied to the study of

finite dimensional algebraically completely integrable systems mainly in the
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cases of a rational or elliptic base curve E. Over pl there is a unique
semistable vector bundle of rank r and degree 0. Over an elliptic curve, the
endomorphism bundles of all stable rank r vector bundles are isomorphic.
Thus, the translation of Corollaries 2 and 3 and the related results in [R-S],
[A-vM], [A-H-H], [A-H-P] to the language of Higgs pairs involves special
cases of our results where the Higgs fields arise from a fixed bundle of Lie
algebras over a rational or elliptid base curve.
The moduli space approach enables us to study the higher genus base

curve case which requires varying the isomorphism class of the Lie algebra
bundle. This approach has both conceptual advantage of working with
finite dimensional algebraic varieties and the technical advantage gained by
using deformation theory to analyze the integrable systems.

Sections 2-5 contain preliminary material. In Section 6 we carry out the
main construction. We study the realization of a dense open subset of

M Higgs as the orbit space for the Poisson action of the level group on the
cotangent bundle  T* V03A3, (r, d, D)I. This realization endows an open set of

M Higgs with a canonical Poisson structure.
Unfortunately, the geometric construction of the Poisson structure in

Section 6 does not exhibit its extension to the whole smooth locus of the

moduli space of Higgs pairs. From a dynamical system point of view, the
extension is of major importance since it assures that the Hamiltonian

spectral flow is a linear flow along the spectral Jacobians. The extension is
carried out in Section 7 via a study of the deformation theory of Higgs pairs
with and without level structure. We identify cohomologically the extension
of the Poisson structure over the moduli space of stable L-twisted Higgs
pairs using the duality theorem. We recommend to skip Section 7 on first
reading since the section is rather technical.
The main theorem (8.5) is proven in Section 8. In Subsection 8.1 we use

the cohomological identification of Section 7 to show that the invariant
polynomial map HL : MHigg., ---&#x3E; BL is a Lagrangian fibration. This completes
the proof of the main theorem which is formulated in a canonical way in
Subsection 8.2. We conclude this section with the description of the

symplectic leaf foliation in Subsection 8.3.
Section 9 contains examples with rational, elliptic and hyperelliptic base

curves.

This paper is based on a PhD thesis written at the University of

Pennsylvania. 1 would like to express my deepest gratitude to my advisor
Professor Ron Donagi for introducing me to the problem and for many
invaluable discussions. 1 would like to thank my friends Ludmil Katzarkov,
Alexis Kouvidakis and Toni Pantev for many useful remarks and sugges-
tions. (Note: similar results were obtained independently by F. Bottacin).
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2. Spectral curves

Let £ be a smooth algebric curve of genus g. Let L be a line bundle, E a
vector bundle of rank r on 1. Let ç e HO(L, End E Q L). We will review the
definitions of the spectral curve and characteristic polynomial associated to
9. These are relative versions of the notions of eigenvalues and character-
istic polynomial for an endomorphism. For more details see [B-N-R].
The i-th characteristic coefficient b of 9 is ( -l)i tr( A’9). The character-

istic polynomial Pb( y) of ç, written formally as

may be interpreted as a polynomial map from (End F) Q L to L~~ r for any
vector bundle F on L. By Cayley-Hamilton’s theorem Pb(~) = 0.

Let BL (r) : := ©[= ri=1 HO(03A3 LO’). BL(r) may be viewed as the space of char-
acteristic polynomials of L-twisted endomorphisms of vector bundles of
rank r. Denote by 1 LI the total space Spec(Sym(L - 1)) of the line bundle L.

For every b E BL(r) there corresponds an r-sheeted branched covering
’TCb: 03A3b --+ L, called a spectral curve. Yb is the subscheme Pb 1 (zero section)
of ILI where Pb is interpreted as a morphism from ILI to IL~rl. The ideal
sheaf fb of Lb is generated by the image of the (9r.-module homomorphism
f : L~(-r)  Sym(L -1), where f : 03A3i = o fi, fi: L~(-r)  L~(i-r) is tensoriz-

ation by bi(bo = 1). So Lb is Spec(Sym(L -l)/fb) and ’03C0b*(O03A3b) ~ Sym(L-1)/
b as (O03A3 -algebras and ’TCb*( O03A3) ~ ©[IlLQ’ 

]i 
as O03A3,-modules. Thus, if

deg L &#x3E; 0, the arithmetic genus gr. b of Eb is deg L. r(r - 1)/2 + r(g - 1) + 1.
BL(r) may be interpreted as an open affine subset of a linear system on

P(L EB (9, ) via a projective analogue of the above affine construction. It

may be regarded as the moduli space of r-sheeted spectral curves in ILI.

PROPOSITION 2.1. Assume Lor is very ample. Then for generic b E BL(r),
Lb is a smooth connected algebraic curve.

DEFINITION 2.2. An L-twisted Higgs pair (E, ~) is a pair consisting of a
vector bundle E and a section ~ E HO(L, End E Q L).

PROPOSITION 2.3 [B-N-R]. Assume that Lb is an integral curve. Then
there is a canonical bijection between:

1. I somorphism classes of rank 1 torsion free sheaves on Yb with Euler
characteristic d - r(g - 1).

2. Isomorphism classes of L-twisted Higgs pairs (E, ~) of rank r and degree
d with characteristic polynomial b.

R E M A R K 2.4 [B]. The line bundles in the bijection above correspond to
everywhere regular Higgs pairs.
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REMARK 2.5. The line bundle 03C0b (L) has a tautological section y,. Given
a rank 1 torsion free sheaf F on Yb we may regard Yb as an element of
Hom(F,F©03C0bL). The Higgs pair corresponding to F is the pair
(7[b*F, 03C0b*(Yb)).

REMARK 2.6. The degree of the line bundle corresponding to an L-
twisted Higgs pair of rank r and degree d is ô(d) = d + r(l - g) + g’i:b - 1.

LEMMA 2.7. Assume that Eb is smooth. Let F be a line bundle on Lb. Let
(E, ~ be the corresponding Higgs pair. Let A be the rami, fication divisor.
Then we have a canonical exact sequence:

REMARK 2.8. Ron Donagi has generalized recently the above definitions to
the case of principal bundles with a reductive structure group by using:

1. A definition of a pair (Î, f: 03A3-&#x3E; L) of a spectral curve Î and a morphism
f associated to a principal Higgs bundle in a canonical way which is
independent of a representation. This gives rise to a generalized Hitchin
map.

2. Identification of the fibers of the Hitchin map with a generalized Prym
(an abelian variety isogenous to a subvariety of the Jacobian of the
spectral curve).

3. The moduli space of Higgs pairs

The moduli space of Higgs pairs are the underlying spaces of our integrable
systems. We will review their construction in this section.

Let L be a line bundle on E.

DEFINITION 3.1. Let (E, ~ be an L-twisted Higgs pair.
1. A Higgs subbundle (F, 03A8) is a Higgs pair consisting of a 9-invariant

subbundle F of E such that § is the restriction of 9.
2. (E, ç) is semistable (resp. stable) if every Higgs subbundle (F, ~)

satisfies:

The above definition can be generalized to Higgs pairs consisting of a
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vector bundle E over a smooth projective variety of any dimension and an
endomorphism twisted by another vector bundle L. Simpson [Sim] has
described a detailed construction of the moduli space of semistable Higgs
pairs twisted by the cotangent bundle. His construction is based on a general
construction of a moduli space of sheaves with support of pure dimension n
on the total space of a vector bundle over a smooth n-dimensional projective
variety. The moduli space of semistable L-twisted Higgs pairs is isomorphic
to the moduli space of semistable sheaves on ILI with support of pure
dimension n. We will describe the main existence result.

Any semistable Higgs pair (E, ç) has a filtration

of Higgs subbundles such that the quotients (E;/E;_ i, (Pi) are stable with
the same slopes. This filtration is not unique but the isomorphism class of
the corresponding graded object:

is unique.

DEFINITION 3.2. Two semistable Higgs bundles (E, 9), (E’, ~’ ) are

equivalent if

THEOREM 3.3 [Sim]. There exists a quasi-projective algebraic variety
M Hjggs with the followiny properties:

1. The points of M Hjggs represent equivalence classes of semistable L-
twisted Higgs pairs of rank r and degree d.

2. If 03B5 is a flat family of semistable L-twisted Higgs pair of rank r and
degree d parameterized by a scheme S then there is a unique morphism
S - M Hjggs. M Hjggs is universal for this property.

3. There is an open subset M’ Higgs, c M Hjggs whose points represent isomor-
phism classes of stable Higgs pairs. Locally in the etale topology on

M’ Higgs, there is a universal family such that if03B5 is a family as in 2 whose
fibers are stable then the pullback of the universal farnily is isomorphic
to 03B5 after tensoring with a line bundle on S.

4. The function HL: MHiggs --’ BL, which sends a Higgs pair to its charac-
teristic polynomial, is a proper morphism.

We will refer to M’igg, as a coarse moduli space (in the spirit of [N] Ch.
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5, Section 5), i.e., we identify any two families (03B5 03C3 (03B5 x ps F, ç) over S
for any line bundle F on S.

REMARKS 3.4. (1) Let b E BL such that Sb is an integral spectral curve.
Let F be a torsion free sheaf of rank 1 on Sb and let (E, ç) be the
corresponding Higgs pair. Then (E, ~) is stable. Thus, by Proposition 2.1,
if L®r is very ample then HL is dominant and its generic fiber is a Jacobian
of a smooth spectral curve.

(2) Let E be a stable vector bundle. Then any Higgs pair (E, ç) is stable.
(3) Assume that L ~ K(D) for some effective divisor D of degree à a 0.

It follows that MHiggs is nonempty if
(a) g = 0 and à a 3 or
(b) g = 1, b = 0 and gcd(r, d) = 1 or
(c) g = 1 and b &#x3E; 0 or

(d) g &#x3E; 2.
We will restrict our attention to these cases. In all these cases HL is

dominant and the generic fiber is the Jacobian of a smooth spectral curve.
Denote by Mmggs the unique irreducible component of Mmggs which

dominates 13L.

4. The moduli space of vector bundles with level structures

We will show in Section 6 that the moduli space M’ H i,g, of Higgs pairs is
birationally isomorphic to the orbit space of a group action on the cotangent
bundle of the moduli space O¡¡r. (r, d, D) of pairs of a vector bundle with level
structure. The relationship between the two moduli spaces introduces a
Poisson structure on the moduli space of Higgs pairs. We review the
construction of O¡¡r. (r, d, D) in this section.

Let D be a closed zero dimensional subscheme of E. We will denote also

by D the corresponding effective divisor. Let ~ be its degree.

DEFINITION 4.1. A vector bundle E is b-stable (resp. semistable) if every
proper subbundle F of E satisfies:

DEFINITION 4.2. Let E be a rank r vector bundle on L. A D-level

structure on E is an isomorphism ~ E IsomoD(E EBri= 1 (9D). We will say that
a pair (E, ~]) is stable (resp. semistable) if E is ~-stable.
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REMARKS 4.3. (1) If E is semistable and ~ &#x3E; 0 or if E is stable then E is

à stable.

(2) If g == 0 and d = q-r + p, 0  p  r and E=(9p.(q)Ef&#x3E;r-p © Op&#x3E; (q + 1) OP
then E is à-stable if and only if ~ &#x3E; p.
We will consider the moduli space 0ù1; (r, d, D) parameterizing rank r,

degree d ô-stable vector bundles with D-level structure. The construction of
this space is carried out by C. S. Seshadri in [Se]. The definition of D-level
structures in [Se] allows a nonzero homomorphism 17EHomeID(E’D’
O+ ri= 1 (9D). Seshadri introduces an extended notion of semistability for a pair
(E, q) of a coherent sheaf E with D-level structure and the resulting moduli
space is projective. It turns out that if we consider only vector bundles and
only trivializations as level structures then a vector bundle E with D-level
structure q is stable (resp. semistable) in the sense of Seshadri if and only
if E is à-stable (resp. ~-semistable). The construction in [Se] assumes g &#x3E; 2
but it is valid (though possibly empty) for rational and elliptic curves.

REMARK 4.4. It follows from Remark 4.3 that 03BC03A3 (r, d, D) is not empty if

DEFINITION 4.5. A vector bundle E is D-simple if HO(L, (End E)
(-D)) = (0) if D &#x3E; 0 or C if D = 0.

LEMMA 4.6. Ab-stable vector bundle is D-simple for every divisor D of
degree b.

Proof. Suppose E is b-stable but not D-simple. Let f be a nonzero
section of H°(03A3, (End E)( - D)). N := Ker(f) is a proper subbundle of E(D)
and Q:= Im( f ) is a proper subsheaf of E. Let J1 denote the slope function.
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This contradicts the b-stability of E. 0

DEFINITION 4.7. Let Let gD be its Lie algebra.

We will refer to GD as the level group. If D is reduced then GD is isomorphic
to GL(r) x ... x GL(r)/C*.
GD acts on 03BD03A3, (r, d, D). It follows from Lemma 4.6 that the stabilizer of

[(E,1/)] EO/t"£. (r, d, D) is anti isomorphic to Aut(E)/C* (where an anti isomor-
phism means an isomorphism composed with the inversion map).

5. Symplectic geometry

We will review in this section a few basic facts in symplectic geometry. For
more information see for example [A-G] or [W]. Throughout this section,
a variety will mean a complex algebraic quasiprojective variety.

DEFINITION 5.1. Let X be a smooth variety. A symplectic structure w on
X is an everywhere nondegenerate closed 2-form on X.

EXAMPLE 5.2. Let M be a smooth algebraic variety. Let p: IT* MI --+ M
be its cotangent bundle. T* M admits a canonical symplectic structure w,
where w:=d03B8, OEHO(IT*MI,p*(T*M))cHO(IT*MI,T*IT*MI) is the

tautological 1-form.

DEFINITION 5.3. Let X be a smooth algebraic variety. A Poisson

structure Q on X is a section QE H°(X, A 2 TX) such that the Poisson bracket

defines a Lie algebra structure on the structure sheaf (OX and satisfies the
Liebniz identity

Conversely any Lie algebra structure on (9x satisfying the Liebniz identity
arises in this way.

REMARK 5.4. Given a symplectic structure (JJ on M we get an isomor-

phism TM ~ T* M and thus a section 03A9 E 2 TX which defines a Poisson
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structure. Conversely, any nondegenerate Poisson structure is of this form.

EXAMPLE 5.5. Let G be a Lie group, g its Lie algebra. The dual g* admits
a canonical Poisson structure called the Kostant-Kirillov Poisson structure.

It corresponds to the Poisson bracket

Given a Poisson structure Q on X we get a homomorphism
f03A9: T*X --+ TX. Given a function F on X, 03BEF:= f03A9(dF) is a vector field on
X which is called a Hamiltonian vector field. This defines a Lie algebra
homomorphism from ((Ox, {,}) to (TX, [, ]). If çp is a Hamiltonian vector
field then the Lie derivative LçfQ = 0 and dF(03BEF) = 0. This corresponds to
the fact that F and Q are invariant under the Hamiltonian action of the

1-parameter group corresponding to 03BEF .

DEFINITION 5.6. A morphism f : X - Y of Poisson varieties is a Poisson
map if it preserves the Poisson bracket. i.e.,
equivalently

The rank of the Poisson structure at a point x E X is the rank of the
homomorphism f03A9. It defines a stratification of X. Let Xr be the stratum
of rank r. Then n _ 2 TXr and is a Poisson structure on X,.. Each stratum
has a canonical (analytic in general) foliation into symplectic leaves defined
by the involutive subbundle 03A9/xr (T* Xr). If S c Xr is a symplectic leaf, then
03A9|s.E 2 TS and is nondegenerate (i.e., defines a symplectic structure).
DEFINITION 5.7. A Casimir function, or invariant function, on a Poisson
variety is a function F with zero Hamiltonian vector field.

Locally on X,. the Casimir functions define the foliation into symplectic
leaves.

EXAM PLE 5.8. On the dual g* of a Lie algebra the symplectic leaves of
the Kostant-Kirillov Poisson structure are the coadjoint orbits. The global
Casimir functions are the invariant polynomials.

Let G be a connected algebraic group acting on a smooth connected
symplectic variety (S, cv). We have a canonical homomorphism
g - HO(S, TS). The action is Hamiltonian if the vector fields corresponding
to elements of g are Hamiltonian. This implies, in particular, that G acts
by Poisson automorphisms. Given ~ ~ E g we can choose corresponding
Hamiltonian functions H03BE, H,~. If there is a consistent choice g 2013 r(TS, OS)
which is a Lie algebra homomorphism, then the action is called Poisson.
The corresponding morphism p: S --&#x3E; g* is called a moment map.
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Suppose that M is submersive. Suppose that the quotient Q : S/G exists
and is smooth. Then Q has a canonical Poisson structure. Let c g* be a
coadjoint orbit. Given ç E (9 let Gç:= StabG(ç). Let Sç:= 03BC-(03B5). Then the
connected components of Sç/Gç are symplectic leaves of Q. If M has
connected fibers, then there is a canonical bijection between coadjoint
orbits in p(S) and symplectic leaves of Q. Sç/Gç is called the reduced space
and the above procedure is called Marsden-Weinstein reduction.

DEFINITION 5.9. Let (X, w) be a symplectic variety. An irreducible
subvariety Y c X is isotropic if for a generic y E Y, the subspace Ty Y is an
isotropic subspace of co, i.e., WI f, = 0. It is Lagrangian if dim Y = -1 dim X.

DEFINITION 5.10. Let (X, ÇI) be a Poisson variety. An irreducible

subvariety Y c X is isotropic (resp. Lagrangian) if it is generically an
isotropic (resp. Lagrangian) subariety of a symplectic leaf; i.e., Y is

contained in the closure 9 of a symplectic leaf S c X and the intersection
Y n S is an isotropic (resp. Lagrangian) subvariety of S.

An algebraically completely integrable Hamiltonian system structure on
a family H: X~ B of abelian varieties is a Poisson structure on X with
respect to which H: X ---&#x3E; B is a Lagrangian fibration. We will extend this
definition to families of abelian varieties with degenerate fibers:

DEFINITION 5.11. Let X be a smooth algebraic variety (not necessarily
complete), B an algebraic variety, A a proper closed subvariety of B, and
H: X - B a proper morphism such that the fibers over the complement of
A are isomorphic to abelian varieties. A Poisson structure on X is an

algebraically completely integrable Hamiltonian system structure on

H: X - B if H: X -- B is a Lagrangian fibration over the complement of A.

REMARK 5.12. It follows from the definition that, away from A, the
Hamiltonian vector fields corresponding to functions on B are tangent to
the fibers of H and are translation invariant.

6. The moduli space of Higgs pairs as an orbit space

6.1. The cotangent bundle

We show in this section that a Zariski open subset of the moduli space

M Higgs of Higgs pairs is the orbit space of the action of the level group on
the cotangent bundle to the moduli space of vector bundles with D-level
structure.

This realization introduces a canonical Poisson structure on an open
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dense subset of M Hjggs. In Section 7 the Poisson structure will be extended
to the smooth locus of M Hjggs.
We will first realize the cotangent bundle IT*(]V03A3 (r, d, D)I as a moduli

space of triples (E, 9, q) of L-twisted Higgs pairs with D-level structure
(Definition 6.5).

Let D be an effective divisor of degree à a 0.

PROPOSITION 6.1. V,03A3 (r, d, D) is a smooth quasi projective variety.
The tangent space T[(E,~)]03BD03A3 (r, d, D) is canonically isomorphic to

Hl (L, End E( - D)).

REMARK 6.2. The isomorphism

depends on the representative (E, ~) E [(E, q)]. Given f E Aut(E) we have:

Proof of Proposition 6.1. The smoothness follows from that of the bundle
over the Hilbert scheme of which it is a geometric quotient. One carries out
the construction of the infinitesimal deformation maps along the lines of
the construction for deformations of vector bundles alone (see [Se],
Appendix 3). The result is:

LEMMA 6.3. Let S be a smooth quasiprojective variety. Let (03B5, ~) be a
famil y of rank r vector bundles of degree d with D level structure. There exists
a canonical sheaf homomorphism

called the infinitesimal deformation map associated to the,f’amily.
Proof. Let be the complex

We first construct an infinitesimal deformation map -r’: TS ~ Rps.(K E nÔ"l). Then
we use the quasi isomorphism induced by the injection of complexes:

to obtain r.



267

The proposition follows from the lemma via standard deformation theoretic
arguments. D

REMARK 6.4. The cotangent space T[E,*n),V03A3 (r, d, D) is canonically isomor-
phic, by Serre’s duality, to HO(I:, (End E)* (8) K(D)) and via the trace form to
HO(03A3:, (End E) (D K(D)). This is the key observation relating the moduli space
V03A3 (r, d, D) with the moduli space MH;ggç of K(D)-twisted Higgs pairs.
DEFINITION 6.5. Let L be a line bundle on E. A rank r L-twisted Higgs pair
with D-level structure is a triple (E, qJ, 17), where 9 E H"(1, End E (D L) and (E,17)
is a rank r vector bundle with D-level structure.

Two L-twisted Higgs pairs with D-level structures (El, y, ~1)’ (E2, Q2’ N2)
are said to be isomorphic if there exists an isomorphism f : E1 -&#x3E; E2 such that
~0 f = ~1 I and (~20f = (f ~ idL)’91-

Let L = K1: (D). The closed points of 1 T*ÓÙ1: (r, d, D)j parameterize isomor-
phism classes of L-twisted Higgs pairs with D-level structure.

Let Miggs be the open subset of MHiggs of stable Higgs pairs with a à-stable
vector bundle. Let 1 T* V03A3, (r, d, D)IH -’ be the open subset of 1 T* 03BD03A3, (r, d, D)I of
triples (E, ç, ri) with a stable Higgs pair (E, 9). Let

be the forgetful morphism. (It is indeed an algebraic morphism because Mf-Ijggs
is a coarse moduli space and 03BD03A3Tr* d, D)B is the descent of a bundle over a

Hilbert scheme which is (by Proposition 6.1) the base of a family of Higgs
pairs).

REMARK 6.6. IT*03BD03A3 (r, d, D)IH-S is nonempty if
1. g = 0 and ô &#x3E; max(2, p) (p as in Remark 4.3).
2. g = 1 and ô &#x3E; 0

3. g = 1 and ô = 0 and gcd(r, d) = 1
4. g &#x3E; 2.

We will restrict attention to these cases only.
Let HL: B T* 03BD03A3; (r, d, D)j --+ BL be the invariant polynomial morphism. (De-

fined in Section 2).

The GD-action on e, (r, d, D) may be lifted to 1 T*O/I1; (r, d, D)B. 1 T*03BD03A3; (r, d,
D)BH-s and 1 are GD-invariant. Moreover each fiber of 1 consists of a single
(closed) GD-orbit.

LEMMA 6.7. GD acts freely on T*03BD03A3(r, d, D)H-S.
Proof. It follows from Lemma 4.6 and Remark 6.2 that the stabilizer of

(E, 9, q) is anti isomorphic to Aut(E, ç) or Aut(E)/(C* - id) if 9 = 0. But a

stable Higgs pair is simple. Here we call an isomorphism composed with the
inversion map an anti isomorphism. 0
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By the general construction described in Section 5 we get:

COROLLARY 6.8. The open subset MHiggs of stable Higgs pairs with b-stable
vector bundle has a canonical Poisson structure.

6.2. The action of the level group is Poisson

The lifting of a group action on a manifold U to its cotangent bundle T* U
is always Hamiltonian and has a canonical moment map (see [A-G]). We
will identify the moment map for the action of the level group (Definition
6.10 and Remark 6.11). The moment map will be used later (Proposition
8.8) to identify the symplectic leaves foliation of MH;ggs.
The proof (Proposition 6.12) of this identification consists of a lengthy

unwinding of the cohomological identifications. We include it for the sake
of completeness, though the reader might prefer to be convinced by the
naturality of its definition and the a priori knowledge of its existence.

Let E be a vector bundle of rank r and degree d. We have a short exact
sequence:

Hence the long exact cohomology sequence:

Using Serre’s duality we get the commutative diagram:

Thus we get canonical isomorphisms:

Let a be the dual of the composition of the above isomorphisms.

DEFINITION 6.9. Let ME be the homomorphism defined by composing a
with the canonical projection and injection:



269

DEFINITION 6.10. Let J.1: IT*Où1: (r, d, D)I - gg be the morphism sending
[ ( E, p, ~)] t 0 ~ 0 (M E Q) 0 n- 1 .

Notice that although 11 is defined only up to an orbit of Aut(E),
n 0 (m.1 Q ) 0n- 1 is well defined.

REMARK 6.11. J.1E and a are induced by the pairing

PROPOSITION 6.12. The morphism J1 is the canonical moment map for the
Poisson GD-action on 1 T*ÚÙr. (r, d, D)I.

Proof. Let G be a group acting on a manifold U. The canonical moment
map of the lifted action to T* U sends a pair (u, ç) of a point u E U and a
covector cp E Tu* U to dpu*(~) where Pu: G - U sends g E G to gu (see [A-G]).

Let [(E, n)] E ôlir. (r, d, D) be a fixed pair and PE,,,: GD ---&#x3E; ÚÙr. (r, d, D) the mor-
phism induced by the action onto the orbit of [(E,n])]. Lemma 6.13 identifies
the differential of pE,n .

LEMMA 6.13. The infinitesimal deformation map of vector bundles with level
structure gives rise to a right exact sequence:

depending canonically on a choice of a pair (E, n) in an isomorphism class [(E, 17)].
The homomorphism 6 is canonically identified with the differential o,f’ pEn.

Proof. Consider the short exact sequence of complexes:

The one dimensional hypercohomology of these complexes computes the
spaces of infinitesimal deformations of the space of level structures on E, the
moduli space of pairs of vector bundles with level structures (see Lemma 6.3),
and the moduli space of vector bundles respectively. The exact sequence
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is part of the corresponding long exact hypercohomology sequence. The
induced homomorphism

is the corresponding differential of the morphism from the space of isomorphism
classes of level structures on E to the moduli space of pairs ÚÙr. (r, d, D).
The level structure (E,I1) induces a surjective homorphism

Define 6 to be à - b. The differential of pE,n is identified by 03C3. I~

Comparing Definition 6.10 with Lemma 6.13 we see that 6* is equal to the
restriction of J1 to the cotangent space T(lEN) Où!. (r, d, D) ~ H l(End E( - D))*.
This completes the proof of Proposition 6.12. D

7. The Poisson structure

In this section we extend the Poisson structure to the smooth locus of the

moduli space M Higgs of Higgs pairs (Corollary 7.15). As a result, the complete
Jacobians of smooth spectral curves will be contained in the Poisson variety.

In Section 7.1 we provide a cohomological identification of the tangent
spaces to points in the moduli spaces:
- MHiggs of Higgs pairs (Corollary 7.9) and
-IT*Où!. (r, d, D)j of Higgs pairs with D-level structure (Corollary 7.8).
In Section 7.2, we use the duality theorem to construct cohomologically an

anti symmetric bilinear form on the tangent bundle to the smooth locus of the
moduli space of Higgs pairs. We then show that it extends the Poisson structure
constructed in Section 6, Corollary 6.8 over a Zariski open subset.
The section is quite technical and one might prefer to skip it on his first

reading.

7. l. Deformations of» Higgs pairs with level structure

Let D, D’ be two effective divisors of degrees £5, £5’ (possibly zero) and let
L = K(D). Assume that there exists a coarse moduli space M(D, D’) of
isomorphism classes of triples (E, ~, q) of Higgs pairs (E, ç) with D’-level
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structure q. We will identify the infinitesimal deformation spaces of such
triples. The case D’ = o will specialize to the case of Higgs pairs and the
case D = D’ will compute the tangent space to the cotangent bundle

| T* 03C503A3, (r, d, D)j of the moduli space of vector bundles with D-level structure.
Given a twisted endomorphism 9 E HO(L, End E Q L) define ad 9: End E

- End E 0 L by ad ~(03C8) = (~ o03C82013 03C8 o ~. Let s be the section lEHO(L, (91: (D’ )).
Let ô:= - ad 9 - (Os) and let ’KE,Q,D, be the complex:

PROPOSITION 7.1. Let [(E, qJ, ri)] be a point of M(D, D’). A representa-
tive (E, ~, 17) E [(E, qJ,17)] determines a canonical isomorphism between the
Zariski tangent space T(E,Q,n)]M(D, D’) and the hypercohomology
(H 1(K, E,Q,D’) of the complex.
REMARK 7.2. The isomorphism in Proposition 7.1 depends on the

representative (E, ç, ri) in the isomorphism class [(E, ç, ri)] in the same

manner as in Remark 6.2.

Proof (of Proposition 7.1, the proof ends with Lemma 7.6). We first
prove it with the complex KE,Q,N, (defined below) instead of K’E,Q,D’. We
then show that the two complexes are quasi isomorphic (Lemma 7.6).

Let S be a smooth quasiprojective variety. Let (E, ç, ri) be a family
of L-twisted Higgs pairs with D’ level structure. Let mn: End 03B5 -

Hom(G, ©[= ri1 (QSxD’) be composition with 17. Let ôq,n:= -(ad (p, m,,). Let
K E, Q, N be the complex

LEMMA 7.3. There exists a canonical sheaf homomorphism

called the infinitesimal deformation map associated to the family.

The construction of the infinitesimal deformation map is a straightforward
modification of the construction for deformations of vector bundles alone (see
[Se], Appendix 3). We will describe the construction only in the case of an
infinitesimal family S = Spec(C[e]/(e’»:

Choose a Cech covering *:= (Ux) of E. Let *:= ( Wa) be the covering of
S x 03A3- by W,,, = S x U,,. The definition of the complex KE,Q,N is motivated by:
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LEMMA 7.4. Fix a Higgs pair (Eo, 90). A cochain ( f, Q,N) : (( f03B2), (~03B1), (~03B1)
in C°(W, KE,QO,nois a cocycle if and only if

1. The cochain i is a cocycle in Z’(*, End E),
2. The cochain ço + 8. Ç in C°(’YW, pl (End E Q L)) is a global section ç of

End é Q p* (L) where &#x26; is the infinitesimal family of vector bundles over
S x E defined by the new gluing transformations (f ,03B2): = (id + E - 0) for
pl E, and

3. The cochain (~o + ic ~03B1) in C°(W, Hom(p* E, Q+r i= 1 (9s x D’)) is a global03B1
section ri of Hom(lS, ©[=ri 1 Os x D’)-

Moreover, two cocycles «(f03B103B2), (CPa), (~ « )), (( fx03B2 ), (~03B1 (~03B1)) represent the same
hypercohomology class if and only if the corresponding infinitesimal families
(é, (p, ri) and (&#x26;’, 9’, q’) are isomorphic.

Proof. The cochain (i, ip, ~) is a cocycle if and only if
(i) 03BE( f ) = 0 and
(ii) - adcpo (j) = b( lÎJ) and

In order to verify that 2 and (ii) are equivalent we need to show that

h/1 0 qJ fJ 0 hp 1 = qJ (J. if and only if - adcpo (F) = à(Ç). Indeed,

In order to verify that 3 and (iii) are equivalent we need to show that

~~, = ~03B2o f03B103B2 if and only if -1no f = 03B4~. Indeed,

It remains to check that the cocycle ( f,p, n) is a coboundary if and only if
the family (E Q, q) is a trivial deformation. Indeed, given a cochain g :_ (gx) in

CO(KE,QO,NO) (which is in fact in C°(End E°)) it cobounds ( f p, n) if and only if

if and only if the isomorphism g: p* Eo -.E: defined by gx : (id + G. gr:) relates
the family (E, 9, q) to the trivial family

Given a family (E, 9, q) on S x E restricting to (Eo, (po, No) at 0 x 1 we can
choose a cocycle ( f«03B2) in Z’(W, End Eo} such that é is the infinitesimal family
of vector bundles which corresponds to the new gluing transformations

(id + E - f«03B2) for pr Eo. The cocycle (Ïap) determines unique cochains (~(X)’ (~(X)
~such that ({~, ~] are the global sections (ço + ë’~03B1), (~0 + 03B5 -~03B1). Lemma 7.4
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implies that (( f«03B2), (~03B1), (Ij ex) is a cocycle. The infinitesimal deformation map
p in Lemma 7.3 sends the canonical tangent vector of S to the hyper-
cohomology class represented by (( f03B103B2), (~03B1), (~03B1)).

Conversely, given a hypercohomology class in H1(%Eo,q&#x3E;o,’1o) we get by
Lemma 7.4 an infinitesimal family (6, ç, ri) over S x E and hence a tangent
vector in the Zariski tangent space to the coarse moduli space M(D, D’). Thus
we get:

COROLLARY 7.5. Let [(E, ç, ri)] be a point of M(D, D’). There exists a

canonical isomorphism

Lemma 7.6 completes the proof of Proposition 7.1. 1--l

LEMMA 7.6. Let (8, ç, ri) be a flat family of semistable L-twisted Higgs pairs
with D’-level structure parameterized by S. There exists a canonical quasi-
isomorphism identifying

for every i &#x3E;, 0.

Proof. Let qi: be the morphism of complexes defined by

qio: End S( - D’ x S) 4 End é is the sheaf inclusion.

qi 1: End é (End é Q Pt L) Et) Hom

One checks that qi is a quasi isomorphism. Il

The following lemma relates the notions of stability to smoothness of points
in M(D, D’):

Let k(D, D’) be the number of zero divisors among (D, D’).

LEMMA 7.7. The dimension of the Zariski tangent space T{E,q,n)M(D, D’)
at a point (E, p, n) is k(D, D’) + r2((2g - 2) + ô + ô’) provided that either

(E, p) is stable or that E is min(03B4, 03B4’ -stable. I n particular, if dim M(D, D’) =

k(D, D’ ) + r2((2g - 2) + ô + 03B4’ ) then such a point is a smooth point.
Proof. Consider the exact sequence of complexes:

and its long exact hypercohomology sequence:
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If (E, ç) is stable then [H]°(K,E,Q,D’) is isomorphic to (0) or C (depending
whether D’ = 0 or D’ &#x3E; 0). The same holds if E is D’-stable. In this case Lemma
4.6 implies that H°(£, End E( - D’ )) is isomorphic to (0) or C and thus

Hl(-K’E,Q,D’) is isomorphic to H°(£, End E( - D’ )). A dual argument (using
Grothendieck duality as in Section 7.2) shows that H’(KE,]D) is isomorphic
to (0) or C (depending whether D = 0 or D &#x3E; 0). Thus

The cotangent bundle 1 T* ú/lr. (r, d, D)I may be regarded as the subset of a
moduli space M(D, D) (the case D = D’) parameterizing triples [(E, 9, ri)] with
ô-stable vector bundle E. Lemma 7.7 implies that 1 T*ú/lr. (r, d, D)I is an open
subset. Let -’KÊQ be the complex .YÍE,cp,D. Proposition 7.1 implies in this case:

COROLLARY 7.8. Let [(E, (fJ, 11)] E T*ú/lr. (r, d, D)I. Fix a representative
(E, 9, rl) E [(E, (p, n)]

1. There is an isomorphism

(the hypercohomology of the complex) depending canonically on the repre-
sentative (E, 9, ri).

2. The differential dp of the bundle map p: T* q’£. (r, d, D)j -&#x3E; q’£. (r, d, D) is

canonically identified by the exact sequence:

The moduli space of stable K(D)-twisted Higgs pairs may be regarded as the
moduli space M(D, 0). Let KEQ be the complex :fÍE,cp,o i.e., the complex:

Proposition 7.1 and Lemma 7.7 imply in this case:

COROLLARY 7.9. The moduli space M:siggs is smooth. Let [(E, ç)] be a stable
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point in Mmggs. A representative (E, cp) of an isomorphism class [(E, p)] deter-
mines a canonical isomorphism

We will need also the cohomological identification of the differential of the
forgetful morphism 7: 1 T*ôlt1: (r, d, D)IH - s--+ MHiggs from the subset of the cotan-
gent bundle consisting of triples (E, (p, q) with a stable Higgs pair (E, ç) to the
moduli M’Higg,.

COROLLARY 7.10. Let [(E, qJ, t¡)] be a stable Higgs pair with a D-level

structure. Assume that E is b-stable. The infinitesimal deformation spaces with
and without level structures are related by the following canonical exact sequence

The projection (J is canonically identified with the differential of the forgetful
morphism 1 IT*V03A3. (r, d, D)IH-S  Mniggs.

Proof This is part of the long exact sequence associated to the exact

sequence of complexes:

HO(KEQ) ~ C because (E, ç) is stable. The level structure induces a canonical
isomorphism 9D H°(End EID)/IHIO(%E,cp). D

7.2. Extension of the Poisson structure

The symplectic form on 1 T* W03A3, (r, d, D)j can be identified (Proposition 7.12)
using the duality theorem for hypercohomology (Grothendieck duality).
Throughout the discussion we will use the terminology of [Ha]. Let

(E, qJ, 11) E IT*ÔÙ1: (r, d, D)I. There is a canonical symmetric Ad-invariant
bilinear form on gl(r, C). We get canonical isomorphisms:

Given two bounded complexes of coherent sheaves F’, G’ define the

complex of sheaves Hom’(F’, G’) by
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Given a bounded complex L’of locally free sheaves let L’ ^ := Hom’(L’, (9I:.).
Let K É,Q := (KÉ,03C8~ K03A3) [1]’ It is the complex

where the sheaves are in degrees - 2 and -1. By Grothendieck duality
theorem ([Ha] p. 210, Theorem 11.1), we have canonical isomorphisms:

In particular gr: 9

be the isomorphism of complexes. Let

It is an anti selfdual isomorphism.

DEFINITION 7.11. Let w’ be the global 2-form on 1 T* e, (r, d, D)I associated
with f- 1.
PROPOSITION 7.12 w = cv’. (Recall that co is the canonical symplectic struc-
ture).

Proof. We have functorial identifications of the pullback of both cv and m’
on any family of L-twisted rank r Higgs pairs of degree d with D level structure.
The proof reduces to a Cech cocycle calculation by pulling back both forms to
simple infinitesimal families.

Let (Eo,CPo,17o)EIT*qr,d,D)I. Let o-,LE1(Eo,cpo,"o)IT*q(r,d,D)I. Denote
by 0-, i also the corresponding classes in H1(KEo,Qo). Let q:= { Ux} be an affine
open covering of E. Let

be cocycles representing dp(6), dp(i). Let

be cochains such that

are cocycles in 1 representing 6, i respectively.



277

Let Let W:= {Ua x X be the affine open

covering of E x X. Let

Then (a, ç, q) defines a deformation over 1 x X (in
particular ç e H°(E x X, End é 0 p03A3 L)).

Let y: X - ) 1 T*ÓÙ’f. (r, d, D) be the unique morphism such that dy sends (ô/ôs),
(ô/ôt) to 6, i (it is in fact the canonical morphism induced by the family into
the moduli space). The proposition follows from the following two lemmas:

LEMMA 7.13. (y*w)((a/as), (ajat)) is represented by the cocycle

Proof.

[Olôs, ôlôt] = 0. By Corollary 7.8 dy(ô/ôs) is a section of R pX* (KEQ ) and
dp 0 dy(%s) is a section of R’ (End&#x26;(-D» represented by (Dalôs) (the
infinitesimal deformation map p in Lemma 7.3 involves partial differentiation
of (a, 9, 11) along X).

Thus

LEMMA 7.14. w’(a, T) E H1(’L, K,) is represented by
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Proof. The pairing w’

is induced by the pairing (of degree -1) on the level of complexes of sheaves:

where io and i are defined by the trace pairing. D

This completes the proof of Proposition 7.12. D

We are now able to extend the Poisson structure from the dense open subset

of MHiggs parameterizing orbits of the level group action on the cotangent
bundle 1 T*q03A3; (r, d, D)I to whole of Mmggs.

Using the canonical symmetric Ad-invariant bilinear form on gl(r, C) we get
canonical injections:

Let

Let S2D be the corresponding section of A TMiggs.
COROLLARY 7.15. QD is a Poisson structure on MHiggs. It extends the Poisson
structure on MHiggs 1 m(T) obtained via symplectic reduction.

Proof. We need to show that (a) S2D satisfies the condition in the Definition
5.3 of a Poisson structure, and (b) it coincides with the reduction of the

symplectic structure W on 1 T*Oùr. (r, d, D)I to the open subset MHiggs of MHiggs
(Corollary 6.8).

Clearly (b) implies (a). Part (b) follows from the cohomological identification
of (J) (Proposition 7.12), the cohomological identification of the differential of
7: 1 T*qr. (r, d, D)IH-S MHiggs (Corollary 7.10) and the commutative diagram:
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REMARK 7.16. Notice that j°, j 1 are defined using the section

1 E HO(L, (Dr (D)). In fact, lettingjo:= (Q s) 0 io and j 1:_ (Q s) 0 il for any choice
of a nonzero section s gives rise to a Poisson structure Qs. Notice that the map
s H 03A9S is linear.

The cohomological identification of the Poisson structure enables us to
determine its rank on the symplectic leaf containing a given Higgs pair (E, ç):

PROPOSITION 7.17. Let (E, ~)eMHiggs stable Higgs pair. Assume that
D is an effective divisor of positive degree. The rank of 03A9D at (E, cp) is equal to

The maximal rank is dim M,igg, + 1 - r - deg D. The pair (E, qJ) belongs to a
symplectic leaf of maximal rank if and only if (p is regular over D.

REMARK 7.18. Notice that on the image of7: IT*ôlI}: (r, d, D)IH-S MHjggs this
agrees with the fact that length Ker(ad CPID) - 1 is equal to the codimension of
the coadjoint orbit of M(E, p, ri).

Proof. (of Proposition 7.17). Consider the exact sequence of complexes:

because the Higgs pair (E, ç) is stable.
Thus Ker

8. The moduli space of Higgs pairs as a completely integrable system

In this section we assemble the previous results to a complete proof of the main
theorem (Theorem 8.5). In Subsection 8.1 we show that the proper morphism
HL: Mmggs ---&#x3E; BL is a Lagrangian fibration (Proposition 8.3). Having developed
the required deformation theory, the proof reduces to an infinitesimal verifica-
tion. This is the last step in the proof of the main theorem.

Subsection 8.2 consists of the statement of the main theorem in a canonical

form. In Subsection 8.3 we describe the symplectic leaf foliation of MH,ggs
(Corollary 8.10) using the identification of the moment map for the level group
action.

8. l. The Lagrangian fibration

We begin by an infinitesimal identification of the embedding of the spectral
Jacobians in MH;ggs.

Let Let be a smooth spectral curve. Let F be a
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line bundle on Lb’ E:= 7rb-F, (p:= nb*( (8) Yb) where Yb is the tautological
section of nt L. Let s = 1 E HO(L, (903A3 (D)).

LEMMA 8.1. We have the following canonical exact sequence:

Proof. Lemma 2.7 implies that we have a canonical exact sequence:

~We know that Kr.b(n: D) is canonically isomorphic to n*L(A). Pushing
forward the above sequence we get the sequence 2. 

PROPOSITION 8.2. Let [(E, cp)] c- M’igg, correspond to a smooth spectral
curve Yb. The differential of the embedding ib: 03A303B4Jbd c. M Hjggs is canonically
identified by the exact sequence:

Proof. We have a short exact sequence of complexes

The complex (Im(ad 9) 4 End E 0 L) is quasi isomorphic to the complex
(0 - 7[b-(K03A3b)(D». The exact sequence (3) is part of the corresponding long
exact hypercohomology sequence.
The image of H1(’L, ’Trb*(Y1:b) consists of isospectral deformations since its

hypercohomology classes are represented by Cech cocycles 0) where the
Higgs field is not deformed. Conversely, let ((l,p), (q)) be a cocycle in

Z1(ú], representing an infinitesimal isospectral deformations of the Higgs
pair (E, 9) with respect to a Cech covering * as in the Proof of 7.1. Being
isospectral is équivalent to the fact that (003B1) is a cochain in the cochain group
C’(v, lm(adq» of the subsheaf Im(adq) of End E (D L. It follows that the

hypercohomology class of (0.» is in the kernel of the homomorphism
to HO(’L, ’Trb*(K 1: b)(D)) in the sequence 3 and is hence in the image of

H1(’L, ’Trb*(Y1:b). ~

PROPOSITION 8.3. Let Yb be a smooth spectral curve. Then the fiber HL 1 (b)
is Lagrangian (in the sense of Definition 5.10).

Proof. Let ô be the difRerential -ad ç of the complex KEQ. Let à be the
differential of the complex KEQ[20132]. Proposition 8.2 implies that the conor-
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mal space to a point in H-1(b) is identified with H0’(03A3-, coker ô)*. Corollary
7.15 reduces the proof to checking that

The equality follows from the commutative diagram:

Hl(jol) is the homomorphism H’(n,.(91:,,(-D» H’(7ib-(91,,) induced by the
sheaf inclusion. It is thus surjective. D

REMARK 8.4. Let Sb be an integral spectral curve. The fiber HL ’(b) is

isomorphic to the compactification of the generalized Jacobian by its embed-
ding in the moduli space of (stable) rank 1 torsion free sheaves on Lb. It is

hence an irreducible subvariety of MH;ggs s, (see [A-I-K]) with stratification

indexed by the lattice of partial normalizations of Lb. Let v: 03A3b - Sb be a partial
normalization. It is natural to ask when is the stratum Lagrangian in its

symplectic leaf. Proposition 7.17 implies that this holds only for normalizations
of points in the support of D. The general condition should depend on the type
of the singularity and the multiplicity of x E D. We claim that if v: 03A3b -- Eb is
the normalization of a normal crossing singularity Xb over a point XE L
appearing with multiplicity one in D and if nb 0 v is unramified over x then the
stratum is Lagrangian. To see that let (E, ç) E MH;ggs correspond to the torsion
free sheaf F on Yb such that F --- v*F for some line bundle F on Yb. We need
to show that

If Xb E Yb is the crossing of t branches over XE supp(D) then it contributes t2 - t
to both sides.

8.2. The main theorem

Let £ be a curve of genus g. Let L be a line bundle on X. Let

ô:== deg(L) - (2g - 2). Assume that g, r, d, (5 satisfy the nonemptiness con-
dition 6.6. Let Y:= (H°(03A3, L(g)K-1) - {O}). We will show that for any
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choice of a section SE L, there is a canonical Poisson structure S2S on MHiggs
making (Mftiggs, Qs, HL) an integrable system. More canonically:

THEOREM 8.5. (1) The genericfiber of id x HL : L x Mftiggs - L x BL is
a complete Jacobian of a spectral curve ; (2) There exists a canonical Poisson
structure S2 on L x MHiggs; (3) (L x MHiggs, Q, idy&#x3E; x HL) is an algebraic-
ally completely integrable Hamiltonian system.

Proof (1) Follows from Proposition 2.3 and Remark 3.4, Part 1.
Let SE f/, D its zero divisor. Corollary 7.15 implies that there exists a

canonical Poisson structure S2D on Mftiggs(K(D)). The section s induces an
isomorphism MHiggs(K(D)) MHiggs(L) and a Poisson structure Qs on
Mftiggs (L).
The map S 1---+ Qs is linear (Remark 7.16), in particular algebraic, so the

Poisson structure glues as a global structure Q. (3) Proposition 8.3 implies
that the generic fiber of HL is Lagrangian. D

REMARK 8.6. It seems that Theorem 8.5 generalizes to principal bundles
with reductive structure group via Donagi’s definition of the spectral curve
and its Prym (see Remark 2.8) using essentially the same techniques.

REMARK 8.7. The case of SL(r)-bundles follows from Theorem 8.5. Let
BL0 be the space of traceless polynomials ©[= H°(£, L®’) c BL. Let y E Jd03A3 .
Let M2iggs, y be the moduli space of traceless semistable rank r L-twisted
Higgs pairs with fixed determinant y. It is a subvariety of M Higgs and has
an induced Poisson structure Qs,y. Let H2: MHiggs,v - BL be the restriction
of HL. Then (MHiggs,)’, Qs,}’, H2) is an ACIHS. For generic bE B2, the fiber
of H2 is canonically isomorphic to the Prym (det 0 7rb*)- 1 (y).

8.3. The foliation by symplectic leaves

Fix an isomorphism L ~ K03A3 (D) giving rise to a Poisson structure. The
foliation of the Poisson moduli space MHiggs of stable L-twisted Higgs pairs
by symplectic leaves is induced generically by a foliation of the space of
characteristic polynomials. This is a consequence of the fact that the

Jacobian of a smooth spectral curve is Lagrangian and is contained in the
strata of MHiggs of maximal rank (Proposition 7.17), hence, contained in a
single symplectic leaf. The foliation of the space of characteristic poly-
nomials turns out to be simply a coset foliation.

Let
1 be the quo-

tient map.

PROPOSITION 8.8. There is a canonical isomorphism BL/Bo -_J gt/GD
giving rise to the,f’ollowing commutative diagram :
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Proof Fix (E, ri) E [(E, ri)] e 0//1: (r, d, D).
q 0 HL: H°(03A3, End E Q L) - BL/B° factors through H°(E, End E Q L)/

H°(03A3, End E Q K) and thus through [H°(D, (End E)ID)/C]* (see Definition 6.9).
The rest follows from the definition of 03BC and of the categorical quoteint
gDlGD’ ~

REMARK 8.9. Let R c B T*O/iT. (r, d, D)B be the open subset of isomorphism
classes of triples (E, lfJ, ri) with a stable Higgs pair and which maps to the
smooth locus of Mmggs. There is a bijection between coadjoint orbits of 9t
in ,u(R) and symplectic leaves of Mn,ggs intersecting l(R).
COROLLARY 8.10. The foliation of Mmggs by symplectic leaves is a

refinement of the foliation by fibers of q 0 HL. Every ,fiber contains a unique
symplectic leaf of maximal rank.

Proof In view of Proposition 8.8 we may identify q 0 HL with c.q . O 03BC.
~

9. Examples

A remarkable fact about the integrable systems H: MfHiggs - BL is that many
classical as well as recently discovered integrable systems are in fact

symplectic leaves of them for suitable choices of L, L, r and d. This section
is devoted to the demonstration of this general phenomena.

9.7. Rational base curve

The moduli space of semistable vector bundles over P 1 , %p, (r, d), is empty
if r does not divide d. If r d then it consists of the single isomorphism class
of the semistable vector bundle E : = ©[= i Op1 (d/r). In this case

Aut(E) ^-_’ GL(r, C).
Let D c P1 be an effective divisor of degree &#x3E; 3. Let L:= Kp1(D). Let

ú/P1 (r, - r, D)’ be the Zariski open subset of VP1 (r, - r, D) parameterizing
isomorphism classes of semistable vector bundles with D-level structure.
Vp1(r, -r, Dl) is isomorphic to IsomeD(E ID’ E9i= 1 (9D)/ Aut(E). It is a homo-
geneous GD-space of dimension r2(deg D - 1). By Proposition 6.1, given an
isomorphism class of level structures [(E,n)], T[ É,n]vp1 , (r, - r, D)’ is
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canonically isomorphic to H°(p 1, (End E)* (D L). StabcJ(E, q)] = PGL(r).
So an element x = [(E, ç, n])] E T *GllVp1 (r, - r, D)’ is regular w.r.t the lifted
GD-action if and only if it is regular w.r.t the PGL(r) action. GD acts freely
on the fibers of HL over polynomials of integral spectral curves (Lemma
6.7).

Let BL c Brt ci BL be the Zariski open loci of integral and smooth
spectral curves. Let

be Hi 1 (BLsm ), Hi 1(Bint)L t ) and the locus of stable Higgs pairs. Since GD acts
transitively on ûlIpl (r, - r, D), then

MD embeds as an open subset of MHiggs. The moment map J1 induces also
a Poisson embedding of MD into the categorical quotient gt/ PGL(r). See
[Ar] Section 12 for the analysis of this action when D is reduced.

[HO(P 1, End E Q L)] sm/AUT(E) is exactly Beauville’s system (see [B]).
Let d = deg D - 2. If we choose coordinates on Pl and set L := Wp, (d . oo),
Theorem 8.5 has the following explicit form: Let SE HO(P1, L Q Kp-1 1 ). Let
D be its zero divisor. A section ç E HO(P 1, End E Q L) is just a polynomial
matrix. Let Q be

{A(x): A(x) is an r x r polynomial matrix with entries of degree

The section s induces an isomorphism between MD and Q.

THEOREM 9.1 [B].
1. The fiber of HL: Q - BL over a polynomial of an integral spectral curve

is canonically isomorphic to the complement of the theta divisor in the
compactification of the generalized Jacobian of the spectra curve.

2. There exists a canonical Poisson structure Qs on Q such that (Q, Qs, HL)
is an A CI HS.

3. The,f’oliation by symplectic leaves is a refinement o,f’the foliation by the
fibers of q 0 HL. The generic fiber is a symplectic leaf.

Beauville shows that several classical ACIHS, such as geodesic flow on
the ellipsoid, Neumann’s system, and certain Euler-Arnold systems, embed
in his system as symplectic leaves.
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9.2. Elliptic base curve, stable bundles

9.2.1. Moduli space approach. Let L be an elliptic curve. Assume that r and
d are relatively prime. A vector bundle of rank r and degree d is stable if
and only if it is indecomposable (see [Tu]). The determinant morphism
det: v03A3. (r, d) - Jd03A3 is an isomorphism (see [At]).

Let D be an effective divisor on E. Let L := K(D). Theorem 8.5 applies
and we have a canonical Poisson structure S2D such that (MHiggs, QD’ HL)
is an ACIHS. Let ML be the geometric quotient IT*q’E.(r, d,D)I/GD. It is a
trivial vector bundle over q¡’E. (r, d) which embeds as an open subvariety of
MHiggs Since J1 is GD-equivariant, it descends to a surjective vector bundle
homomorphism c: ML ML :_ [(gD)lE(r,d,D)]lGn (the quotient w.r.t the

AdGo-twisted action). 03BC factors through an isomorphism of M dT*q’E. (r, d)
with ML.

Let ML be the subbundle of ML of traceless Higgs pairs. ji restricts to an
isomorphism of ML -’ [(Sljj)JII1.(r,d,D)]/GD.

’T’he SL(r) version of Theorem 8.5 becomes:

THEOREM 9.2. Let (E, ~) be a stable rank r vector bundle of degree d with
D-level structure. Let y:= det(E). Then (notation as in Remark 8.7).

1. There is a Poisson isomorphism between MLo,y and slg depending
canonically on (E, ~).

2. The fi ber of HL: slD - Bf over a generic pol ynomial b is canonicall y
isomorphic to a Zariski open subset of the Prym(det 0 7tb*)-l(y) of the
spectral curve 7tb: 03A3b - L.

3. (slt, HL) is an A CIHS.
4. q° 0 Hi: LD SID Bf/Bl is the categorical quotient of the coadjoint action.

REMARK 9.3. This integrable system was discovered by A. G. Reyman
and M. A. Semenov-Tyan-Shansky (see [R-S]). They have shown that
several ACIHS arising from mechanical systems such as spinning tops,
n-interacting spinning tops and movement of a body in a liquid, embed as
symplectic leaves in sID.

We will compare their approach with ours in Subsection 9.2.2.

9.2.2. Comparison with the bialgebra approach. Consider a Physical system
whose phase space can be identified with coadjoint orbits of a Lie algebra
isomorphic to SID. Its equations of motion are usually given by a Hamil-
tonian. One may try to solve these equations by exhibiting it as a

completely integrable system. The spectral construction introduces the "rest
of the conserved quantities", i.e., a maximal involutive algebra of Hamil-
tonian functions.
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The bialgebra construction embeds sl1) in the dual of the infinite

dimensional Lie algebra 2:= (BpesuppD)C((03BB) @c sl(r). The rest of the

Hamiltonian functions are obtained by restricting the invariant poly-
nomials on 2* to 51t.

Let E be an elliptic curve with a fixed point po. Let £[r] be the subgroup
of points of order r. The discussion in [R-S] does not involve a stable
vector bundle. Instead they consider 1[r]-invariant 5I(r)-valued functions
with poles dominated by D. The following is a translation of the result of
[R-S] to the language of vector bundles:

PROPOSITION 9.4. Let E be a stable vector bundle of rank r and degree
d on E. Assume that gcd(r, d) = 1. Let Pr: (L, po) - (L, po) be multiplication
by r. Then Mr* (End E) --- gl(r, C) Q (91:..

Proof. End

Let L:= K03A3 (D). Choose a section s c- H’(03A3-, K03A3). We get a canonical

isomorphism O03A3 K03A3 .

COROLLARY 9.5. The space of J03A3o [r]-inuariant sections of gl(r, C) (D 11: L
is isomorphic to HO(L, (End E) Q L).

9.3. Elliptic base curves, semistable bundles

9.3. l. General discussion. Let E be an elliptic curve. Let h := gcd(r, d). If

h # 1 then 0#’ (r, d) is empty. MH;gg, has a Zariski open subset Mmggs
parameterizing Higgs pairs with semistable vector bundle. M’ Higgs, maps
canonically to the moduli space ú03A3 (r, d) parameterizing S-equivalence
classes of semistable vector bundles.

ÚÙI:. (r, cl) is isomorphic to Sym’Y-. A choice of a point q E L determines this
isomorphism canonically (see [Tu]). The generic point of ÚÙI:. (r, d) repre-
sents an S-equivalence class 01537= 1 Fi where the summands Fi are distinct
stable vector bundles of rank r’ := r/h and degree d’ := d/h. It consists of a
unique isomorphism class.
A Zariski open subset of M Higgs is Poisson isomorphic to an open subset

of the quotient of IT*ÚÙI:. (r, d, D)j by the level group G,. Let ô:= deg(D).
Thus

The dimension of the generic symplectic leaf is

9.3.2. KP elliptic solitons. Let A be a rank 2 lattice in C. Let Y-:= C/A.
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DEFINITION 9.6. A A-periodic KP elliptic soliton of order r is a solution
of the equation:

of the form

where 9 is the Weierstrass function with period lattice A and

{Xi}: C’ 2 Symr(L) is an analytic function.

Let q E03A3 Y- be the zero point. Let L := K03A3 (q). Let )03BB E Llq be the point with
residue 1. Let Sol(A, r) be the space of A-periodic KP elliptic solitons of
order r. Let M(KP, r)int be the subset of M Higgs parameterizing isomor-
phism classes of L twisted Higgs pairs (E, ç) of rank r and degree 0 with
integral spectral curve 03C0b: 03A3b - 03A3 such that (Plq is conjugate to diag( - ).,
201303BB,..., 201303BB (r - 1 )),,). A. Treibich and J. L. Verdier have demonstrated in
[T-V], using results of 1. M. Krichever, a bijection between Sol(A, r) and
M(KP, r) inl

REMARK 9.7. Such a Higgs pair corresponds to a torsion free sheaf F on
a spectral curve 03A3b with two points - ).., (r - 1))03BB over q. When r &#x3E; 2 the

point - ), is singular and F is the push forward of a torsion free sheaf F on
the normalization v: 03A3 b -&#x3E; Lb of - )... nb - v: 03A3b ---&#x3E;03A3- is unramified over q.
REMARK 9.8. A beautiful description of KP elliptic solitons is given in
[T-V] by an intermediate bijection with isomorphism classes of triples
(r, k, 03BE) where n: r --&#x3E; Y- is a minimal tangential morphism of degree r, k a
tangential function on 17 and j is a torsion free sheaf of rank 1 with zero

Euler characteristic.

Let Orb(KP) be the coadjoint orbit in gD of

Let M(K P, r) be the symplectic leaf of M Higgs corresponding to Orb(K P)
(see Remark 8.9). Sol(A, r) embeds in MHiggs as the open subset M(KP, r)’nt
of M( K P, r).
As a result of Theorem 8.5 we get:

COROLLARY 9.9. The space Sol(A, r) of A-periodic KP elliptic solitons of
order r is endowed with a canonical A CI HS structure.
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REMARK 9.10. In the absence of Theorem 8.5, the symplectic structure
on Sol(A, r) was introduced in [T-V] via a rather long auxiliary construc-
tion of a birational isomorphism with T* Symr L.

The dimension of a generic symplectic leaf in M Higgs is r2 - r + 2. The
dimension of the coadjoint orbit Orb(KP) is (r - 2)(r - 1) less than the

generic one. Thus the dimension of M(KP, r) is (r2 - r + 2) -
(r - 2)(r - 1) = 2r. (See also Remark 8.4). It is the symplectic leaf over the
coset b E BL/HO(L, Q+ i=1 K©‘03A3i) where b is the coefficients vector of the

polynomial Pb(y) = ( y + À)r-l( y - (r - 1);.). (The generic symplectic leaf
consists of spectral Jacobians over a coset of H°(E, EBi= K°‘ ((i - 1)q))).

9.4. Hyperelliptic base curves

The moduli spaces of rank 2 semistable vector bundles over a Hyperelliptic
curve of genus g have been described explicitly by M. S. Narasimhan and
S. Ramanan in [N-R] in the case g = 2 and by U. V. Desale and S.

Ramanan in [D-R] for arbitrary genus. As a result we obtain an explicit
description of the phase spaces of our integrable systems.

Let W = {W1’...’ W2g+2} c Al 1 c pl. Let £ be the nonsingular Hyperel-
liptic curve of genus g branched over W Let y be a line bundle on E. Let

be the quadrics in the 2g + 1 projective space P:= P(LwewYw).

THEOREM 9.11 [D-R] (deg y is odd). W, (2, y) is isomorphic to the variety
of (g - 2)-dimensional linear subspaces of P contained in Q1 1 and Q2.

THEOREM 9.12 [D-R] (deg y is even). Let y = (91:. Let i: i74%z(2) -
i74%z(2) be the automorphism induced by pulling back via the Hyperelliptic
involution. i74%z (2)li is isomorphic to the variety of g-dimensional linear
subspaces of P which belong to a fixed system of maximal isotropic subspaces
of Q1 1 and intersect Q2 in quadrics of rank  4.

Note that when g = 2 or 3 the second condition is always satisfied.

The case of even determinant and g = 2 has a further description:

THEOREM 9.13 [N-R] (g = 2). Ye, (2) is canonically isomorphic to

PH°(J% , 20) ’--" p3 (the 20-linear system, 0 = the Riemann theta divisor).

Let M2.y be the open subset of M’igg,,, of Higgs pairs with a semistable
vector bundle.
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EXAMPLE 9.14 (g = 2, even determinant, L = K). The ACIHS

(ML,y, f2y, HL) lives on the cotangent bundle of YôlI1: (2) xé P3. Choosing a
nonzero element {3 E (Bf)* we get that H!({3) E HO(YôlI1: (2), S2T* M4%z (2))
corresponds to a meromorphic "metric" on P3 (need not be positive
definite on R [P3) with "geodesic" flow along 3-dimensional Prymians of
spectral curves of genus 5.

EXAMPLE 9.15 (g = 2, odd determinant, L = K). Same as Example 9.14
with [p3 replaced by Q 1 n Q2 c [p5.

EXAMPLE 9.16 (g = 2, even (odd) determinant, L = K(p.) for some

Po EL). ML,y is a rank 6 vector bundle over [p3 (resp. Q 1 n Q2) and the
generic symplectic leaf is a subbundle of quadric hypersurfaces.

It would be interesting to find out if suitable choices of Hamiltonian

functions on the systems with hyperelliptic base curve give rise to differen-
tial equations with physical interpretation. In view of their explicit descrip-
tion one may hope to write solutions to such equations in terms of theta
functions.
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