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ON EQUIVARIANT FINITENESS

Stawomir Kwasik

1. Introduction

Let G be a finite group. Consider the class of CW complexes with a
G-action which are equivariantly dominated by a finite complexes. In
[1] J.A. Baglivo has defined an algebraic invariant to decide when a
space in this class (under some restriction on the action of G) is equi-
variantly homotopy equivalent to a finite complex. The purpose of this
paper is to:

(1) develop the equivariant finiteness obstruction from a more geo-
metrical point of view;

(2) extend this obstruction theory in two directions:

(a) with respect to the class of spaces — all spaces which are equi-

variantly dominated by a finite complex, without restriction on
the action of G,

(b) with respect to the class of groups — G arbitrary compact Lie

group;

(3) compare obstruction with the algebraic Baglivo obstruction;

(4) show that in the case of G-space with simply connected fixed point
sets and with G = T", n > 1, n-dimensional torus every such obstruction
vanishes.

Observe that (4) shows that the action of a connected and noncon-
nected compact, abelian Lie group is completely different from the
equivariant finiteness obstruction point of view.

I wish to thank the referee for pointing out an error in an earlier draft
of this paper.
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364 Stawomir Kwasik [2]
2. Definitions and notations

In this section we recall some notions which will be used in this
paper.

Let G be a compact Lie group. By a G-space X we mean a space X
with a given action 6: X x G - X of a group G on X; we will denote
0(x, g) simply by g(x).

A map f: X — Y between two G-spaces is called equivariant (G-map)
if gf(x) = fg(x) for every ge G, xe X.

A subset 4 c X of a G-space X is called a G-subset if g(4) = A for
every geG.

By p:X — X/G we will denote the natural projection on the orbit
space.

DEeFINITION 2.1: A G-CW complex is a G-space X with a
decomposition

jeAo

X =lim X", where X° = () G/H,,
—

04x™+*=x"{J(\) G/H;x D",

F jedAn

for some G-map F: U G/H; x 8" - X" and {H};.4, a collection of
j€hn

closed subgroups of G (comp. [7]). As in the nonequivariant case we
have a natural notion of a cellular G-map between G—-CW complexes.
Observe that if f:X —> Y is a cellular G-map between two G-CW
complexes then the mapping cylinder M, of the G-map f is a G-CW
complex and Y is a G-deformation retract of M,. Let X be a G-space
and let xe X be a point. By G, = {ge G|g(x) = x} we will denote the
isotropy subgroup of G at x. Let H < G be a subgroup of G. There are
the following natural subspaces of X:

X ={xeX HcG,}; X¥={xeX Hc G,and H=G,};
Xy={xeX H=G,}.
If we denote by NH the normalizer of H in G then these spaces are in a
natural manner N H/H-spaces. We will use the following special type of

G-CW complex.

DEFINITION 2.2: A G-simplicial complex is a G-space X such that X
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has a given G—-CW decomposition such that the orbit space X/G is a
simplicial complex under this structure.

For G-simplicial complexes we can define stars, links and so on by
taking inverse images (under projection) from the orbit space.

3. Equivariant Whitehead torsion and obstruction to finiteness

In this section we define the obstruction to equivariant finiteness and
deduce its fundamental properties. Next we give the algebraic interpre-
tation of this obstruction and compare it with the Baglivo invariant.

Our construction is based on [5] and the proofs in the equivariant
case are modifications of the proofs in [5] so we only give sketches of
proofs. We will assume some familiarity with simple homotopy theory
and its equivariant version as for example in [4] and [7]. In [7] was
defined the equivariant Whitehead group Whg(X) of X using equival-
ences of G-deformation retracts i:[X — V] of finite G-CW complexes.

We will consider a more general situation, namely X will be a G-
space which is only equivariantly dominated by a finite G-CW complex
so we will use the definition of Whg(X) modified as in [6].

LEMMA 3.1: Let X be a G-space which is equivariantly dominated by a
finite G-CW complex. Then the G-space X x S* (trivial action of G on S')
has the equivariant homotopy type of a finite G-CW complex.

ProOF: Let K be a finite G-CW complex which G-dominates X i.e.
there exist G-maps ¢: X — K, {: K — X such that y¢ ~ idy, where =

means G-homotopic. Let 4 = ¢ : K —» K. Then 4 is a G-map and we
may assume (see [7] p. 9) that A4 is cellular up to G-homotopy. Now
denote by T(A) the space obtained from the mapping cylinder M, by
identification of the top and bottom of M, using the identity map. The
space T(A) is a finite G-CW complex and has the G-homotopy type of
X x S'. This is evident (comp. [5]) from elementary properties of a
mapping cylinder of a G-map and the following picture

K K

QR

=X xSt

QR

T(4) =
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DEFINITION 3.2: Let B: X x S' - X x S! be the equivariant homeo-
morphism given by B(x, s) = (x, —s), where s - —s is the complex con-
jugation. Let A:T(4)—> X x §* be the G-homotopy equivalence of
Lemma 3.1. Denote by (A~ !B1) e Whg(T(A)) the torsion of the G-homo-
topy equivalence 47 'BA: T(4) —» T(A). Define Oz(X)e Whg(X x S') as
06(X) = A (t(A~BA)).

LEMMA 3.3: The obstruction Ogz(X) is well defined i.e. it does not depend
on @,y or K.
The proof of Lemma 3.3 is strictly analogous to the nonequivariant case

(see [5]).

THEOREM 3.4: O4x(X) = 0 if and only if X has the equivariant homotopy
type of a finite G-CW complex.

ProOF: < follows easily from the nonequivariant version and from
elementary properties of the Wh,; functor.

= To prove this we will construct a G-simplicial complex W and two
G-maps f;:W - T(A), f,: W > T(A) with contractible point inverses
that the following diagram is commutative up to G-homotopy:

11 / W\fz

T(A) m T(4)

First observe that combining [4, 7.2] and [12, Lemma 4.3] we can
prove that every finite G-CW complex has the G-simple homotopy type
of a finite G-simplicial complex.

Now if Og(X) = 0 then (A~ *BA) = 0 and this means that we can go
from M, -.g; to T(A) by a sequence of equivariant expansions and col-
lapses. By a remark which we made before we can assume M, -5, and
T(A) are G-simplicial complexes.

Now embed M, -5, in some euclidean space R” with an orthogonal
action of G (this is possible because M, -5, is a compact, metric space
with a finite number of orbit types).

Let N,, N, be regular neighbourhoods of M, -1p,/G, T(A4)/G respect-
ively in the simplicial complex R"/G. If we look at the orbit spaces then
the elementary equivariant expansion and collapse from M, .z, to T(A)
corresponds to ordinary simplicial expansion and collapse from
M, 15,,/G to T(A)/G.
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From [10] we infer that the regular neighbourhoods N,, N, are
homotopy equivalent. Let W, =p~}(N,;) and W, = p !(N,), where
p:R"— R"/G is the natural projection. The spaces W;, W, are equi-
variantly equivalent G-simplicial complexes. Let h: W; — W, be an equi-
variant homotopy equivalence. We define W = W,. The G-map
f1: W — T(A) is given by the collapsing of W, on T(A); f,: W— T(A) is
given by the composition r coll A~ 1, where coll is the collapsing from W,
on M, _.g, and r: M, .5, —» T(A) is a standard retraction on the bottom
of M, .p,. It is easy to see that the diagram

w
f1 f2

T(A) T T(4)

commutes up to G-homotopy. The rest of our proof is analogous to that
in [5] hence is omitted.

From Theorem 3.4, the Sum Theorem for equivariant Whitehead tor-
sion and Props. (2.4), (2.5) in [5] follows:

CoOROLLARY 3.5: If X =X, UX, with Xg=X,nX, and each X;,
j=0,1,2 is a finitely, equivariantly dominated G-CW complex so is X,
and

O06(X) = i1,06(X1) + i5,06(X3) — i 06(Xo),
where i;:X; — X, j =0, 1,2 are the natural inclusions.

COROLLARY 3.6: If X and Y are G-spaces dominated by finite G-CW
complexes and f:X —Y is a G-homotopy equivalence then f,04(X)
= 04(Y).

REMARK 3.7: The Sum Theorem for equivariant Whitehead torsion
formulated in [5] for a finite G-CW complex extends naturally to the
case of an arbitrary G-space.

Now we describe the obstruction Og(X) from a more algebraic point
of view. Let G be a group. By E(G) we denote the total space of a
universal G-bundle. Observe that the space E(G) x X is in a natural
manner a G-space. Recall the following:
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THEOREM 3.8. (Th. Iv. 1 in [6]): There exists a natural isomorphism:
Whe(X) b [] Wh(E(NH/H) x X")/NH/H)
HeG
In our situation we have the decomposition:

(*) Whg(X x SY) b [ WH(E(NH/H) x X")/NH/H) x S')
Hc G

On the other hand there is the following decomposition of the functor Wh

(see [2] and [3]):

(**) Whn,(Y x SY) = Whr(Y) ® KoZ(r,(Y)) ® Nil term

hence (*) and (**) yield:

(***) When, (X x SY) ~ [] Whn,(E(NH/H) x X")/NH/H) @

Hc

® J] KoZ(n,(E(NH/H) x X®)/NH/H)) @ Nil terms.

Recall that the obstruction Og(X) in Whg(X x S') is given by:
06(X) = 2, (tc(A7*BA)) = 2,[M;- 153, T(A)] =

= [Ml_lB}. U Ml_iBl’X X SI]EWhg(X X Sl).
T(A)

Now assume G is a finite group and X is a G-space such that for every
H < G, X" is connected and X€¢ # (. There is the following description
of elements of Whg(X) (see [6]).

Let [V, X ] € Whg(X). For every subgroup H = G consider a umversal
covering p:VE  VH. Let X2U VE be a subcovering of VE which
corgaggonds to, X¥ U VH < V¥, Consider the cellular chain complex

C, (VE, X" U VH). There are natural cellular actions of the group
(X", x) = n,(V¥, x), xe X¢ and of the group NH/H on this chain com-
plex. Denote by nH the semidirect product of #,(X*, x) and NH/H (note
that 7H is no ¢ other thfm n,(E(NH/H) x X¥)/NH/H). Now the chain
complex C,(V#, X" U V¥) is a nH complex and the lifting of cells from
VH — VH = ¥, gives a preferred base in this complex. We refer to

— —t
o(C, (V¥ X" U Vi) e Whr (E(NH/H) x X")/NH/H)
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as the algebraic Whitehead torsion of this cellular xH complex. The

obstruction Ogz(X) under the isomorphism J from Th. 3.8 splits as
follows:

O6(X) = [M;- 15, TLJ) M;-1p;, X X Sl] =

—— )
= l—[ T(C*(M{i—lm U M;I.i-lm,
HEG TA)H

ﬁH S1 \ fH \7H -
X X UMl_lBl U Ml_lBl)::
T(A)H

—————————
= 1_[ T(C*(Ml—lHBHAH U Ml_lHBH1H9
HcG T(AH)

~——d
X% x S'UM,-.HgH,H \) M,-.HgH,H))e

T(AH)

EHDG Wh((E(NH/H) x X®)/NH/H) x S%),

where T(AY) is the mapping torus of a map A¥: K¥ — K. But we know
from [3] p. 1339-1340 that each element of the last sum is in the rele-
vant summand K,Z(nH) under the decomposition (***), so we have
the following.

THEOREM 3.9: The equivariant finiteness obstruction Og(X) has the fol-
lowing representation:

“04(X) = H[]G Oy(XH), where Oyx(X")e KyZ(nH).

In particuiar from Theorem 3.9 follows:

COROLLARY 3.10: If for every H < G, n,(X",x) =0 then X has the
equivariant homotopy type of a finite G-CW complex if and only if the

obstruction Og(X) = [] 0x(X™)e [] KoZ(NH/H) vanishes.
HEG HEG

The obstruction Og(X) = [] 0a(X®)e [] KoZ(nH) is precisely the
HcesG Hc G

Baglivo obstruction. We recall that the Baglivo obstruction is defined as
follows:

Assume that G is a finite group and X is a G-CW complex such that
for every H < G, X" is connected and X¢ # . Let for each H< G
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—~ . N ,
p:X¥ - X be a universal covering and write X " = U X#, where the
union is over all subgroups H’ such that H < H’ and H # H’.

DEerINITION 3.11 (Baglivo): The equivariant finiteness obstruction
E (X, G) is given by:

E,X,6) =[] wH(X)eHLIGEoZ(nH),

He G

where wg(X) = w(C, (X", pg (X~ #)) and w(C,(")) is an ordinary Wall
obstruction (see [11]).

It is not hard to see that each Ogx(X™) is given by:
o~ _
Ou(X™) = w(C (X", pg ' (X))
which shows that O4(X) is the same as E,(X, G).

REMARK 3.12: The representation Og(X) = [| Og(X®)e ¥ KoZ(nH)
HsG HsG

remains valid under weaker assumptions than connectedness of X¥ and
x% # 0; we need only assume that the action of NH/H on X leaves on
each component X/ of X¥ some point x;e X/ invariant.

4. Equivariant finiteness obstruction

Let X be a G-space, where G = T" is the n-dimensional torus, n > 1.
In this section we prove that if 7;(X®) = 0 for every closed subgroup
H < T" then the obstruction Oy(X) e Whya(X x S!) vanishes and X has
the equivariant homotopy type of a finite T"-CW complex. Namely we
have the following:

THEOREM 4.1: Let X be a T"-space which is equivariantly dominated by
a finite T"-CW complex. If for every closed subgroup H = T" n,(X¥) =0
then X has the equivariant homotopy type of a finite T"~CW complex.

Proor: We will show that the equivariant finiteness obstruction

Orn(X)e Whia(X x S*) vanishes. To see it we recall the decomposition
(*) of the functor Why

(*) Whe(X x SY4 [] Wh(ENH/H) x X®)NH/H) x S?)
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Since G = T" then for every closed subgroup H= G NH = T" and
NH/H is connected. The trivial G-fibration E(NH/H) x X® — E(NH/H)
induces the following fibration (E(NH/H) x X®)/NH/H — B(NH/H).
Because n,(X™) = 0 we infer

n,(E(NH/H) x X")/NH/H) ~ n,(B(NH/H))

and n,(B(NH/H)) =0 (since E(NH/H) is contractible). Therefore for
every closed subgroup H = T" we obtain:

Whr ((E(NH/H) x X®)/NH/H) x §') =
Whr (SY) = WhZ = 0 so Whg(X x S') = 0.

This obviously implies Op.(X)=0 and by Theorem 3.4 X has the
equivariant homotopy type of a finite T"-CW complex.

REMARK: In the proof of Theorem 4.1 the connectivity of X¥ was
assumed. The proof of general case follows easily.

COROLLARY 4.2: Let G be a compact, connected Lie group and let X be
a G-space with a semi-free action of G. If X is equivariantly dominated by
a finite G-CW complex and if n,(X)=n,(X%) =0 then X has the equi-
‘variant homotopy type of a finite G-CW complex.

COROLLARY 4.3: Let X be a compact, metric T"-ANR (compact, locally
smooth T"-manifold). If for every closed subgroup H = T" = (X")=0
then X has the equivariant homotopy type of a finite T"-CW complex.

PrOOF: Every compact, metric G-ANR is equivariantly dominated by
a finite G-CW complex (it follows from [8]) so Corollary 4.3 is a con-
sequence of Theorem 4.1.

When G is a finite group then every compact, locally smooth G-mani-
fold has the equivariant homotopy type of a finite dimensional G-CW
complex (see [9]). But the following problem remains open:

CoNJECTURE: Every compact, metric G-ANR (compact, locally
smooth G-manifold) has the equivariant homotopy type of a finite G—
CW complex.(¥)

This work was done at the Mathematisches Institut Universitit
Heidelberg, Heidelberg.
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I am grateful to Professor Dieter Puppe for the opportunity to work
there.

(*) Note added in proof

The negative answer was given by Frank Quinn in the paper Ends of
Maps 11, Invent. Math. 68 (1982) 353-424.
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