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Consider an integral on degenerate variety X c P’. The projective geometry of
X is very much reflected in the geometry of its conormal variety C(X) c PN x
PN*; C(X) is the closure of the pairs (x, H) with x ~ Xreg and TxX ~ H (i.e. such
that H is tangent to X at x). For instance if the dual variety X* (i.e. the projection
of C(X) into P" ) is not a hypersurface then the general hyperplane tangent to X is
tangent to X at infinitely many points. If the algebraically closed base field F has
char(F) = 0, then it is known that in such a case the general hyperplane tangent to
X is tangent to X exactly along a linear space. Without any assumption on X*,
when char(F) = 0, many nice things are true: biduality (i.e. (X*)* = X under the
identification of (PN *)* with PN), the fact that in the enumerative formulas the
solutions comes with multiplicity ones etc. In general such good things are not
true when char(F) = p &#x3E; 0. Wallace ([15]) was the first to note this fact and to
show that there is a class of varieties (the reflexive varieties) for which such facts
are true (in particular the biduality of X). A variety X is called reflexive if

C(X) = C(X*) (up to the exchange of the factors in PN x PN* and the

identification of (PN*)* with PN). A variety X c PN is called ordinary if it is

reflexive and X* is a hypersurface. When char(F) = 0, every variety is reflexive.
When char(F) &#x3E; 0 this is not true, but the class of reflexive varieties has

remarkable stability properties and it is very nice: in the small universe of reflexive
varieties everything is nice (see [2], [3], [4]). But there is a disturbing feature:
char(F) = 2. When char(F) = 2 there is no ordinary variety of odd dimension. In
particular the general hyperplane section Y of an ordinary variety cannot be
ordinary. But it has many nice features: semi-reflexivity (see [3]) and Y* is
a hypersurface ([3], 5.9 and 5.12), i.e. the general hyperplane tangent to y is
tangent only at finitely many points of Y. It was asked in [3], (5.11)(iii), if for such
X the following property ($) holds:

($): the general hyperplane tangent to a general hyperplane section Y of an
ordinary variety X is tangent exactly at one point of Y.

A proof of ($) for all ordinary X would make authomatically possible to drop the
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unpleasant assumption "char(F) ~ 2" in a few statements ([3],4.10(ii); for the
non-existence of bitangencies in the enumeration of the contact formula in [2], §2,
part (c) of the main theorem, p. 162, see the discussion in [2], p. 169).
Unfortunately, the answer is NO. In Section 1 we construct a very nice family of
examples; they are hypersurfaces and we have explicit equations; they are related
to the so-called null-correlations (and to the null-correlation bundles) (a very
classical topic: see e.g. [1]). But the next best thing happens. These examples are
the only ones. This is proved in Section 2. Thus in this paper we prove the
following result.

THEOREM 0.1. Fix an integral non degenerate variety X in P’, dim(X) = n.
Then a general hyperplane tangent to a general hyperplane section Y of X is
tangent at more than one point of Y if and only if N = n + 1, n = 2k + 2 is even,
and, up to a change of the homogeneous coordinates y,,. ..., yk, Z 1" ..., zk of pN, the
equation f of X has the form:

with h and b homogeneous polynomials.

Every integral non degenerate hypersurface X satisfying (1) has two geo-
metrical properties (see §1 for their proof): TX is the restriction to X of

a null-correlation bundle of Pn+1 and X is canonically isomorphic to its dual
variety. Now we can check that such a variety X is not normal (proof: X is
singular on the codimension one subset {h = b = 01). Thus we have the following
corollary.

COROLLARY 0.2 Fix an integral non degenerate variety X c pN. X has

property ($) if it is normal or if it is not a hypersurface.
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this reason and for very strong encouragement.
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1. The examples

In this paper we work always over an algebraically closed base field F with
char(F) = 2. Fix an odd integer m &#x3E; 1 and set P := Pm. Let 0 and Q be structural

sheaf and the cotangent bundle on P. It is well-known that Q(2) is spanned by its
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global sections. Since m is odd, cm(03A9(2)) = 0; hence a general section ofQ(2) never
vanishes. Choose a nowhere vanishing section s of Q(2). The choice of s is

equivalent to the choice of a surjection t: TP - 0(2). Set N := Ker(t). N is
a rank-(m - 1) vector bundle on P. It is called a null-correlation bundle and
classically considered (see e.g. [1]).
Thus s induces an exact sequence:

Choose homogeneous coordinates xo,..., Xm on P; we will set m = 2k - 1,
Yi:= x2i-2, 1  i  m, zi:= x2i-1, 1  i  m. Consider the Euler sequence on P:

The map O ~ (m + 1)O(1) in (3) send c ~ O into (cx°; ... ; cxm). By (3) the choice of
t is equivalent to the choice of m + 1 linear forms l0, ...,lm on P such that
x0l0 + ... + xmlm = 0; t is surjective exactly when the forms 10, ... , lm have no
common zero. Furthermore by the dual of (3) H°(P, Q(2») can be identified to the
set of antisymmetric (m + 1) x (m + 1) matrices over F (even if char(F) = 2); the
matrix given by l°, ... , lm has as elements in the ith row the coefficients of li. The
nowhere vanishing of s is equivalent to the fact that the corresponding
antisymmetric matrix L is invertible; hence up to a change of coordinates s is
uniquely determined. We will choose the coordinates xo,..., xm in such a way
that l2i-2=zi and 12i-l = -Yi, 1  i  m.

Let X be a reduced hypersurface of P with homogeneous equation f,
deg( f ) = d &#x3E; 2. Assume that (8/8xi)f = lig for all i and for some form g of degree
d - 2. Since X is reduced, g ~ 0. Then the map from TPIX to the normal bundle
Ox(d) to X factors through Ox(2) ; since the li are nowhere vanishing, we see that
the exact sequence

induces the exact sequence

which is the restriction to X of (2). In particular TX is locally free and TX = N|X.

Claim: X is reflexive.

Proof of the claim. The alternating matrix L corresponding to s gives
a null-correlation, i.e. an isomorphism L between P and its dual P* such that
x ~ L(x) for all x ~ P. Since the matrix L is alternating, we check easily that if
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y E L(x) then x E L(y). Let J c P x P* be the incidence correspondence, J =

{(x, H): x ~ H}. J = P(TP(-1)) (as space over P) and t gives a section of J - P
with image the graph graph(L) of L. Furthermore, since TX = N|X, JI(X x P*)
is the conormal variety C(X) of X. Since L is an isomorphism, the projection
graph(L) - P* is an isomorphism. Hence so is its restriction C(X) - X*. Thus
X is reflexive (see [2] or [3] or [4]), proving the claim.

Since (4) is the restriction of (2), for any x, y E (X)reg, y E TxX if and only if
x ~ TyX. Furthermore if H is a general hyperplane, say H = L(a) with a e P and
a general, for all x ~ H n (Xreg), we have a E TxX (i.e. by definition Y:= X n H is
strange with strange point a). In particular every line D in H with a E D is tangent
to X at all points of Y n D. First assume that for a general line D in H with a E D,
card(Y n D)  2. Fix any such D and c, b E Y n D with c ~ b. To show that X does
not satisfy ($), it is sufficient to check that (T, Y) n Y = (Tb Y) n Y. Fix a general
eE(TcY)n Y. Then c ~ Te Y. Since a E TeY, we get b ~ TeY, hence e ~ Tb Y, hence the
thesis. We have to prove the assumption, i.e. that for general L(a) there is such
a line D. First assume m = 3, i.e. X a surface. Since X is reflexive, for general
x ~ XTxX has order of contact 2 with x at X, hence for general L(a) a general line
D tangent to X n L(a) (i.e. a general line in H through a) has contact order 2 with
Y at each point of Y n D; since d &#x3E; 2, the assumption follows. Now assume m &#x3E; 3.

By the case m = 3, we see (cutting X with a general P3) that for a general x E X
and a general tangent line D to X at x, card(D n X) &#x3E; 1; L(x) is the tangent space
to X at x, hence contains D. Of course, L(x) is not a general hyperplane. But we
may find a family of points a(t), t ~ T, a(t) E P for all t, with T smooth, irreducible
affine curve, and a family of lines D(t), t E T, with a(t) E D(t) c L(a(t)) for every
t (hence D(t) tangent to X at each point of D(t) n X by the strangeness of
X n L(a(t)), with a(O) = x for some point 0 E T, a(t) general for general t. For
general t E T, L(a(t)) and D(t) will work.
Now we have to show that (assuming char(F) = 2) such varieties X exist, write

their equations and find all possible X. First note that from (8j8zi)f = yig (resp.
(~/~yi)f = zig), i = 1,..., m, we get that g contains every variables zi (resp. yi) at
an even order. Thus g = h2 for some polynomial h of degree d/2; in particular d is
even. Furthermore, taking derivatives, we see that f - (LiYizi)h2 is a square, say
b2. Viceversa, for any even d and any choice of polynomials h, b, with

deg(h) = -1 + (d/2), deg(b) = d/2, define f by the equation (1). The variety
X:={f = 01 will work if it is reduced and irreducible. Even the reducibility is not
a big problem; if it is reducible, any of its reducible components of degree &#x3E; 2

would work (if there are such components). The reader can easily construct
examples of f with X integral. Here we show only the existence of at least one
example, taking m = 3, h = xl, b = (xo + X2 + x3)2. Note that the restriction of
this surface X to the plane A:= {x2 = 01 is a curve C with exactly a singular point
(xo = x3 ~ 0, Xi = 0) while the line {x0 = 01 intersects C only at one point with
X3 = 0. Hence C cannot be the product of (maybe reducible) conics.
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2. End of proof

In this section we will prove 0.1 and 0.2 showing that the examples given in
section 1 are the only examples of reflexive varieties without property ($). We will
fix an integral non degenerate variety X c PN, dim(X) = n, X not with the
property ($). The proof of o.1 is divided into 2 steps; essentially, in the first step we
will handle the case "N = n + 1", while in the second step we will handle the case
"N &#x3E; n + 1".

Step 1. By [5], Lemma 3 p. 334, the general projection Y of X into P"+ 1 is
reflexive; of course, Y is ordinary and cannot have the property ($). In this step we
will work with Y i.e. we will assume N = n + 1 and X a hypersurface. By the
definition of ordinary variety and [4], 2.4(v), there is a proper closed subset A of
X, A containing the singular set Sing(X) of X, such that for every x E X, x e A, the
tangent space TxX is tangent to the smooth locus of X only at x. Consider the
following assertion (£):

(£): for a general x E X and a general hyperplane H through x, the proper
morphism from the conormal variety of X n H in H to the dual of X n H
has x as its fiber through x (set theoretically).

Note that, fixing H and taking z E H with z general, it is easy to check that (£)
implies ($). Thus if we prove (£) we get a contradiction. For every y E XBA, set
X ( y) := X n TyX, X ( y)’ := X ( y) n (Xreg ). Since N = n + 1, by the definition of
A for every y~X(x)’, y ~ x, T(x,y) := TyX~TxX is a hyperplane of TxX.
Varying y we get a family of hyperplanes of TxX of dimension at most n - 1.
Assume that for general x and general y E T(x)’, x e T(x, y).
Then a general hyperplane H through x does not contain any T(x, y). Since

Tx(X n H) = (TxX) n H, (x, H) will prove (£).
Thus we may assume that for general x E X and every y E T(x)’, x ~ T(x, y). If

the family {T(x, y)l (x fixed, y variable in X(x)’) has not dimension n - 1, again
the general hyperplane H through x does not contain any T(x, y), again giving (£).
Thus till the end of this step we will assume that for general x, a general
hyperplane of TxX containing x is of the form T(x, y). Counting dimensions we
see that this implies that for general x E X and general y E (X n TxX), we have
x ~ TyX. This means that for general x E X, the image of (Xreg ~ TxX) under the
Gauss map g: Xreg --+ P* is contained in the hyperplane Hx of P* corresponding
to x. Thus for general x E X, g(Xreg n TxX) has X* n Hx as closure in P*. Thus
g*(OP*(1)) = OX(1)|Xreg. We claim that this gives that the induced map in
cohomology g’*:H°(P*,OP*(1))~H°(Xreg,OX(1)) has image contained in the
image of H’(P, OP(1)); indeed since X is non degenerate, H°(P*, OP*(1)) is

generated by the sections corresponding to the hyperplanes Hx, with x ~ X. The



134

map g’* is injective because X* is not contained in a hyperplane as X is ordinary.
Note that (for dimensional reasons and the claim and the injectivity just proven)
g’* induces an isomorphism j of P* onto P. To show that if ($) does not hold
X must be of the form considered in Section 1, it is sufficient to check that j-1 is
a null-correlation, i.e. that j(c) e c for every c ~ P*. Let M be the matrix associated
to j-1. M is antisymmetric if and only if j-1 is a null-correlation. Assume that M is
not antisymmetric, i.e. that Q:={z~P:tzMz = 0} is a quadric. Since by
construction x~j-1(x) for all x E X (note that x ~ TxX), this means that X is
a quadric (which trivially satisfy ($)). Thus we have described every ordinary
hypersurface X without ($).

Step 2. (case N &#x3E; n + 1). Now we assume that X is not a hypersurface, and
that ($) fails for X ; by [5] as at the beginning of step 1 we may assume that

N = n + 2 and that a general projection of X into pn+1 does not have ($) (hence
by step 1 is of the type considered in Section 1). Fix a point a E Xreg. Fix a general
point P E Pn+2 and let j (or jp) be the projection of X into Pn+1 from P; set
Z:= j(X). Let H := (P, TaX) be the span of P and TaX. For general P we have
H~X~H Ta X. Fix a general b E (H n X). Since j(b) E Tj(a)Z, by the
classification in the case of hypersurfaces we have j(a) e Tj(b)Z, i.e. a is in the span
H’ of P and TbX. Varying P in H, we see that this is equivalent to H’ = H. Hence
dim(TaX n Tb X ) = n - 1. Moving P, we see that this is true for all a, b E X reg . Fix
a, b, ce Xreg. Then either TaX n TbX n TeX = TaX n TbX or TcX is contained
in the span H" of the union of Ta X and Tb X. Since dim( Ta X n TbX) = n - 1, we
have dim(H") = n + 1, hence H" ~ Pn+2. Move c. In the latter case we get
Xreg~H", contradicting the non degeneracy of X. In the former case all

TcX, ce X reg, contain TaX n Tb X, hence X cannot be ordinary. This completes
the proof of 0.1 and 0.2.

REMARK 2.1. By the classification given it follows that, except for the examples
of Section 1, [3], 4.10(ii), holds true even in characteristic 2. For the examples of
Section 1 it fails badly since for a general H E X *, the hyperplane tangent to X* at
H is the dual of X n H.
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