

COMPOSITIO MATHEMATICA

K.-H. ULBRICH

On cohomology of graded group categories

Compositio Mathematica, tome 63, n° 3 (1987), p. 409-417

http://www.numdam.org/item?id=CM_1987_63_3_409_0

© Foundation Compositio Mathematica, 1987, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (<http://www.compositio.nl/>) implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/*

On cohomology of graded group categories

K.-H. ULRICH

Mathematisches Seminar, Universität Hamburg, Bundesstrasse 55, 2000 Hamburg 13, FRG

Received 16 March 1987; accepted 12 May 1987

In [2] Fröhlich and Wall defined cohomology groups $H^n(G, \mathcal{C})$ for G a group and \mathcal{C} a strictly coherent group-like G -monoidal category. We show here a one-to-one correspondence between these categories and the categories with coherent left G -module structure; this correspondence takes \mathcal{C} to its subcategory $\text{Ker } (\mathcal{C})$ of morphisms of grade 1. We prove that the groups $H^n(G, \mathcal{C})$ are isomorphic to the cohomology groups $H^n(G, \text{Ker } \mathcal{C})$ as defined in [8]. Finally we give a characterization of these groups as right derived functors.

1. Let G be a group and \mathcal{A} a category with a coherent (left) G -module structure as defined in [8], 1.1, and [7, II]. For \mathcal{A} -morphisms $g: P \rightarrow Q$ and $h: M \rightarrow N$ we write $g \otimes h: PM \rightarrow QN$ for the monoidal product, $g^0: P^0 \rightarrow Q^0$ for the monoidal inverse, and $g^\sigma: P^\sigma \rightarrow Q^\sigma$ for the image of g under the action of $\sigma \in G$ on \mathcal{A} . The corresponding natural transformations are:

$$a: (PQ)N \rightarrow P(QN), \quad c: PQ \rightarrow QP, \quad e: PI \rightarrow P, \quad i: PP^0 \rightarrow I,$$

$$t_\sigma: (PQ)^\sigma \rightarrow P^\sigma Q^\sigma, \quad \lambda_\sigma: I^\sigma \rightarrow I, \quad \xi: (P^\tau)^\sigma \rightarrow P^{\sigma\tau}, \quad \zeta: P^1 \rightarrow P,$$

where I denotes the neutral object of \mathcal{A} . We first want to show that \mathcal{A} determines a strictly coherent group-like G -monoidal category $\mathcal{C} = \mathcal{A}^{\text{gr}}$ in the sense of [2], p. 257. We set

$$\text{Ob } (\mathcal{C}) = \text{Ob } (\mathcal{A}), \quad \text{and} \quad \text{Hom}_{\mathcal{C}}(P, Q) = \bigcup_{\sigma \in G} \text{Hom}_{\mathcal{A}}(P^\sigma, Q) \text{ (disjoint)}.$$

Thus each \mathcal{C} -morphism $g: P \rightarrow Q$ determines (and is uniquely determined by) its “grade” $\sigma \in G$ and its “projection” $g_\sigma: P^\sigma \rightarrow Q$ in \mathcal{A} . For $h: N \rightarrow P$ of grade τ and $g: P \rightarrow Q$ of grade σ , the composite gh is defined to have grade $\sigma\tau$ and projection

$$N^{\sigma\tau} \xrightarrow{\xi^{-1}} (N^\tau)^\sigma \xrightarrow{h_\tau^\sigma} P^\sigma \xrightarrow{g_\sigma} Q.$$

Observe that $\zeta: P^1 \rightarrow P$ is the projection of id_P , and that there is a canonical embedding

$$\iota: \mathcal{A} \rightarrow \mathcal{A}^{gr} = \mathcal{C}, \quad \iota(P) = P,$$

which identifies \mathcal{A} with the subcategory of morphisms of grade 1 of \mathcal{C} . Moreover, there is a functor

$$\mathcal{C} \times_G \mathcal{C} \rightarrow \mathcal{C}, \quad (P, Q) \mapsto PQ,$$

which maps a pair $g: P \rightarrow Q, h: M \rightarrow N$ of \mathcal{C} -morphisms of the same grade σ to $g \otimes h: PM \rightarrow QN$ with projection

$$(PM)^\sigma \xrightarrow{\iota_\sigma} P^\sigma M^\sigma \xrightarrow{g_\sigma \otimes h_\sigma} QN$$

and grade σ . Finally, we have $\varepsilon: G \rightarrow \mathcal{C}, \varepsilon(\sigma): I \rightarrow I$, where $\varepsilon(\sigma)$ has grade σ and projection $\lambda_\sigma: I^\sigma \rightarrow I$.

LEMMA (1.1). *The above data make $\mathcal{C} = \mathcal{A}^{gr}$, together with the natural transformations $\iota(a), \iota(c)$ and $\iota(e)$, into a strictly coherent group-like G -monoidal category.*

Proof: Simply check the definitions [2], pp. 237, 240, 247.

The (small) categories with coherent G -module structure form a category $\mathfrak{U}\mathfrak{b}_G$ where a morphism $\Psi: \mathcal{A} \rightarrow \mathcal{B}$ is a monoidal functor (Ψ, ι_Ψ) supplied with monoidal [2], (1.10), natural transformations

$$\mu_\sigma: \Psi(P)^\sigma \rightarrow \Psi(P^\sigma), \quad P \in \mathcal{A}, \quad \sigma \in G,$$

such that

$$\mu_{\sigma\tau} \xi_{\Psi(P)} = \Psi(\xi_P) \mu_\sigma \mu_\tau^\sigma, \quad \text{and} \quad \Psi(\zeta_P) \mu_1 = \zeta_{\Psi(P)}, \quad (1)$$

for all $\sigma, \tau \in G$, and $P \in \mathcal{A}$. Notice that $\iota_\Psi: \Psi(PQ) \rightarrow \Psi(P)\Psi(Q)$ satisfies [2], (1.7) and (1.8), and that by [7, II], ι_Ψ determines $\lambda_\Psi: \Psi(I) \rightarrow I$ such that [2], (1.9), holds. With any such $(\Psi, \iota_\Psi, \mu_\sigma)$ we associate a grade preserving functor

$$\Psi^{gr}: \mathcal{A}^{gr} \rightarrow \mathcal{B}^{gr}, \quad P \mapsto \Psi(P),$$

which maps $g: P \rightarrow Q$ of grade σ to $\Psi^{gr}(g)$ having projection

$$\Psi(P)^\sigma \xrightarrow{\mu_\sigma} \Psi(P^\sigma) \xrightarrow{\Psi(g_\sigma)} \Psi(Q).$$

Then $\iota(t_\Psi)$ and $\iota(\lambda_\Psi)$ make Ψ^{gr} a morphism of G -monoidal categories [2], p. 240. In this way we obtain a faithful functor from $\check{\mathbf{U}}\mathbf{b}_G$ to the category $\check{\mathbf{U}}\mathbf{b}_G^{gr}$ of strictly coherent group-like G -monoidal (small) categories. It is clear that if Ψ is an equivalence of categories, then so is Ψ^{gr} .

THEOREM (1.2): *The functor $\check{\mathbf{U}}\mathbf{b}_G \rightarrow \check{\mathbf{U}}\mathbf{b}_G^{gr}$, $\mathcal{A} \mapsto \mathcal{A}^{gr}$, is an equivalence of categories.*

Proof: We first show that, given any morphism $T: \mathcal{A}^{gr} \rightarrow \mathcal{B}^{gr}$ in $\check{\mathbf{U}}\mathbf{b}_G^{gr}$, T is of the form Ψ^{gr} . T determines a unique monoidal functor $\Psi: \mathcal{A} \rightarrow \mathcal{B}$ satisfying $\iota_{\mathcal{B}} \Psi = T \iota_{\mathcal{A}}$. In particular, $\Psi(P) = T(P)$ for objects $P \in \mathcal{A}$. We now consider the \mathcal{A}^{gr} -morphisms $f_{P,\sigma}: P \rightarrow P^\sigma$ having grade σ and projection id_{P^σ} . They obviously satisfy:

$$f_{Q,\sigma} \iota(g) = \iota(g^\sigma) f_{P,\sigma}, \quad \text{for } g: P \rightarrow Q \text{ in } \mathcal{A}, \quad (2)$$

$$\iota(t_\sigma) f_{PQ,\sigma} = f_{P,\sigma} \otimes f_{Q,\sigma}, \quad P, Q \in \mathcal{A}, \quad (3)$$

$$f_{P,\sigma\tau} = \iota(\xi_P) f_{P^\tau,\sigma} f_{P,\tau}, \quad P \in \mathcal{A}, \quad (4)$$

$$f_{P,1} = \iota(\xi_P)^{-1}, \quad P \in \mathcal{A}. \quad (5)$$

We define $\mu_\sigma: T(P)^\sigma \rightarrow T(P^\sigma)$ to be the projection of $T(f_{P,\sigma})$. Then (2) implies that μ_σ is natural in P , (3) implies that μ_σ is monoidal, and (4) and (5) imply condition (1). Furthermore we have $g = \iota(g_\sigma) f_{P,\sigma}$ for any morphism $g: P \rightarrow Q$ of grade σ in \mathcal{A}^{gr} . Hence $T(g) = T\iota(g_\sigma)T(f_{P,\sigma})$, proving $T = \Psi^{gr}$.

Next let \mathcal{C} be a given object of $\check{\mathbf{U}}\mathbf{b}_G^{gr}$. Let $\mathcal{A} = \text{Ker}(\mathcal{C}) \subset \mathcal{C}$ be the subcategory of morphisms of grade 1. Thus $\text{Ob}(\mathcal{A}) = \text{Ob}(\mathcal{C})$ and \mathcal{A} is a strictly coherent group-like monoidal category, [2], p. 240. We now fix for any $P \in \mathcal{A}$ and $\sigma \in G$ objects P^σ , P^0 in \mathcal{A} and morphisms

$$f_{P,\sigma}: P \rightarrow P^\sigma \text{ of grade } \sigma, \quad i_P: PP^0 \rightarrow I \text{ of grade 1.} \quad (6)$$

Note that $f_{P,\sigma}$ exists since \mathcal{C} is stably graded, [2], p. 240. For any morphism $g: P \rightarrow Q$ in \mathcal{A} we define $g^\sigma: P^\sigma \rightarrow Q^\sigma$ by

$$g^\sigma = f_{Q,\sigma} g f_{P,\sigma}^{-1}.$$

Moreover we define $t_\sigma: (PQ)^\sigma \rightarrow P^\sigma Q^\sigma$, $\xi: (P^\tau)^\sigma \rightarrow P^{\sigma\tau}$, and $\zeta: P^1 \rightarrow P$ by

$$t_\sigma = (f_{P,\sigma} \otimes f_{Q,\sigma}) f_{PQ,\sigma}^{-1}, \quad \xi = f_{P,\sigma\tau} f_{P,\tau}^{-1} f_{P^\tau,\sigma}^{-1}, \quad \zeta = f_{P,1}^{-1}.$$

Finally, for each morphism $g: P \rightarrow Q$ of grade 1, let $g^0: P^0 \rightarrow Q^0$ be the unique \mathcal{A} -morphism such that $g \otimes g^0 = i_Q^{-1} i_P$, [2], lemma 2.6. It is easy to verify that these definitions give \mathcal{A} a coherent G -module structure. Now consider the functor

$$T: \mathcal{A}^{gr} \rightarrow \mathcal{C}, \quad T(P) = P, \quad T(g) = g_\sigma f_{P,\sigma},$$

where $g: P \rightarrow Q$ has grade σ and projection $g_\sigma: P^\sigma \rightarrow Q^\sigma$. T is a morphism of G -monoidal categories where the corresponding natural transformations are identities. We claim that T is bijective. For any $P, Q \in \mathcal{C}$ the given grade functor $\vartheta: \mathcal{C} \rightarrow G$ induces

$$\text{Hom}_\mathcal{C}(P, Q) = \bigcup_{\sigma \in G} \vartheta_{P,Q}^{-1}(\sigma) \quad (\text{disjoint})$$

where $\vartheta_{P,Q}^{-1}(\sigma)$ is the set of \mathcal{C} -morphisms $P \rightarrow Q$ of grade σ . But

$$\vartheta_{P,Q}^{-1}(\sigma) \rightarrow \text{Hom}_{\mathcal{A}}(P^\sigma, Q), \quad g \mapsto g f_{P,\sigma}^{-1}$$

is clearly a bijection. This shows that T is an isomorphism and this completes the proof.

We now fix for every $\mathcal{C} \in \check{\mathcal{U}}\mathcal{b}_G^{gr}$ a set of data (6) thereby making $\text{Ker}(\mathcal{C})$ into an object of $\check{\mathcal{U}}\mathcal{b}_G$. Any morphism $T: \mathcal{C} \rightarrow \mathcal{D}$ in $\check{\mathcal{U}}\mathcal{b}_G^{gr}$ induces a monoidal functor $\text{Ker}(\mathcal{C}) \rightarrow \text{Ker}(\mathcal{D})$, $P \mapsto T(P)$, which becomes a morphism in $\check{\mathcal{U}}\mathcal{b}_G$ if we define $\mu_\sigma: T(P)^\sigma \rightarrow T(P^\sigma)$ by $\mu_\sigma = T(f_{P,\sigma}) f_{T(P),\sigma}^{-1}$. This gives a functor

$$\check{\mathcal{U}}\mathcal{b}_G^{gr} \rightarrow \check{\mathcal{U}}\mathcal{b}_G, \quad \mathcal{C} \mapsto \text{Ker}(\mathcal{C}),$$

which is quasi inverse to the functor that takes \mathcal{A} to \mathcal{A}^{gr} .

2. We briefly recall the definition of the cohomology groups $H^n(G, \mathcal{A})$ for $\mathcal{A} \in \check{\mathcal{U}}\mathcal{b}_G$, [8], 1.1. There is a “cochain complex” of the form

$$0 \rightarrow \mathcal{C}^0(G, \mathcal{A}) \xrightarrow{\delta} \mathcal{C}^1(G, \mathcal{A}) \xrightarrow{\delta} \dots \mathcal{C}^n(G, \mathcal{A}) \xrightarrow{\delta} \mathcal{C}^{n+1}(G, \mathcal{A}) \xrightarrow{\delta} \dots$$

where $\mathcal{C}^n(G, \mathcal{A})$ is the category of all maps $G^n \rightarrow \text{Ob}(\mathcal{A})$ and the functors are defined by the coboundary operator of group cohomology. From this one obtains cocycle categories $\mathcal{Z}^n(G, \mathcal{A})$ as follows: the objects are the pairs (P, g) where P is an object of $\mathcal{C}^{n-1}(G, \mathcal{A})$ and $g: \delta(P) \rightarrow I$ a morphism in $\mathcal{C}^n(G, \mathcal{A})$ such that

$$\delta\delta(P) \xrightarrow{\delta(g)} \delta(I) \xrightarrow{\sim} I$$

is the canonical morphism determined by the coherent G -module structure of \mathcal{A} ; a morphism $\alpha: (P, g) \rightarrow (Q, h)$ is a morphism $\alpha: P \rightarrow Q$ in $\mathcal{C}^{n-1}(G, \mathcal{A})$ which satisfies $h\delta(\alpha) = g$. Passing to isomorphism classes, we obtain an abelian group $Z^n(G, \mathcal{A})$ containing the subgroup $B^n(G, \mathcal{A})$ of elements represented by pairs $(\delta(M), \text{can})$ with $M \in \mathcal{C}^{n-2}(G, \mathcal{A})$. So $B^0(G, \mathcal{A}) = B^1(G, \mathcal{A}) = 0$. By definition,

$$H^n(G, \mathcal{A}) = Z^n(G, \mathcal{A})/B^n(G, \mathcal{A}), \quad n \geq 0.$$

Any morphism $\Psi: \mathcal{A} \rightarrow \mathcal{B}$ in $\tilde{\mathcal{U}}\mathcal{b}_G$ induces group homomorphisms

$$\Psi_n: H^n(G, \mathcal{A}) \rightarrow H^n(G, \mathcal{B})$$

according to [8], prop. 0.1, (use [7, III], Satz 5.1). These maps are bijective if Ψ is an equivalence of categories.

LEMMA (2.1): *Let $\eta: \Psi \rightarrow \Psi'$ be a monoidal natural transformation between morphisms $\Psi, \Psi': \mathcal{A} \rightarrow \mathcal{B}$ in $\tilde{\mathcal{U}}\mathcal{b}_G$. Assume $\mu_\sigma \eta_P^\sigma = \eta_{P^\sigma} \mu_\sigma$ for all $\sigma \in G$ and $P \in \mathcal{A}$. Then the maps $H^n(G, \mathcal{A}) \rightarrow H^n(G, \mathcal{B})$ induced by Ψ and Ψ' are equal.*

Proof: This follows from the fact that η induces a natural transformation between the functors $\mathcal{Z}^n(G, \mathcal{A}) \rightarrow \mathcal{Z}^n(G, \mathcal{B})$ induced by Ψ and Ψ' , (see [8], proof of prop. 0.1).

Now let $H^n(G, \mathcal{C})$ for $\mathcal{C} \in \tilde{\mathcal{U}}\mathcal{b}_G^{\text{gr}}$ denote the cohomology groups of [2], prop. 7.5. According to [2], p. 262, $H^0(G, \mathcal{C})$ is the group of G -invariant automorphisms $I \rightarrow I$ of grade 1, and therefore $H^0(G, \mathcal{C})$ coincides with $H^0(G, \text{Ker } \mathcal{C})$, [8], p. 473. We want to show for all n :

THEOREM (2.2): *The functors $H^n(G, \mathcal{C})$ of strictly coherent group-like G -monoidal categories are isomorphic to $H^n(G, \text{Ker } \mathcal{C})$.*

Proof: First observe that $H^n(G, \text{Ker } \mathcal{C})$ is a homotopy functor as follows easily from lemma 2.1. We may therefore assume by [2], prop. 7.5, that \mathcal{C}

is a G -graded group category in the sense of [2], p. 255, 257. This means that the objects of $\mathcal{A} = \text{Ker } \mathcal{C}$ form an abelian group. As before, the natural transformations t_σ , ξ , and ζ are defined by the fixed morphisms

$$f = f_{P,\sigma}: P \rightarrow P^\sigma \quad \text{of grade } \sigma, \quad P \in \mathcal{C},$$

while we now can choose $P^0 = P^{-1}$ and $i_p = id_I$. The groups $H^n(G, \mathcal{C})$ are the cohomology groups of a cochain complex

$$C^0(G, \mathcal{C}) \xrightarrow{\delta} C^1(G, \mathcal{C}) \xrightarrow{\delta} \dots C^n(G, \mathcal{C}) \xrightarrow{\delta} C^{n+1}(G, \mathcal{C}) \xrightarrow{\delta} \dots$$

where $C^0(G, \mathcal{C})$ is the group of \mathcal{C} -morphisms with domain I and grade 1 and $C^{n+1}(G, \mathcal{C})$ for $n \geq 0$ is the group of maps $c: G^{n+1} \rightarrow \mathcal{C}$ such that

- (i) the grade of $c(\sigma_0, \dots, \sigma_n)$ is σ_0 .
- (ii) the domain of $c(\sigma_0, \dots, \sigma_n)$ does not depend on σ_0 .

See [2], p. 259, for the definition of δ . We first consider $H^1(G, \mathcal{C})$. If $c \in C^1(G, \mathcal{C})$ is of the form

$$c(\sigma): P \rightarrow P \quad (\text{of grade } \sigma), \quad \sigma \in G,$$

then c is a cocycle if and only if $c(\sigma\tau) = c(\sigma)c(\tau)$ for all $\sigma, \tau \in G$, [2], proof of prop. 7.6. On the other hand, consider \mathcal{A} -morphisms $\gamma_\sigma: P^\sigma \rightarrow P$, $\sigma \in G$, and define $g(\sigma): P^\sigma P^{-1} \rightarrow I$ by $g(\sigma) = \gamma_\sigma \otimes 1$. Then (P, g) belongs to $Z^1(G, \mathcal{A})$ if and only if

$$\gamma_\sigma \xi_P = \gamma_\sigma \gamma_\tau^\sigma, \quad \sigma, \tau \in G,$$

as is easily seen. Moreover, an \mathcal{A} -morphism $\alpha: I \rightarrow P$ defines a morphism $\alpha: (I, can) \rightarrow (P, g)$ if and only if the composite

$$I^\sigma I^{-1} \xrightarrow{\alpha^\sigma \otimes \alpha^0} P^\sigma P^{-1} \xrightarrow{\gamma_\sigma \otimes 1} PP^{-1} = I$$

is equal to $\lambda_\sigma \otimes 1$. Now let $\gamma_\sigma = c(\sigma)f_{P,\sigma}^{-1}$. Then c is a cocycle if and only if (P, g) is a cocycle, and there exists $\alpha: (I, can) \rightarrow (P, g)$ if and only if $\delta(\alpha) = c$. Thus we conclude $H^1(G, \mathcal{C}) \cong Z^1(G, \mathcal{A}) = H^1(G, \mathcal{A})$.

Now we want to construct homomorphisms $H^n(G, \mathcal{C}) \rightarrow H^n(G, \mathcal{A})$ for $n \geq 2$. Any $c \in Z^n(G, \mathcal{C})$ has the form

$$c(\sigma_0, \dots, \sigma_{n-1}): \hat{P}(\sigma_0, \dots, \sigma_{n-1}) \rightarrow Q(\sigma_0, \dots, \sigma_{n-1}) \quad (\text{of grade } \sigma_0)$$

with $\hat{P}(\sigma_0, \dots, \sigma_{n-1}) = \hat{P}(1, \sigma_1, \dots, \sigma_{n-1})$; $\delta(c) = 1$ means each $\delta(c)(\sigma_0, \dots, \sigma_n)$ equals $\varepsilon(\sigma_0): I \rightarrow I$ (where $\varepsilon: G \rightarrow \mathcal{C}$ is the given section of the grade functor $\mathcal{C} \rightarrow G$). In particular we have

$$I = Q(\sigma_1, \dots, \sigma_n) \hat{P}(\sigma_0, \sigma_1 \sigma_2, \dots, \sigma_n)^{-1} \dots \hat{P}(\sigma_0, \dots, \sigma_{n-1})^{\pm 1}, \quad (7)$$

because this is the domain of $\delta(c)(\sigma_0, \dots, \sigma_n)$. We let

$$P(\sigma_1, \dots, \sigma_{n-1}) = \hat{P}(1, \sigma_1, \dots, \sigma_{n-1})$$

and define $\hat{g}(\sigma_1, \dots, \sigma_n): P(\sigma_2, \dots, \sigma_n)^{\sigma_1} \rightarrow Q(\sigma_1, \dots, \sigma_n)$ to be the composite

$$\hat{P}(\sigma_1, \dots, \sigma_n)^{\sigma_1} \xrightarrow{f^{-1}} \hat{P}(\sigma_1, \dots, \sigma_n) \xrightarrow{c(\sigma_1, \dots, \sigma_n)} Q(\sigma_1, \dots, \sigma_n).$$

Then $g(\sigma_1, \dots, \sigma_n) = \hat{g}(\sigma_1, \dots, \sigma_n) \otimes 1$ transforms $\delta(P)(\sigma_1, \dots, \sigma_n)$ into (7). This means we have a morphism $g: \delta(P) \rightarrow I$ in $\mathcal{C}^n(G, \mathcal{A})$, and a routine verification shows (P, g) is an object of $\mathcal{Z}^n(G, \mathcal{A})$ as a consequence of $\delta(c)(\sigma_0, \dots, \sigma_n) = \varepsilon(\sigma_0)$. Now suppose $c = \delta(b)$ for a $b \in C^{n-1}(G, \mathcal{C})$,

$$b(\sigma_0, \dots, \sigma_{n-2}): \hat{M}(\sigma_0, \dots, \sigma_{n-2}) \rightarrow N(\sigma_0, \dots, \sigma_{n-2}).$$

Then the domain of $\delta(b)(\sigma_0, \dots, \sigma_{n-1})$ is

$$\begin{aligned} \hat{P}(\sigma_0, \dots, \sigma_{n-1}) &= N(\sigma_1, \dots, \sigma_{n-1}) \hat{M}(\sigma_0, \sigma_1 \sigma_2, \dots, \sigma_{n-1})^{-1} \\ &\dots \hat{M}(\sigma_0, \dots, \sigma_{n-2})^{\pm 1}. \end{aligned} \quad (8)$$

Let $M(\sigma_1, \dots, \sigma_{n-2}) = \hat{M}(1, \sigma_1, \dots, \sigma_{n-2})$ and define

$$\hat{\beta}(\sigma_1, \dots, \sigma_{n-1}): M(\sigma_2, \dots, \sigma_{n-1})^{\sigma_1} \rightarrow N(\sigma_1, \dots, \sigma_{n-1})$$

to be $b(\sigma_1, \dots, \sigma_{n-1}) f_{\sigma_1}^{-1}$. Then $\beta(\sigma_1, \dots, \sigma_{n-1}) = \hat{\beta}(\sigma_1, \dots, \sigma_{n-1}) \otimes 1$ transforms $\delta(M)(\sigma_1, \dots, \sigma_{n-1})$ into (8). Hence we have a morphism $\beta: \delta(M) \rightarrow P$ in $\mathcal{C}^{n-1}(G, \mathcal{A})$. But this is actually a morphism $\beta: (\delta(M), \text{can}) \rightarrow (P, g)$ in $\mathcal{Z}^n(G, \mathcal{A})$ as follows from $c = \delta(b)$. Thus (P, g) is trivial in $H^n(G, \mathcal{A})$.

We now obtain well-defined homomorphisms $H^n(G, \mathcal{C}) \rightarrow H^n(G, \mathcal{A})$. But these homomorphisms transform the exact cohomology sequence of [2], cor. 7.2, into that of [8], p. 473, (note that $U(\mathcal{C}) = \mathcal{A}^*$ and $k_G(\mathcal{C}) = \mathcal{A}^+$).

Applying then the five-lemma we conclude $H^n(G, \mathcal{C}) \xrightarrow{\sim} H^n(G, \mathcal{A})$, and the theorem is proved.

3. Let $\mathfrak{U}\mathfrak{b}_G \subset \check{\mathfrak{U}}\mathfrak{b}_G$ consist of the categories with strict G -module structure (i.e. the natural transformations a, c, e, \dots are identities) and of the strict morphisms Ψ (i.e., $t_\psi = id$ and $\mu_\sigma = id$). Each $\mathcal{A} \in \check{\mathfrak{U}}\mathfrak{b}_G$ is equivalent to an object of $\mathfrak{U}\mathfrak{b}_G$ as follows easily from the coherence theorem for \mathcal{A} along with the construction of factoring out atomic subcategories [7, II]. It is not difficult to see that $\mathfrak{U}\mathfrak{b}_G$ is an abelian category, cf. [3], prop. 1.6.1, example f). Furthermore, we have as in [6], theorem 1.1, an exact equivalence

$$\mathbf{Ab}_G^2 \rightarrow \mathfrak{U}\mathfrak{b}_G, \quad \varphi \mapsto \mathcal{A}_\varphi,$$

where \mathbf{Ab}_G^2 denotes the abelian category of all G -module homomorphisms $\varphi: A \rightarrow B$; the category \mathcal{A}_φ is defined by

$$\text{Ob } (\mathcal{A}_\varphi) = B, \quad \text{and} \quad \mathcal{A}_\varphi(u, v) = \{a \in A \mid u = \varphi(a) + v\}, \quad u, v \in B.$$

REMARK (3.1): When we define a G -graded group category $\mathcal{C}(\varphi)$ as in [2], prop. 8.1, then it is evident that $\mathcal{A}_\varphi \cong \text{Ker } (\mathcal{C}(\varphi))$. Thus it follows from theorem 1.2 that every $\mathcal{C} \in \check{\mathfrak{U}}\mathfrak{b}_G^{gr}$ is equivalent to a suitable $\mathcal{C}(\varphi)$.

Let **Ab** denote the category of abelian groups.

THEOREM (3.2): *The functor $\mathfrak{U}\mathfrak{b}_G \rightarrow \mathbf{Ab}$, $\mathcal{A} \mapsto H^n(G, \mathcal{A})$, is the n th derived functor of the left exact functor $\mathcal{A} \mapsto H^0(G, \mathcal{A}) = \text{Aut}_{\mathcal{A}}(I)^G$.*

Proof: By [6], theorem 1.2, we may identify $H^n(G, \mathcal{A}_\varphi)$ with the cohomology group $H^n(\varphi)$ of the mapping cone of φ . Therefore it is enough to show that

$$\mathbf{Ab}_G^2 \rightarrow \mathbf{Ab}, \quad \varphi \mapsto H^n(\varphi), \quad n \geq 0, \tag{9}$$

is the n -th derived functor of the left exact functor $\varphi \mapsto H^0(\varphi) = \text{Ker } (\varphi)^G$. To show that (9) is a cohomological functor can be done by a direct, but tedious computation. Alternatively one can argue as follows. Let **C(Ab)** be the category of positive cochain complexes (A_n, d) in **Ab** (thus $A_n = 0$ if $n < 0$). The mapping cone can be regarded as a functor

$$\mathbf{C}(\mathbf{Ab})^2 \rightarrow \mathbf{C}(\mathbf{Ab}), \quad \varphi \mapsto M(\varphi),$$

which sends a morphism of complexes $\varphi = (\varphi_n: A_n \rightarrow B_n)$ to the complex $M(\varphi)$ defined by

$$M(\varphi)_n = A_n \oplus B_{n-1}, \quad d(a_n, b_{n-1}) = (-d(a_n), \varphi_n(a_n) + d(b_{n-1})).$$

cf. [4], [1], § 2.6. This functor is clearly exact and therefore $\mathbf{C}(\mathbf{Ab})^2 \rightarrow \mathbf{Ab}$, $\varphi \mapsto H^n(M(\varphi)) = H^n(\varphi)$, $n \geq 0$, is a cohomological functor (it is even universal). Furthermore, since the canonical functor $C: \mathbf{Ab}_G \rightarrow \mathbf{C}(\mathbf{Ab})$ is exact, so is the functor $C^2: \mathbf{Ab}_G^2 \rightarrow \mathbf{C}(\mathbf{Ab})^2$. Thus, (9) is a cohomological functor.

Since we know by [5], lemma 5.3, that \mathbf{Ab}_G^2 has enough injectives, it remains to prove $H^n(\varphi) = 0$, $n \geq 1$, for the injective objects φ of \mathbf{Ab}_G^2 , [3], prop. 2.2.1. But if $\varphi: A \rightarrow B$ is injective as an object of \mathbf{Ab}_G^2 , then A , B , and $\text{Ker } (\varphi)$ are injective in \mathbf{Ab}_G and φ is a retraction, [5], proof of lemma 5.3. Hence by looking at the exact sequences

$$\dots \rightarrow H^{n-1}(G, B) \rightarrow H^n(\varphi) \rightarrow H^n(G, A) \rightarrow \dots,$$

$$0 \rightarrow H^1(G, \text{Ker } \varphi) \rightarrow H^1(\varphi) \rightarrow H^0(G, \text{Coker } \varphi) \rightarrow \dots$$

[4], theorem 4, we conclude $H^n(\varphi) = 0$ for $n \geq 1$.

References

1. N. Bourbaki: *Algèbre*, chap. 10, Masson, Paris (1980).
2. A. Fröhlich and C.T.C. Wall: Graded monoidal categories, *Comp. Math.* 28 (1974), 229–285.
3. A. Grothendieck: Sur quelques points d’algèbre homologique, *Tôhoku Math. J.* 9 (1957) 119–221.
4. S. MacLane: Group extensions by primary abelian groups, *Trans. Amer. Math. Soc.* 95 (1960) 1–16.
5. I. Pressman: Functors whose domain is a category of morphisms, *Acta Math.* 118 (1967) 223–249.
6. M. Takeuchi and K.-H. Ulbrich: Complexes of categories with abelian group structure, *J. Pure Appl. Algebra* 27 (1983) 61–73.
7. K.-H. Ulbrich: Kohärenz in Kategorien mit Gruppenstruktur II, *J. Algebra* 81 (1983) 279–294; III, *J. Algebra* 88 (1984) 292–316.
8. K.-H. Ulbrich: Group cohomology for Picard categories, *J. Algebra* 91 (1984) 464–498.