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THE GEOMETRY OF THE PERIOD MAPPING ON CYCLIC
COVERS OF P,

Gonzalo Riera

Introduction

The tangent space to the period space for Riemann surfaces of genus g at
a curve C is naturally isomorphic to the second symmetric product

somt(c; at)° ©

of the dual of the vector space of holomorphic differentials on C. If C is
Galois, them its group of automorphisms acts on the vector space (0),
and the representa:ion theory of this situation was analyzed classically by
Chevalley and Weill. Our aim in this and a future paper is to analyze the
relationship between subspaces of (0) described representation-theoreti-
cally and the geometric properties of deformations of C in directions
lying in these subspaces. The present paper deals with the case in which
C is cyclic over P,.

This work was completed under National Science Foundation grant
INT 7927206 to the Universidad de Santiago de Chile, Santiago, Chile,
and the University of Utah, U.S.A.

Algebraic differential on P,

A rational differential form « on C-{0} is the pull-back of a form on P, if
is homogeneous of degree 0 and satisfies

(0,0)=0

where 6 = x,0,/3x, + x,3/3x, (see [6]).
Thus an algebraic one-form on P, can be expressed as

P(Xo, xl)ﬂ/‘l(xo’ xl)

where Q@ = (0, dx, A dx,) =x,dx, — x,dx, and p, ¢ are homogeneous
polynomials such that

degp=degqg—2

131



132 Gonzalo Riera [2]
Algebraic differentials on a cyclic cover of P,

Let n, m be integers n > 2, m > 1 and consider a divisor

a ta+...4 a,, (H
of distinct non-zero complex numbers in C U {00} = P,. Also, denote by
M the line bundle associated to that divisor. Since H'(P,, 9*)=Z and
the Chern class ¢,(M)= nm there exists a line bundle L such that the

following diagram commutes

T «—~
LA >
E(—E

where A raises a local section to the power .
If s is a global section of M given by a homogeneous polynomial

nm
F(x¢,x,)= lj[l (XO_axxl)

then C=A"!(s(P,)) is a cyclic covering whose ramification divisor lies
over the given divisor (1).

The function y = F!'/" is a homogeneous form of degree m on C so
that in affine coordinates for PP, the surface is the Riemann surface of
the equation

y'=(x—aqa)...(x—a,,).

Let o: C— C be a generator of the natural cyclic group of analytic
automorphisms of the curve. The automorphism ¢* acts on differentials
on C and thus any differential can be expressed as a linear combination
of

Wy k=0,1,...,n—1

where
o*(@) =80, (§=exp(2mi/n)).

If we multiply this differential by the function

yk/x(r)nk
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we obtain a differential on P;:

Yo /xg* =pQ/q.

Thus redefining p and ¢ we have that any algebraic differential on C is a
linear sum of

PR/ " (2)
with p, ¢ relatively prime homogeneous polynomials such that
degp+2=degq+ km.

A differential (2) will have no-poles on C if and only if g = 1 and we can
write

n—1
H'(C,C)= @ H°
k=1
where

H}°={pQ/y*; degp = km —2) (3)

for all k=1, 2...n— 1. Adding up the dimensions of these eigenspaces
we obtain

:g (km—=1)=m(n-1)/2-(n—-1)=g

where g is the genus of C.
Algebraic Hodge decomposition

Since we have just obtained an explicit expression for H"° we have to
characterize the quotient

H'(C,C)/H"°(C,C)=H"(C,C).

The answer is given in terms of meromorphic differentials on the curve
that have poles on the branch points.

THEOREM: The automorphism o : C — C induces a decomposition in eigen-
spaces

n—1

Hl/Hl,0= @ (HI/HI,O)k
k=1
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where the k'™ summand can be naturally identified with

(o =pQ/y"*"; degp=m(n+k)=2}/I (4)
where I, consists of those forms w, that satisfy

p € (0F/dx,, 9F/0x,)1,
the homogeneous Jacobian ideal.

PRrROOF: Let B be the divisor on C which maps to the divisor (1) on P. The
natural inclusion C-B — C induces in cohomology the exact sequence

0> H(C)->H'(C-B) S @ ¢, 3¢—-0
PEB ?

where R applied to a differential form gives the residues at the branch
points.

The cyclic group generated by o acts on each term of this sequence
and if we set

HN(C)={weH'(C);o*(w)=¢*w)

(k=0,...,n—1) and similarly for H!(C — B) we obtain the exact se-
quences:

0 HY(C)> HN(C-B)> & C,>C >0
PEB

0~ H(C)>H/(C-B)->0 k=1,..,n—1

Since H{(C) is the space of forms invariant under o, it is the space of
forms on P, with no singularities, thus

H)(C)=0

and
n—1 n—1

H'(C)= @ Hi(C)= @ HI(C-B).

Moreover since o is an analytic map, the decomposition into eigenspaces
is compatible with the Hodge decomposition, that is

H!°cH, and

n—1

H'YH'(C)= ® H)(C-B)/H}°(C-B).
k=1
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We will compute these last terms using the “algebraic de Rham theorem”
by Grothendieck (cf. [5]).

For an affine variety S, H'(S)= H'(A4*), where A4* is the complex of

algebraic differentials.
The decomposition into eigenspaces gives

H)(C—B)=H'(4%,d)

d
where the complex 49 — A} has an increasing filtration

Ay(1) = {p/y"*k) [=0,1,2,...

5
A (1) ={qQ/y"!*Drky 1= 1,0,1,... ()

for homogeneous polynomials p and g of appropriate degrees. We can
now write a Koszul resolution as in Clemens (cf. [4]).
Recall that

0=x40/9x,+ x,0/3x,
and set

v=_Cdx, ® Cdx,.
For I, r € Z let P, , be the vector space of homogeneous forms of degree
mn(l+r)+mk—1 in x, and x,. We can then define natural epimor-
phisms

a: PP o—A2(1)/A4%(1—-1)

w— (0, w)/ym*k
and

B: P, & Nv— A, (1)/4,(1-1)

w— <0’ w)/yn(l+l)+k.
Next recall that

(0,dFAw)=mnFo—dFA (0, w). (6)
Now a(w) =0 if and only if F divides (8, w) that is

(8, w) =Fy.
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But then
(0,w—ydF/nm)=0
so that
w—ydF/nm= (0, gdxy A dx,).
Thus
ker a ={pd F + ¢0}.
Also
ker B={ pFdx, A dx,}.

Using (6) to insure commutativity, we can write the following diagram

0->P /> kera— ker 8 — Pl/L,,—0

i) i l
0-P,/—> PLoV-> P ,&NV->P /I ,—0
l 3 1

00 -A2(N)/4;(I = D) > A (/A4 (1= 1) =0

()

where I, ;=IN P},

The middle row is exact, it is just a Koszul resolution. The top row is
exact except at P, /I, ,. To see this, exactness at ker B is just the identity
(6) that, for two-forms w,

mnFw=dF A {0, w).
Exactness at ker « is just the fact that

dFAQ=mnFdx,Adx,.

So (7) is a short exact sequence of complexes. Our remarks on each of the
other two complexes then gives, via the long exact sequence in cohomol-

ogy,
HO(A%(1)/4%(1-1))=0

H'(A43(1)/45(1-1)) =P} /1, . (8)

The complexes A%(/) filter the complex A% whose cohomology is
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H}(C-B). The spectral sequence associated to this filtration has

Elo= B a( A5 (1)/4%(1- 1))
so that

El9=0

unless / + g = 1. So this spectral sequence degenerates at E, and we can
compute the resulting filtration on H}(C — B) via (8), namely,

E"=H'(AL(-1)) =P,
Ey'=H'(4%(0) /4% (- 1))
= Pm(n+k)72/1m(n+k)—2

etc.
To finish the proof of the theorem, notice that, referring to (3),

E;'?=HMO
and, by the exactness of the middle row of (7), we have that if /> 1,
dim EL1~
=[m(+1V)n+k)—1]-2[m(I+1)n+k)—mn]
+ [m(l+ 1)n+k)—2mn+1]=0.
We will compute the dimension of E2' in order to motivate our next
result. Namely dim E2'=[m(n+k)—1]1-2[m(n+k)—mn]= —[m(n
+k)—2mn+1]=mn—k+1=dim H"°,.
This is as it should be since, under the cup-product pairing, if w € H ',
y € H}, then

wAy€E€H? =0 unless r+s=n.

More precisely, we have the following result.
PROPOSITION: Under the cup product H'"* X H*' - C the space H}° is
orthogonal to (H' /H"®)i for i =n — k.
For differential forms
¢=pQ/y* € Hy°

Yy=4qQ/y*" *e(H'/H"), ,
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the following identity holds

(p.¥)=Jo Ay
=(2mi/n—k)n* Y pla,)q(a;)/
Jj=1
x(a,—a,)’...A...(a;—a,,)’. %)

PrROOF: The first statement follows from the fact that, under the cup-
product,

H;°(C) @ (H'(C)/H"*(C))x,
goes into H,"\, , (C), which is zero for k, + k, = n.

For the second statement, we proceed as follows. Using affine coordi-
nates for our curve C

y"=F(x) =1 (x-a,)
j=
so that
ny" " 'dy = F'(x)dx.
Near x = a, we write
¢=p(x)dx/y*=p(x)y"*ldx/y" "' =np(x)dy/F(x)y" !
=:Bj(x)y”—k_ld)’-
Similarly ¢ = ng(x)dy/F'(x)y"**' = a (x)dy/y"~**1
For each j=1,...,nm, let P; be a C* function on C supported in a
neighborhood |y| < e of x =a; and identically equal to one the smaller

neighborhood | y| < e/2.
The form

. l nm
lP—__d(n—kjglpJ""j/yn_k) +y

is in the same cohomology class as ¢ but is C* in C, analytic outside the
neighborhoods |y| < e.
We the have

(<P,\P)=(‘P,‘l~’)=§ PAY.

j=1"Ise
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A

K

A

a

1

Figure 1

Since v is analytic also in | y| < &/2 we get

nm

(q’7‘l’)= Z

Jj=1

I ¢ A0/35(1/n— koa,/y"*)dy
e/2<|y|<e

and by Stokes theorem

1 nm ke L,
(p9)=——7 L B (x)y"*lady/y""
n j=1"yl=e/2
2@ = )
= Zlﬁj(aj)aj(aj .
iz

proving the identity.
Deformations of a cyclic cover

Let 7' be the period space of curves of a given genus that can be
expressed as an n to 1 branced cover of P,. We will consider a neighbor-
hood of the cyclic cover C given by an equation

y'=(x-a))...(x—a,,).

A deformation within 7! will split each branch point of order » into

several branch points of lower order; a stratification of these deforma-
tions can be given in the following form:

At...a a branch point, g, say, there is associated a cyclic permutation
(1, 2... n) of the sheets of the Riemann surface. For eachi=2,...,n we
will say that a deformation is of type i if it splits @, into a branch point
with associated permutation (1, 2...J) and (n — i) simple branch points
(see Fig. 1).

A locally irreducible, analytic curve in the period space will determine
a non-zero tangent vector (which generates its tangent cone at C) which
we consider as an element in

Sym® (H"0)*,
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We denote by v, the tangent cone to deformations of type greater than or
equal to i. Thus v,,, Cv,, v, is the set of all tangent vectors to deforma-
tions by cyclic covers and v, is the tangent space to ..

On the other hand, the cyclic group of order n generated by the
automorphism ¢ : C > C acts on the space Sym‘®(H"?). We say that a
quadratic differential g, is of type j, 1 <j < n, if it is an eigenvector for
the eigenvalue {7, i.e.

o*(q,)=%8q, ({=exp(2mi/n)).

An element ¢ in Sym®(H"?) is a linear sum of these eigenvectors, that
is

n
q= Z q;
i=1

and we will call g, the component of type j of the quadratic differential g.

There is a close relationship between eigenvalues and splitting of
branch points given by the following.

THEOREM: The tangent cone v, is always a ( possibly non reduced) linear
space.

A quadratic differential is orthogonal to v, if and only if its components of
typej=2,...,n—i+ 1, n vanish to orders

n,...,2n—i—1,2n -2 at branch points.

In particular the cotangent space of cyclic deformations consists of
those quadratic differentials whose invariant component vanishes at
branch points to order 2n — 2.

PROOF: We first fix the notation for a basis of H°(C).
Lete,(A)=x"dx/y*
where 0<v<Am—2, A=1,...,n— 1. For fixed A these differentials
form a basic of H}'*(C); o*(e,(A))={ e, (A).
In terms of a local parameter centered at a,,
(x—ay)=2z"

we can write

e,(AN)=p(2)dz,p(z)=Cy 2" M1+ az"+...)
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where C, , =naj/[(a; — a,)...(a, — a,,))"" and a € C. (There will of
course be analogous expressions for a,,...,a,,,.)

The vectors of the dual basis of (H"°)* will be denoted by e”(X).

To deform the curve C we will take a covering of C by coordinate
charts whose changes of parameters depend on ¢, |f| <& (see [1]).

Here we take a local deformation of the parameter z centered at a,
given by

Y(z,1)=(x-a)

with ¢(z, 0)=z"; the rest of the local parameters remain fixed. A
differential of the first kind on C, will be written in terms of z as

p(z,t)dz=p(z,t)dx/(3y/0z)

where p(z, t) is an analytic function. Since

oy dz oy _
oz dr Tar 0

we compute the derivate of the differential at =0 to be

dz +a—pdz.

AN 3%y 9 3%y 93 dp 0y d
(i)pwt %i%ii%lii )

a9z 9z0t 9z 2 Ot dz 9z ot

(10)

This is in general a differential of the 2™ kind with pole at a,, that is,
an element in

H'/H".

The linear map ¢ € Hom(H"°, H' /H"%)= H'\*" ® H"*" correspond-
ing to the deformation associates to p(z)dz the differential (10) (where
we can disregard the analytic part dp/dtdz). In general, a deformation
depends on n — 1 parameters ¢,,..., ¢, given as

V(z,ty,.,t,)=2"+1,2""2+ ... +t,=(x—a,).
(See [2] also.) We compute separately the linear mapping ¢; associated to
v,(z,t)=z"+1,z""" i=2,...n.

In this case (10) gives

(nz') "' ((i = 1)p(2) = 2(p'(2))dz

and replacing p(z) by the corresponding expressions for the differentials
e, (\) we obtain

nICy 2" AMDT(i+ A —n)+ Bz"+ ...]dz
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for some constant 8 € C. This differential has no poles for i + A < n and
for i + A > n+ 1 we can compute the cup product

(e.(N), 9,(e,(N)))

=C)\,,,C}\,,Hf 2NN yzn 4 )dz.
z

lz|=¢

This integral vanishes unless A + A’ + i = 2n and we obtain

Q= Zdw Y e(A)®et(2n—(i+A))

Azn—i+1

where

d, .= n/=1)ar**/[(a, = a3)... (a, = a,,)]" """

Thus o*(¢,)={ ‘p; and it follows that a quadratic differential will be
orthogonal to ¢, if and only if its component of type i/ vanishes at a, at
the order n + i — 2. More precisely, let

a=Ya'( T eMegM+ T a)oe)

A+N=n—i AN =2n—i

be a differential of type i; the first sum in parenthesis vanishes always to
order n + i — 2. g, is orthogonal to ¢; if

(g, 9,) = (cte) Y a”*a}** =0.

v,

But this means that in terms of the local parameter z the expansion of the
second sum has a first coefficient equal to zero, and thus ¢, vanishes to
order n +i—2.
It remains to characterize the tangent cones v; in terms of the
parameters Z,,..., t,. We have drawn in Fig. 2 the situation for n = 4.
The mapping, from the z-disk to a neighborhood of a, given by

¥(z,t,5,...,t,)=x—a,

will be branched at the zeroes of the derivative with respect to z. Two of
these branch points will coincide for the values of (7,,...,¢,) that satisfy
both equations

0y/0z=nz"""+(n—2)t,z" 3+ ... +1t,_,=0

0%/ =n(n—1)z""2+ ... +2¢t,_,=0.
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generic 2 - 2- 2

cyclic

—— split 3 -2

Figure 2

These equations in z will have a common root if their resultant

n 0 t,_.; O 0

0 n 0 ti, 0 0

0
tn—l

4=|n (=1 0 2,, 0 0

0 n (n=1) .. 2t,_, 0 0

. 0

0 on(n=1)... 2t,_,
vanishes. This represents an hypersurface in (z,,..., ¢,) space correspond-

ing to a triple branch point or more. More generally the rank of the
matrix is smaller or equal to 2n — i — 1 if and only if {(z, ¢,...7,) has a
branch point of order i at least.

The hypersurface 4 = 0 is singular at 0 and its tangent cone is given

by

Y 0" 24 /015>, 0125ty =0
o+ ... +ta,=n—2
But from the last n — 2 columns in the matrix it is clear that all partial
derivatives vanish at zero except

3”724 /9:"~%(0)

n—1
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and so the tangent cone is given by

t"~2=0, or t,_,=0.

This is then the tangent cone corresponding to v,, the tangent conc to
deformations of type greater or equal to 3.

For a deformation to be of type greater than or equal to 4 it is
necessary and sufficient that the discriminant of 9%)/9z2%, 9% /9z°
vanishes also. Denoting this discriminant by B, the locus in (¢,,...,1,)
space is given by 4 = 0 and B = 0. (Furthermore, the singular locus of the
surface A = 0 is given by this intersection.)

The tangent cone at 0 is then the intersection of the tangent cones to
both surfaces, that is

(173=0,1123=0) or {t,_,=1,.,=0),

n—1 -

and so on.
The tangent cone at 0 corresponding to v, will be given by
<tn—l == tn—l+2 = O)

in general, and then the tangent cone to v, will be the linear space
generated by

('Pn’ (pz""’q’n-:+]}'

A quadratic differential will be orthogonal to this subspace if and only if
its components

(qn’ q2""’qn—1+l>

vanish at branch points to orders 2n—2, n, n+1,...,2n—i—1 as
required.

We observe also that in the generic case, v,, we can obtain for these
cyclic covers the result proved in general by Donagi-Green concerning
the orthogonal space to deformations (see [1]).

Finally, it is interesting to consider the cases n=2, 3 since it is
possible to write global variations for the original equation.

For n = 2, the cyclic cover is given as

C:y*=(x-a)...(x—a,,,)
and a basic for H"°(C) is

e,=x'/ydx O0<ism-—2.
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The only possible deformation is given by the families of curves
C:y*=(x—ay)...(x—a,+1)...(x—a,,)

with a basis for H(C,)

e(t)=xdx/((x—a,)...(x—a,+1)...(x— azm))l/z.

The derivative at ¢t = 0 gives

(=1/2)x'(x—a,)... k...(x— ay,,)dx/y*
and in view of the proposition, its cup product with e, is
N = (2”‘/‘—1)‘1;{”/(% —a))...(a—ay,).
The corresponding tangent vector is then

Y Nie' ® e/

iJj

and a quadratic differential is orthogonal to all deformations if it
vanishes at the branch points a,,..., a,,,.
For n = 3, the equation of C is

yi=(x-ay)...(x—ay,)
with a basis of holomorphic differentials
e,=xdx/y, f=x/dx/y*.

A cyclic variation is similar to the preceding case the tangent vector
being

Y XNidel ® f.

However, to write a global equation in the case of splitting of a branch
point the following considerations are necessary:
We have to find an equation

f(x,y)=y>+p(x)y+q(x)=0

where p, ¢ are polynomials in x whose coefficients depend on a parame-
ter ¢. The polynomials should be chosen so that the equation represents a
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Riemann surface ramified of order 3 over the points a,...a;, and
branched of order 2 over a,, @, — ¢ and such that for = 0 reducs itself to
C.

The branch points are the common solutions of f=0 and df/0y =0,
and they are found among the solutions of the equation obtained by
setting the discriminant equal to zero:

A= —(4p>+274%)=0.

The branch points of order three have to satisfy also
3f/dy, 3%f/dy*=0

and this implies that they are among the roots of
36p=0.

We choose then
p(x)=t(x-a,)...(x—as,,)

where the particular power of ¢ not only appears there for convenience
but also reflects the fact that the parameter ¢ is not natural. A natural
parameter will be taken to be s=t%/3, With this value for p we may
compute again the discriminant

~A=(x—a,)’...(x—as,)’A,
for g has to vanish also at these 3m — 1 points. Here we have written
A,=41*(x—a,)...(x—ay,,) +27h*
where g(x)= (x — a,)...(x — a;,,)h(x). The polynomial # must be cho-
sen so as to satisfy the last condition concerning the branch points at a,,

a, — t. This forces the vanishing of A, there exactly to the first order, and
we are led to an equation of the form

at*(x—ay)...(x —a,,) +27h*(x) =g%(x)(x —a,)(x — a, + t).
This is a sort of Pell’s equation for the polynomials 4(x), g(x) and can
be solved explicitly; to make a long story short, the solution appears as
power series in ¢ with polynomial coefficients, that is

h(x)=ho(x—a,)+h,(x)t+...

g(x)=go+g(x)+ ...
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for some constants 4, and g, that can be computed directly from the
equation.

Given now the formula for C,, we have to write a basis for the analytic
differentials:

(x’y —1(x)dx/f,, x’g(x)dx/j"y)

where / is some polynomial (see [3] for the details). We compute now the
derivative with respect to s =t%*'3 and the answer does not depend on
I(x) or g,(x) but is of the form

x'(x—a,)...(x—a,,,)/ydx,

in the second case say, and the tangent vector then is obtained as
N flef

as in the proof of the theorem.
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