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1. Introduction

Let G be a finite group. Consider the class of CW complexes with a
G-action which are equivariantly dominated by a finite complexes. In
[1] J.A. Baglivo has defined an algebraic invariant to decide when a
space in this class (under some restriction on the action of G) is equi-
variantly homotopy equivalent to a finite complex. The purpose of this
paper is to:

(1) develop the equivariant finiteness obstruction from a more geo-
metrical point of view;

(2) extend this obstruction theory in two directions:
(a) with respect to the class of spaces - all spaces which are equi-

variantly dominated by a finite complex, without restriction on
the action of G,

(b) with respect to the class of groups - G arbitrary compact Lie
group;

(3) compare obstruction with the algebraic Baglivo obstruction;
(4) show that in the case of G-space with simply connected fixed point

sets and with G = Tn, n ~ 1, n-dimensional torus every such obstruction
vanishes.

Observe that (4) shows that the action of a connected and noncon-
nected compact, abelian Lie group is completely different from the

equivariant finiteness obstruction point of view.
1 wish to thank the referee for pointing out an error in an earlier draft

of this paper.
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2. Définitions and notations

In this section we recall some notions which will be used in this

paper.
Let G be a compact Lie group. By a G-space X we mean a space X

with a given action 0 : X x G - X of a group G on X; we will denote

0(x, g) simply by g(x).
A map f : X ~ Y between two G-spaces is called equivariant (G-map)

if gf(x) = fg(x) for every g E G, x ~ X.
A subset A c X of a G-space X is called a G-subset if g(A) c A for

every g E G.

By p : X ~ X/G we will denote the natural projection on the orbit
space.

DEFINITION 2.1: A G-CW complex is a G-space X with a

decomposition

for some G-map F : U G/Hj x sn -+ X" and {Hj}j~An a collection of

closed subgroups of G (comp. [7]). As in the nonequivariant case we
have a natural notion of a cellular G-map between G-CW complexes.
Observe that if f : X ~ Y is a cellular G-map between two G-CW
complexes then the mapping cylinder M f of the G-map f is a G-CW
complex and Y is a G-deformation retract of M f. Let X be a G-space
and let xeX be a point. By Gx = {g ~ G|g(x) = x} we will denote the
isotropy subgroup of G at x. Let H z G be a subgroup of G. There are
the following natural subspaces of X:

If we denote by NH the normalizer of H in G then these spaces are in a
natural manner NH/H-spaces. We will use the following special type of
G-CW complex.

DEFINITION 2.2: A G-simplicial complex is a G-space X such that X
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has a given G-CW decomposition such that the orbit space X/G is a
simplicial complex under this structure.
For G-simplicial complexes we can define stars, links and so on by

taking inverse images (under projection) from the orbit space.

3. Equivariant Whitehead torsion and obstruction to finiteness

In this section we define the obstruction to equivariant finiteness and
deduce its fundamental properties. Next we give the algebraic interpre-
tation of this obstruction and compare it with the Baglivo invariant.
Our construction is based on [5] and the proofs in the equivariant

case are modifications of the proofs in [5] so we only give sketches of
proofs. We will assume some familiarity with simple homotopy theory
and its equivariant version as for example in [4] and [7]. In [7] was
defined the equivariant Whitehead group WhG(X) of X using equival-
ences of G-deformation retracts i : [X - V] of finite G-CW complexes.
We will consider a more general situation, namely X will be a G-

space which is only equivariantly dominated by a finite G-CW complex
so we will use the definition of WhG(X) modified as in [6].

LEMMA 3.1: Let X be a G-space which is equivariantly dominated by a
finite G-CW complex. Then the G-space X x S’ (trivial action of G on S’)
has the equivariant homotopy type of a finite G-CW complex.

PROOF: Let K be a finite G-CW complex which G-dominates X i.e.

there exist G-maps ~ : X ~ K, 03C8 : K ~ X such that 03C8~  idx, where
means G-homotopic. Let A = qJVI: K ~ K. Then A is a G-map and we
may assume (see [7] p. 9) that A is cellular up to G-homotopy. Now
denote by T(A) the space obtained from the mapping cylinder MA by
identification of the top and bottom of MA using the identity map. The
space T(A) is a finite G-CW complex and has the G-homotopy type of
X x S1. This is evident (comp. [5]) from elementary properties of a
mapping cylinder of a G-map and the following picture
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DEFINITION 3.2: Let B : X x S1 ~ X x S1 be the equivariant homeo-
morphism given by B(x, s) = (x, - s), where s ~ - s is the complex con-
jugation. Let 03BB : T(A) ~ X x S’ be the G-homotopy equivalence of

Lemma 3.1. Denote by ’t(Â -1 BÂ) E WhG(T(A)) the torsion of the G-homo-
topy equivalence Â - 1 BÂ : T(A) ~ T(A). Define OG(X) E WhG(X x S 1 ) as
OG(X) = 03BB*(03C4(03BB-1B03BB)).

LEMMA 3.3: The obstruction OG(X) is well defined i.e. it does not depend
on ~, 03C8 or K.

The proof of Lemma 3.3 is strictly analogous to the nonequivariant case
(see [5]).

THEOREM 3.4: OG(X) = 0 if and only if X has the equivariant homotopy
type of a finite G-CW complex.

PROOF: ~ follows easily from the nonequivariant version and from
elementary properties of the W hG functor.
~ To prove this we will construct a G-simplicial complex W and two

G-maps fl : W - T(A), f2 : W ~ T(A) with contractible point inverses
that the following diagram is commutative up to G-homotopy:

First observe that combining [4, 7.2] and [12, Lemma 4.3] we can
prove that every finite G-CW complex has the G-simple homotopy type
of a finite G-simplicial complex.
Now if OG(X) = 0 then 03C4(03BB-1B03BB) = 0 and this means that we can go

from MÂ- 1B03BB to T(A) by a sequence of equivariant expansions and col-
lapses. By a remark which we made before we can assume MÂ - 1B03BB and
T(A) are G-simplicial complexes.
Now embed MÂ- IB;’ in some euclidean space Rn with an orthogonal

action of G (this is possible because M03BB-1B03BB is a compact, metric space
with a finite number of orbit types).

Let Nl, N2 be regular neighbourhoods of MÂ - 1BÂIG, T(A)/G respect-
ively in the simplicial complex R"/G. If we look at the orbit spaces then
the elementary equivariant expansion and collapse from M03BB - 1BÂ to T(A)
corresponds to ordinary simplicial expansion and collapse from

MÂ- 1BÂ,IG to T(A)/G.



367

From [10] we infer that the regular neighbourhoods N,, N2 are
homotopy equivalent. Let W1 = p-1(Nl) and W2 = p - l(N2), where

p : Rn ~ Rn/G is the natural projection. The spaces Wl, W2 are equi-
variantly equivalent G-simplicial complexes. Let h : Wi - W2 be an equi-
variant homotopy equivalence. We define W = W2. The G-map
Jl : W -+ T(A) is given by the collapsing of W2 on T(A); f2 : W-+ T(A) is
given by the composition r coll h-1, where coll is the collapsing from W,
on M03BB-1B03BB and r : M03BB-1B03BB ~ T(A) is a standard retraction on the bottom
of M03BB-1B03BB. It is easy to see that the diagram

commutes up to G-homotopy. The rest of our proof is analogous to that
in [5] hence is omitted.
From Theorem 3.4, the Sum Theorem for equivariant Whitehead tor-

sion and Props. (2.4), (2.5) in [5] follows:

COROLLARY 3.5: If X = Xl U X2 with Xo = Xl n X2 and each Xj,
j = 0,1, 2 is a finitely, equivariantly dominated G-CW complex so is X,
and

where ij : Xj ~ X, j = 0,1, 2 are the natural inclusions.

COROLLARY 3.6: If X and Y are G-spaces dominated by finite G-CW
complexes and f : X ~ Y is a G-homotopy equivalence then f*OG(X)
= OG(Y).

REMARK 3.7: The Sum Theorem for equivariant Whitehead torsion
formulated in [5] for a finite G-CW complex extends naturally to the
case of an arbitrary G-space.
Now we describe the obstruction OG(X) from a more algebraic point

of view. Let G be a group. By E(G) we denote the total space of a
universal G-bundle. Observe that the space E(G) x X is in a natural
manner a G-space. Recall the following:
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THEOREM 3.8. (Th. Iv. 1 in [6]): There exists a natural isomorphism :

In our situation we have the decomposition:

On the other hand there is the following decomposition of the functor Wh

(see [2] and [3]):

(**) Wh03C01(Y x S 1) Wh03C01(Y) Et) K0Z(03C01(Y)) Et) Nil term

hence (*) and (**) yield:

Recall that the obstruction OG(X) in WhG(X x S’) is given by:

Now assume G is a finite group and X is a G-space such that for every
H z G, X H is connected and XG ~ . There is the following description
of elements of WhG(X) (see [6]).

Let [V, X] ~ WhG(X). For every subgroup H c-- G consider a universal
covering p : VH ~ vH. Let XH ~ VH be a subcovering of VH which

corresponds to XH ~ VH c vH. Consider the cellular chain complex
C*(VH,XH ~ VH). There are natural cellular actions of the group

03C01(XH,x) = 03C01(VH,x), x ~ XG and of the group NH/H on this chain com-
plex. Denote by xH the semidirect product of 03C01(XH,x) and NH/H (note
that 03C0H is no other than 03C01((E(NH/H) x XH)/NH/H). Now the chain
complex C*(VH,XH ~ VH) is a xH complex and the lifting of cells from
VH - VH = VH gives a preferred base in this complex. We refer to
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as the algebraic Whitehead torsion of this cellular 03C0H complex. The
obstruction OG(X) under the isomorphism J from Th. 3.8 splits as

follows:

where T(AH) is the mapping torus of a map AH : KH-+ KH. But we know
from [3] p. 1339-1340 that each element of the last sum is in the rele-
vant summand K0Z(03C0H) under the decomposition (***), so we have
the following.

THEOREM 3.9: The equivariant finiteness obstruction OG(X) has the fol-
lowing representation:

In particular from 1heo,em 3.9 follows:

COROLLARY 3.10: If for every H z G, 03C01(XH,x) = 0 then X has the
equivariant homotopy type of a finite G-CW complex if and only if the

obstruction OG(X) = n °H(XH)E n KoZ(NH/H) vanishes.

The obstruction OG(X) = 03A0 OH(XH) E Il KoZ(1tH) is precisely the
H ce G HÇG

Baglivo obstruction. We recall that the Baglivo obstruction is defined as
follows:

Assume that G is a finite group and X is a G-CW complex such that
for every H ~ G, X H is connected and XG * 0. Let for each H ~ G
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p : XH ~ X H be a universal covering and write X&#x3E;H = ~ XH’, where the
union is over all subgroups H’ such that H s; H’ and H ~ H’.

DEFINITION 3.11 (Baglivo): The equivariant finiteness obstruction

E1(X, G) is given by:

where w,(X) = w(C*(XH,p-1H(X&#x3E;H)) and w(C*(·)) is an ordinary Wall
obstruction (see [11]).

It is not hard to see that each OH(XH) is given by:

OH(XH) = w(C*(XH,p-1H(XH))

which shows that OG(X) is the same as E1(X, G).

REMARK 3.12: The representation OG(X) = 03A0 OH(XH) ~ 03A3 K0Z(03C0H)
HsG HX G

remains valid under weaker assumptions than connectedness of XH and
xG =1= ; we need only assume that the action of NH/H on X H leaves on
each component XHi of XH some point xi ~ XiH invariant.

4. Equivariant finiteness obstruction

Let X be a G-space, where G = T" is the n-dimensional torus, n ~ 1.
In this section we prove that if 03C01(XH) = 0 for every closed subgroup
H ~ T nthen the obstruction OTn(X) E WhTn(X x S’) vanishes and X has
the equivariant homotopy type of a finite T"-CW complex. Namely we
have the following:

THEOREM 4.1: Let X be a T n-space which is equivariantly dominated by
a finite T"-CW complex. If for every closed subgroup H ~ T n rcl(XH) = 0
then X has the equivariant homotopy type of a finite T"-CW complex.

PROOF: We will show that the equivariant finiteness obstruction

OTn(X) E WhTn(X x Sl) vanishes. To see it we recall the decomposition
(*) of the functor WhG
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Since G = T" then for every closed subgroup H z G NH = T" and
NH/H is connected. The trivial G-fibration E(NH/H) x XH -+ E(NH/H)
induces the following fibration (E(NH/H) x XH)/NH/H ~ B(NH/H).
Because 03C01(XH) = 0 we infer

and 03C01(B(NH/H)) = 0 (since E(NH/H) is contractible). Therefore for
every closed subgroup H z T" we obtain:

This obviously implies OT-(X) = 0 and by Theorem 3.4 X has the

equivariant homotopy type of a finite T"-CW complex.

REMARK: In the proof of Theorem 4.1 the connectivity of X’ was
assumed. The proof of general case follows easily.

COROLLARY 4.2: Let G be a compact, connected Lie group and let X be
a G-space with a semi-free action of G. If X is equivariantly dominated by
a finite G-CW complex and if 03C01(X) = 03C01(XG) = 0 then X has the equi-
variant homotopy type of a finite G-CW complex.

COROLLARY 4.3: Let X be a compact, metric T"-ANR (compact, locally
smooth T"-manifold). If for every closed subgroup H ~ T" 1tl(XH) = 0
then X has the equivariant homotopy type of a finite Tn-CW complex.

PROOF: Every compact, metric G-ANR is equivariantly dominated by
a finite G-CW complex (it follows from [8]) so Corollary 4.3 is a con-
sequence of Theorem 4.1.

When G is a finite group then every compact, locally smooth G-mani-
fold has the equivariant homotopy type of a finite dimensional G-CW
complex (see [9]). But the following problem remains open:

CONJECTURE: Every compact, metric G-ANR (compact, locally
smooth G-manifold) has the equivariant homotopy type of a finite G-
CW complex.(*)

This work was done at the Mathematisches Institut Universitât

Heidelberg, Heidelberg.
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1 am grateful to Professor Dieter Puppe for the opportunity to work
there.

(*) Note added in proof

The negative answer was given by Frank Quinn in the paper Ends of
Maps II, Invent. Math. 68 (1982) 353-424.
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