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Introduction

The tangent space to the period space for Riemann surfaces of genus g at
a curve C is naturally isomorphic to the second symmetric product

S(2)HO( C; 03A91C)* (0)

of the dual of the vector space of holomorphic differentials on C. If C is
Galois, them its group of automorphisms acts on the vector space (0),
and the représenta don theory of this situation was analyzed classically by
Chevalley and Weill. Our aim in this and a future paper is to analyze the
relationship between subspaces of (0) described representation-theoreti-
cally and the geometric properties of deformations of C in directions
lying in these subspaces. The present paper deals with the case in which
C is cyclic over P1.

This work was completed under National Science Foundation grant
INT 7927206 to the Universidad de Santiago de Chile, Santiago, Chile,
and the University of Utah, U.S.A.

Algebraic dif f erential on Pl 1

A rational differential form w on C-{0} is the pull-back of a form on Pl if
is homogeneous of degree 0 and satisfies

where 0 = xoalaxo + xlalax, (see [6]).
Thus an algebraic one-form on P, can be expressed as

where 0 = 03B8, d xo A dx1&#x3E; = x0dx1 - x1dx0 and p, q are homogeneous
polynomials such that
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Algebraic dif f erentials on a cyclic cover of P1

Let n, m be integers n  2, m  1 and consider a divisor

of distinct non-zero complex numbers in C U {~} = P1. Also, denote by
M the line bundle associated to that divisor. Since H1(PI’ (9*)= 7L and
the Chern class cl (M) = nm there exists a line bundle L such that the
following diagram commutes

where À raises a local section to the power n.
If s is a global section of M given by a homogeneous polynomial

then C = 03BB-1(s(P1)) is a cyclic covering whose ramification divisor lies
over the given divisor (1).

The function y = F1/n is a homogeneous form of degree m on C so
that in affine coordinates for P1, the surface is the Riemann surface of
the equation

Let 03C3 : C ~ C be a generator of the natural cyclic group of analytic
automorphisms of the curve. The automorphism a* acts on differentials
on C and thus any differential can be expressed as a linear combination
of

where

If we multiply this differential by the function



133

we obtain a differential on I? 1 :

Thus redefining p and q we have that any algebraic differential on C is a
linear sum of

with p, q relatively prime homogeneous polynomials such that

A differential (2) will have no-poles on C if and only if q = 1 and we can
write

where

for all k = 1, 2... n - 1. Adding up the dimensions of these eigenspaces
we obtain

where g is the genus of C.

Algebraic Hodge decomposition

Since we have just obtained an explicit expression for H1,0 we have to
characterize the quotient

The answer is given in terms of meromorphic differentials on the curve
that have poles on the branch points.

THEOREM: The automorphism (J : C - C induces a decomposition in eigen-
spaces
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where the kt h summand can be naturally identified with

where Ik consists of those forms wk that satisfy

the homogeneous Jacobian ideal.

PROOF : Let B be the divisor on C which maps to the divisor (1) on P. The
natural inclusion C-B - C induces in cohomology the exact sequence

where R applied to a differential form gives the residues at the branch
points.

The cyclic group generated by a acts on each term of this sequence
and if we set

(k = 0,..., n - 1) and similarly for H1k(C - B) we obtain the exact se-
quences :

Since HJ( C) is the space of forms invariant under Q, it is the space of
forms on Pl with no singularities, thus

and

Moreover since a is an analytic map, the decomposition into eigenspaces
is compatible with the Hodge decomposition, that is
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We will compute these last terms using the "algebraic de Rham theorem"
by Grothendieck (cf. [5]).

For an affine variety S, H1(S) ~ H 1 ( A*), where A* is the complex of
algebraic differentials.

The decomposition into eigenspaces gives

where the complex A0k ~ Al has an increasing filtration

for homogeneous polynomials p and q of appropriate degrees. We can
now write a Koszul resolution as in Clemens (cf. [4]).

Recall that

and set

For 1, r ~ Z let Pk,l be the vector space of homogeneous forms of degree
mn(l+r)+mk- 1 in xo and x1. We can then define natural epimor-
phisms

and

Next recall that

Now 03B1(03C9) = 0 if and only if F divides 03B8, 03C9&#x3E; that is
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But then

80 that

Thus

Also

Using (6) to insure commutativity, we can write the following diagram

where Ik,l = I~P1k,l.
The middle row is exact, it is just a Koszul resolution. The top row is

exact except at P1k,l/Ik,l. To see this, exactness at ker f3 is just the identity
(6) that, for two-forms lA),

Exactness at ker a is just the fact that

So (7) is a short exact sequence of complexes. Our remarks on each of the
other two complexes then gives, via the long exact sequence in cohomol-
ogy,

The complexes A*t(l) filter the complex A*k whose cohomology is
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H*k(C-B). The spectral sequence associated to this filtration has

so that

unless 1 + q = 1. So this spectral sequence degenerates at E1 and we can
compute the resulting filtration on H1k(C - B ) via (8), namely,

etc.

To finish the proof of the theorem, notice that, referring to (3),

E-~ 1,2 - H1,0k

and, by the exactness of the middle row of (7), we have that if 1  1,

dim El,1-l~

We will compute the dimension of E0,1~ in order to motivate our next
result. Namely dim E2;1 = [m(n + k) - 1] - 2[m(n + k) - mn] = [m(n
+k)-2mn+ 1] = mn - k + 1 =dimHn’°k-
This is as it should be since, under the cup-product pairing, if w E H1,0r,
y ~ H1s, then

More precisely, we have the following result.

PROPOSITION: Under the cup product H1,0 X H0,1 ~ C the space H1’0 is

orthogonal to (H1/H1,0)i for i =1= n - k.
For differential forms



138

the following identity holds

PROOF: The first statement follows from the fact that, under the cup-
product,

goes into H1,1k1+k2(C), which is zero for k 1 + k2 ~ n.

For the second statement, we proceed as follows. Using affine coordi-
nates for our curve C

so that

Near x = aj we write

Similarly 03C8 = nq(x)dy/F’(x)yn-k+1 = 03B1j(x)dy/yn-k+1.
For each j = 1,..., nm, let p, be a C°° function on C supported in a

neighborhood l y |  03B5 of x = aj and identically equal to one the smaller
neighborhood |y|  e/2.

The form

is in the same cohomology class as 03C8 but is C°° in C, analytic outside the
neighborhoods |y|  E.

We the have
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Figure 1

Since  is analytic also in |y|  E/2 we get

and by Stokes theorem

proving the identity.

Déformations of a cyclic cover

Let 03C41n be the period space of curves of a given genus that can be

expressed as an n to 1 branced cover of P1. We will consider a neighbor-
hood of the cyclic cover C given by an equation

A deformation within nl will split each branch point of order n into
several branch points of lower order; a stratification of these deforma-
tions can be given in the following form:

At ... a a branch point, a say, there is associated a cyclic permutation
(1,2... n ) of the sheets of the Riemann surface. For each i = 2,..., n we
will say that a deformation is of type i if it splits a into a branch point
with associated permutation (1, 2... i ) and ( n - i ) simple branch points
(see Fig. 1).
A locally irreducible, analytic curve in the period space will determine

a non-zero tangent vector (which generates its tangent cone at C) which
we consider as an element in
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We denote by v, the tangent cone to deformations of type greater than or
equal to i. Thus 03C5l + 1 c v,, v,, is the set of all tangent vectors to deforma-
tions by cyclic covers and V2 is the tangent space to 03C41n.
On the other hand, the cyclic group of order n generated by the

automorphism cr: C - C acts on the space Syn(2)(H1,0). w e say that a
quadratic differential qj is of type j, 1  j  n, if it is an eigenvector for
the eigenvalue i.e.

An element q in Sym(2)(H1,0) is a linear sum of these eigenvectors, that
is

and we will call qj the component of type j of the quadratic differential q.
There is a close relationship between eigenvalues and splitting of

branch points given by the following.

THEOREM: The tangent cone vI is always a ( possibly non reduced) linear
space.
A quadratic differential is orthogonal to vi if and only if its components of

type j = 2,..., n - i + 1, n vanish to orders

n,...,2n-i- 1,2n-2atbranchpoints.

In particular the cotangent space of cyclic deformations consists of
those quadratic differentials whose invariant component vanishes at

branch points to order 2 n - 2.

PROOF: We first fix the notation for a basis of H1,0( C).

where 0  v  03BBm -2, 03BB -1,...n-1. For fixed À these differentials
form a basic of H1,003BB(C); 0*( e,,( À)) = 03B6-03BBev(03BB).

In terms of a local parameter centered at a,,

we can write
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where CÀ,p = nav1/[(a1 - a2)...(a1 - anm)]03BB/n and a E C. (There will of
course be analogous expressions for a2’... , a n m .)

The vectors of the dual basis of (H1,0)* will be denoted by ev(03BB).
To deform the curve C we will take a covering of C by coordinate

charts whose changes of parameters depend on t, Itl |  E (see [1]).
Here we take a local deformation of the parameter z centered at a 1

given by

with 03C8(z, 0) = zn; the rest of the local parameters remain fixed. A

differential of the first kind on Ct will be written in terms of z as

where p ( z, t ) is an analytic function. Since

we compute the derivate of the differential at t = 0 to be

This is in general a differential of the 2nd kind with pole at al, that is,
an élément in

H1/H1,0.
The linear map (p E Hom(H1,0, H1/H1,0) ~ H1,0* ~ H1,0* correspond-

ing to the deformation associates to p(z)dz the differential (10) (where
we can disregard the analytic part ap/atdz). In general, a deformation 41
depends on n - 1 parameters t2l ... , tn given as

(See [2] also.) We compute separately the linear mapping (pi associated to

In this case (10) gives

and replacing p(z) by the corresponding expressions for the differentials
ev(03BB) we obtain
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for some constant 13 E C. This differential has no poles for i + 03BB  n and
for i + 03BB  n + 1 we can compute the cup product

This integral vanishes unless À + 03BB’ + i = 2 n and we obtain

where

Thus 03C3*(~l)=03B6-1~i and it follows that a quadratic differential will be
orthogonal to ~l if and only if its component of type i vanishes at a 1 at
the order n + i - 2. More precisely, let

be a differential of type i ; the first sum in parenthesis vanishes always to
order n + i - 2. ql is orthogonal to Wi if

But this means that in terms of the local parameter z the expansion of the
second sum has a first coefficient equal to zero, and thus ql vanishes to
order n + i - 2.

It remains to characterize the tangent cones vi in terms of the

parameters t2, ... , tn. We have drawn in Fig. 2 the situation for n = 4.
The mapping, from the z-disk to a neighborhood of a given by

will be branched at the zeroes of the derivative with respect to z. Two of
these branch points will coincide for the values of (t 2’ ... , tn ) that satisfy
both equations
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Figure 2

These equations in z will have a common root if their resultant

vanishes. This represents an hypersurface in ( t2, ... , tn ) space correspond-
ing to a triple branch point or more. More generally the rank of the
matrix is smaller or equal to 2 n - i - 1 if and only if 03C8(z, t2... tn ) has a
branch point of order i at least.

The hypersurface A = 0 is singular at 0 and its tangent cone is given
by

But from the last n - 2 columns in the matrix it is clear that all partial
derivatives vanish at zero except
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and so the tangent cone is given by

This is then the tangent cone corresponding tu v3 , thé tangent conc to
deformations of type greater or equal to 3.

For a deformation to be of type greater than or equal to 4 it is

necessary and sufficient that the discriminant of ~203C8/~z2, a
vanishes also. Denoting this discriminant by B, the locus in (t 2’ ..., tn)
space is given by A = 0 and B = 0. (Furthermore, the singular locus of the
surface A = 0 is given by this intersection.)

The tangent cone at 0 is then the intersection of the tangent cones to
both surfaces, that is

and so on.
The tangent cone at 0 corresponding to v, will be given by

in general, and then the tangent cone to v, will be the linear space
generated by

A quadratic differential will be orthogonal to this subspace if and only if
its components

vanish at branch points to orders 2n - 2, n, n + 1,..., 2n - i - 1 as

required.
We observe also that in the generic case, v2, we can obtain for these

cyclic covers the result proved in general by Donagi-Green concerning
the orthogonal space to deformations (see [1]).

Finally, it is interesting to consider the cases n = 2, 3 since it is

possible to write global variations for the original equation.
For n = 2, the cyclic cover is given as

and a basic for H’,O(C) is
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The only possible deformation is given by the families of curves

with a basis for H1,0(Ct)

The derivative at t = 0 gives

and in view of the proposition, its cup product with ej is

The corresponding tangent vector is then

and a quadratic differential is orthogonal to all deformations if it
vanishes at the branch points al’...’ a2m.

For n = 3, the equation of C is

with a basis of holomorphic differentials

A cyclic variation is similar to the preceding case the tangent vector
being

However, to write a global equation in the case of splitting of a branch
point the following considerations are necessary:
We have to find an equation

where p, q are polynomials in x whose coefficients depend on a parame-
ter t. The polynomials should be chosen so that the equation represents a
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Riemann surface ramified of order 3 over the points a2...a3m and
branched of order 2 over a1, a1 - t and such that for t = 0 reducs itself to

C.

The branch points are the common solutions of f = 0 and ~f/~y = 0,
and they are found among the solutions of the equation obtained by
setting the discriminant equal to zero:

The branch points of order three have to satisfy also

and this implies that they are among the roots of

We choose then

where the particular power of t not only appears there for convenience
but also reflects the fact that the parameter t is not natural. A natural

parameter will be taken to be s = t2/3. With this value for p we may
compute again the discriminant

for q has to vanish also at these 3m - 1 points. Here we have written

where q(x) = (x - a2) ... ( x - a3m)h(x). The polynomial h must be cho-
sen so as to satisfy the last condition concerning the branch points at al,
a 1 - t. This forces the vanishing of 03942 there exactly to the first order, and
we are led to an equation of the form

This is a sort of Pell’s equation for the polynomials h ( x ), g(x) and can
be solved explicitly; to make a long story short, the solution appears as
power series in t with polynomial coefficients, that is
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for some constants h o and go that can be computed directly from the
equation.

Given now the formula for Ct, we have to write a basis for the analytic
differentials:

where 1 is some polynomial (see [3] for the details). We compute now the
derivative with respect to s = t2/3 and the answer does not depend on
l(x) or gl(x) but is of the form

in the second case say, and the tangent vector then is obtained as

as in the proof of the theorem.
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