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INFINITE TERMS AND A SYSTEM OF NATURAL DEDUCTION
by

Per Martin-Lof

1. Introduction

Tait 1965 shows how the ordinals associated with the terms of Godel’s
theory of primitive recursive functionals of finite type can be found in
a perspicuous way by expanding them as infinite terms, the reason for
this being that, once the formation of infinite terms is allowed, primitive
recursion may be reduced to explicit definition. In this paper we propose
a simplified formulation of the infinite terms. Besides being simpler, this
formulation has the advantage of bringing out more fully the relation to
infinitary proof theory which is implicit in Tait’s paper. In fact, it turns
out that the main theorem, which says that an infinite term can always
be reduced to normal form, bears the same relation to the normal form
theorem for natural deductions found by Prawitz 1965 as does Tait’s
1968 cut elimination theorem for the classical infinitary propositional
logic to Gentzen’s Hauptsatz.

2. Infinite terms

We start with at least one atomic type. An atomic type is a type. If ¢
and 7 are types, then
o1

is a type, namely, the type of a function whose arguments are of type &
and whose values are of type 7. If 74,7y, ", 7,, " - * is a countable
sequence of types, then

It

n

is a type, namely, the type of a function whose arguments are the natural

numbers and whose value for the argument n is of type 7,. We use

Ty >+ > 1T,_; - T,asanabbreviation of 1, > (** = (T,—1 > 7,) " ).
For each type we introduce as many variables

x’ y) Z’ Tt
of that type as we please.
93
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A variable of type t is a term of type 7. If x is a variable of type ¢ and
#(x) is a term of type 7, then
Axt(x)

is a term of type ¢ — 1. If ¢, is a term of type 7, forn = 0,1, - - -, then

(tO:»tl’. . tn’ . )

is a term of type II7,. If s and ¢ are terms of type o and ¢ — 7, respectively,
then
ts

is a term of type 7. If ¢ is a term of type IIt, and #n is a natural number,
then
tn

is a term of type 7,. We use #,¢, - - - ¢, as an abbreviation of

(- (tt2) o),

If x and y are variables of type 7, and II(t, — 7,+), respectively, then

AxAy(x, yOx, y1(»0x), - - -)

is an example of a term of type 7, —» II(t, - 7,+,) = IIt,, which might
be called the recursion operator of that type.

The immediate subterms of a term are the terms from which it was
obtained by means of one of the four inductive clauses that generate the
terms. The subterms of a term are the subterms of its immediate subterms,
which are called proper subterms, and the term itself.

An occurrence of a variable x in a term is bound if it occurs in a subterm
of the form Ax#(x). Otherwise it is free. We do not distinguish between
terms which only differ in the naming of their bound variables. A term is
closed if it contains no free variables.

We can now state the two contraction rules. The first one is the rule of
Acontraction

Axt(x)s contr #(s).

Here #(s) denotes the result of substituting s for all free occurrences of x
in #(x). Before doing this, however, one has to see to it that no free
occurrence of a variable in s becomes bound in #(s). This is achieved by
renaming the troublemaking bound variables in #(x). The second con-
traction rule is the rule of projection

(to, 1y, " *)n contr t,.

The relation s contr ¢ is read s contracts into t.
A term is in normal form if it has no contractible subterms.
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We shall say that s reduces to t if, loosely speaking, ¢ can be obtained
from s by repeated contractions of subterms. More precisely, the rela-
tion s reduces to ¢, abbreviated s red ¢, is defined inductively as follows.
If x is a variable, then x red x. If s contr ¢, then s red 7. If s(x) red #(x),
then Axs(x) red Axt(x). If s, red t,forn = 0, 1, - - -, then (so, 54, * - *) red
(to, ty, - -). If r red s, then rt red st, and, if s red ¢, then rs red rz. If
s red ¢, then sn red tn. Finally, if r red s and s red ¢, then r red ¢.

We could equally well formulate our system of terms using combinators
instead of variables and Aabstraction. For every pair of types ¢ and
we would then have to introduce Schonfinkel’s combinator

K oftype 6 > 1> 0
and, for every triple of types p, ¢ and t, his combinator
S oftype (t>06->p)> (t>06)> 1> p.
Moreover, for every type IIt, and every n, we need a combinator
P, of type Iz, — 7,
and, for every pair of types ¢ and IIt,, a combinator
Q oftype (s - 1,) > 0 - II1,.

Combinators and variables are combinator terms. If s and ¢ are
combinator terms of type ¢ and ¢ — 1, respectively, then s is a combina-
tor term of type 7. If ¢, is a combinator term of type 7, forn =0, 1, - -,
then (¢4, t;, " ", 1,, - * *) is a combinator term of type IIz,.

There are four rules of contraction, one for each of the basic combina-
tors,

Kst contr s,

Srst contr rt(st),
Pn(t09 tla o ) contr tn’
O(to, ty, " - *)scontr (fys, 15, " ).

The isomorphism between combinator terms and Aterms is established
in the usual way, only we have a few more cases to consider. When passing
from combinator terms to Aterms, we replace P, and Q by Ax(xn) and
AxAy(x0p, x1y, - - +), respectively. Conversely, when defining Aabstrac-
tion by means of the combinators, we let Ax(to(x), £,(x), " - ) be the
combinator term Q(Axty(x), Axt,(x),---), assuming that Axt,(x) has
been defined already forn = 0,1, - - -.

Our main purpose is to show that every term reduces to normal form.
But, before doing this, we want to establish the relation between the
system of terms and a certain infinitary propositional logic.
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3. Relation to infinitary proof theory

We shall now reformulate the system of Aterms as a system of natural

deduction.
The formulae are built up from at least one atomic formula by means of
the following two inductive clauses. If F and G are formulae, then

F-> G
is a formula. If F,, F,, - -, F,, - - is a countable sequence of formulae,
then
AF,

is a formula. We use F; - -+ —> F,_; —» F, as an abbreviation of
Fr> (o (Fy > F) )

We start a deduction by making some assumptions from which we draw
conclusions by repeatedly applying the following deduction rules.

[F]

—introduction G
F->G
—elimination F F-G
modus ponens G
. ) F PO F P

Alntroduction Fo F, n

AF,

T AF,

Aelimination

F,

Here the formula F in the — introduction rule has been enclosed within
square brackets in order to indicate that some occurrences of the formula
F as assumptions of the deduction of G have been discharged. This means
that the assumptions of the deduction of F — G are the assumptions of
the deduction of G minus the occurrences of F which are discharged at
the inference from G to F - G. When an assumption is discharged, it
must be indicated in some unambiguous way at what inference this
happens. For example, Gentzen 1934 marks the assumptions that are
discharged by a number and writes the same number at the inference by
which they are discharged.

A formula is provable if there is a deduction of it all of whose assump-
tions have been discharged.

If a logical sign is introduced only to be immediately eliminated, we
shall say that a cut occurs and call the formula whose outermost logical
sign is at the same time introduced and eliminated a cut formula.
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Suppose that a deduction contains a cut formula of the form F— G.
We can then simplify, the deduction in the following way, the original
deduction being pictured to the left and the simplified one to the right.

[F]
: G F
—reduction F F->G :
G G

Similarly, if the cut formula is of the form AF,, we have the following
method of simplification.

FO 1.7‘1 oo Fn P
Areduction AF, F,
F,

We are now prepared to establish the isomorphism between the system
of terms and this system of natural deduction. The following dictionary
shows the relation.

atomic type atomic formula

type formula

variable assumption

bound variable discharged assumption
rule of term formation deduction rule

term deduction
Acontraction —reduction
projection Areduction

normal term cut free deduction

Curry and Feys 1958 discovered the analogy between their so called
theory of functionality and the positive implicational calculus, and Ho-
ward 1969 extended it to Heyting arithmetic. I am indebted to William
Howard for pointing out this analogy to me.

The combinator formulation of the terms corresponds to having a
formal system of Hilbert type instead of a system of natural deduction.
There are four axioms,

F—- G- F,
(F»G—->H)»>(F>G)>F—-H,
AF, n > F, n»
A(F > G,) > F> AG,,
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and just two rules of inference, namely, modus ponens and A introduc-
tion. The theorem which says that Aabstraction is definable by means of
the combinators corresponds to the deduction theorem for this system of
Hilbert type.

Because of the isomorphism we have established, it is merely a question
of terminology and notation whether we formulate our results for terms
or for deductions.

4. Ordinals associated with terms

The degree d(7) of a type t is inductively defined as follows. d(z) = 0
if © is atomic. d(o — 1) = max (d(¢)+1, d(x)). d(IIr,) = max d(z,).
Here max is used to denote the least upper bound of a set of ordinals so
that the degree of a type is an ordinal of the first or second number class.

It is convenient to carry over some of the terminology introduced for
deductions to terms. If a term has a convertible subterm, that is, a subterm
of the form Axt(x)s or (¢¢,ty,"-)n, then the type of Axt(x) and
(to, 21, " - *), respectively, is said to be a cut type. The cut degree of a term
is the maximum of the degrees of all its cut types.

A cut type of #(s) is either a cut type of s, the type of s itself or a cut
type of #(x). Consequently, the cut degree of #(s) is at most equal to the
maximum of the cut degree of s, the degree of the type of s and the cut
degree of #(x).

The length I(t) of a term ¢ is defined by the following inductive clauses.
I(x) = 0 if x is a variable. /(Axt(x)) = I(¢(x))+1. I(ts) = max (/(s)+]1,
I(t)). i((to, t;, ) = max [(t,). I(tn) = I(r). The length of a term is
also an ordinal of the first or second number class. For example, the
length of the recursion operator AxAy(x, yOx, y1(»0x), - - ) is w+2.

By a straightforward induction on #(x) it is seen that

I(2(s)) < I(s)+1(2(x)).

This property will be needed in the proof of the normal form theorem.

We shall not only prove that every term reduces to normal form but
also estimate the length of the normal term by means of the length and
cut degree of the given term. To this end we need the hierarchy of Veblen
1908 based on the normal function 2* over the domain o < Q. Thus, we
put xo(x) = 2* and let Xp enumerate the common fixed points of all ,
with y < fwhen 0 < 8 < Q.

Let x; denote the mith iterate of the function y;. The function by
means of which we shall estimate the length of the normal form of a term
is

@s(®) = 1510 Ape(@) -+ )
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where

B = oF'm;+ofm,+ - +0f*m,
is the Cantor normal form of § > 0 and @,(x) = «. The functions @,
form a solution to the functional equation

@p(2,(2)) = @p45(2)
under the initial conditions @4(a) = « and ¢,(«) = 2% To see this, let
B = oP'm + - +0®m and y = 0"'n;+ -+ + 0" n; be the Cantor
normal forms of B and y. Then

B+y = oP'm+ - +w”"mj+w“n1+ R ]

where j is the biggest index i such that f; = y,. On the other hand, since
the Veblen functions have the fixed point property,

Xﬁ(Xy(“)) = Xv(a) if f <,
we get
Pp(0y(@) = 25 C - xgOC 2@) ) )
as desired.

There are three properties of the functions ¢, that we need in the proof
of the normal form theorem. First, ¢, is strictly increasing for every .
This is obvious since y; is strictly increasing for every f. Second, as we
have just proved, ¢z(@,(2)) < @44, (¢). Third, z(x) -2 £ @g(a+1) for
all # > 0. It is to attain this for § = 1 that we have chosen ¢,(x) =
Xo(2) = 2*. We then automatically get

?p(%) "2 = @1(@p-1(2)) " 2 = @y(@g—1(2)+1)
= (P1(¢p—1(“+1)) = q’[s(“"'l)
forall g > 0.

5. Normal form theorem

As a preliminary step we prove the following simple lemma.

All cut types of the form IIt, can be eliminated from a term without
increasing its length and cut degree.

When a cut type is eliminated by conversion of a subterm, the degrees
of the new cut types that may arise do not exceed the degree of the cut
type we are eliminating. Thus, when a term is reduced, its cut degree
does not increase.

It remains to prove that we can eliminate all cut types of the form
IIt, from a given term r without increasing its length. This we do by
induction on r, that is, assuming it has been proved already for all proper
subterms of r, we prove it for r itself. Basis. # = x. Then r is normal
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already. Induction step. Case 1. r = Axt(x). By induction hypothesis,
t(x) red v(x) with I(v(x)) < I(t(x)) and no cut types of the form IIz,.
But then r red Axv(x) which has the desired properties. Case 2. r =
(to> t1, - - *). By induction hypothesis, ¢, red v, with /(v,) < I(¢,) and
no undesired cut types. But then r red (v, v, * * ) Which has the desired
properties. Case 3. r = ts. By induction hypothesis, s red u and ¢ red v
where /(u) < I(s) and /(v) < I(t) and u and v have no undesired cut
types. But then r red vu which has the desired properties. Note that vu
may have become convertible even if ts were not, but, according to the
remark above, the degree of the type of v is then no greater than the cut
degree of r = 5. Case 4. r = tn. By induction hypothesis, ¢ red v with
I(v) < I(t) and no undesired cut types. If v = (v, vy, * * *), then r red v,
which has the desired properties. If v is not of the form (v,, vy, ),
then r red vn which again has the desired properties.

A term of length o and cut degree B+7v reduces to a term of length
< ¢,(x) and cut degree < P.

The proof is by induction on y. Since @y(x) = «, the theorem holds
trivially for y = 0. So suppose that y > 0 and that the theorem has been
proved for all & < y. We prove it for y by induction on the term r whose
length is o. By the lemma we can assume that r has no cut types of the
form IIt,. Basis. r = x. Then r is normal already. Induction step. As in
the proof of the lemma we distinguish four cases.

Case 1. r = Axt(x). By induction hypothesis, #(x) red v(x) which has
length < ¢,(/(¢(x))) and cut degree < B. But then r red Axv(x) which
has length < ¢,(/(#(x)))+1 = ¢,(l(1(x))+1) = ¢,(x) and cut degree
=B

Case 2. r = (19, ty, - - *). By induction hypothesis, #, red v, where v,
has length < ¢,(/(#,)) and cut degree < f. But then rred (vo, vy, ")
which has length < max ¢,(/(t,)) £ ¢,(max(z,)) = ¢,(x) and cut
degree < f.

Case 3. r = ts. By induction hypothesis, sred u and #red v where
I(u) < ¢,(I(s))and /(v) £ @,(/(t)) and the cut degrees of w and v are < f.
If v is not of the form Axw(x) we are done, because then r red vu which
has length < max (¢, () + 1, 9,(1(1))) < @,(max (I(s)+ 1, 1)) = 9,(x)
and cut degree < f. In the opposite case, r must have been of the form
Axt(x)sy - - - s, where 5, = s and each s; is either a term or a natural
number. Let the maximum of § and the degrees of the types of the s; that
are terms be f§+4J. Then § < y and y—4 < y. By induction hypothesis,
t(x) red v(x) which has length < ¢@,_;(/(¢(x))) and cut degree < f+39.
Also, if s; is a term, then s; red u; which has length < ¢,_;(/(s;)) and
cut degree < f+4. If s; is a natural number, put #; = s;. Then rred



9] Infinite terms and a system of natural deduction 101

Axv(x)uy - - - u, and at most n conversions reduce the latter term to a
term w of length < max I(u;)+1(v(x)) < @,_s(max I(s;))+¢,-s(/(1(x)))
< ¢, ofmax ((:(x)), max [(5))) -2 = @, s(max ({(x(x)), max [(s,))+ 1)
= @,-5(«) and cut degree < B+0. Finally, w reduces to a term of length
< ¢05(¢,-5(2)) = ¢,(x) and cut degree < B.

Case 4. r = tn. By induction hypothesis, #red v which has length
< ¢,(I(r)) and cut degree < B. If v = (vy, vy, * * ) then r red v, which
has length < /(v) < ¢,(I(t)) = ¢,(«) and cut degree < f. On the other
hand, if v is not of the form (v,, vy, - - ), then r red vn which has length
= I(v) = ¢,(I(t)) = ¢,(x) and cut degree < B. The proof is finished.

We can now deduce the normal form theorem.

A term of length o and cut degree B reduces to a normal term of length
< ¢y(2).

By the previous theorem, a term of length « and cut degree f§ reduces
to a term of length < ¢,(x) and cut degree 0, and, furthermore, the
lemma allows us to assume that the latter term has no cut types of the
form IIt,. But then it must be normal, for if it had a cut type of the form
o — 7 its cut degree would be = d(o — t) = max (d(s)+1, d(r)) > 0.

6. Properties of cut free deductions

In this section we carry over some of the terminology and results of
Prawitz 1965 to the infinite natural deductions we are considering.
In an application of modus ponens

F F->G
G

F is called the minor premise and F — G the major premise of the conclu-
sion G. Every premise of an application of any of the other three deduc-
tion rules is a major premise of its conclusion. A sequence Fy,-* -, F,
of formulae in a deduction form a branch if F, is a top formula, F;is a
major premise of F;,, for every i < n and F, is either a minor premise
of modus ponens or the end formula. In the latter case the branch is
said to be a main branch.

A branch of a cut free deduction falls into two parts Fy, - - -, F,, and
F,, -, F, the first of which consists entirely of elimination inferences
and the second of which consists entirely of introduction inferences, the
dividing formula F,, being called the minimum formula of the branch.
In case m = 1 or m = n one of the parts is absent. This property of the
branches of a cut free deduction makes it very perspicuous. As a simple
application we can prove the consistency theorem.
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No atomic formula is provable.

If an atomic formula were provable, there would be a cut free deduc-
tion of it according to the normal form theorem. Since the end formula
is atomic, a main branch of the cut free deduction must consist entirely
of elimination inferences. But then the assumption in the beginning of a
main branch cannot have been discharged, contradicting the supposition
that all assumptions were discharged.

The branches of a deduction can be ordered in a natural way as follows.
A main branch is assigned the order 0. A branch which ends with a minor
premise of an application of modus ponens is assigned the order n+1
provided the branch to which the corresponding major premise belongs
was assigned the order n. Note that, although a deduction may be infinite,
every branch of it has finite order. It is convenient to use the notion of
order of a branch when proving the subformula principle.

Every formula in a cut free deduction is a subformula of either the end
formula or an assumption that has not been discharged.

We prove that the assertion holds for all formulae of a certain branch
F,, -+, F, assuming that it has been proved already for all branches of
lower order. The assertion holds for F, because F, is either the end formu-
la of the deduction or a minor premise of an application of modus ponens.
In the latter case F, is a subformula of the corresponding major premise
which occurs on a branch of one lower order, so that the induction
hypothesis applies to it. From F, the assertion immediately carries over
to F,, -, F,_; where F, is the minimum formula of the branch.
F,,- -, F, are all subformulae of F,, so if F; is not discharged we are
done. In the opposite case F; must be discharged by an —introduction,
the conclusion of which is of the form F;, — G and either equals one of
F,.., -, F, or else occurs on a branch of lower order. In either case
we reach the desired conclusion.

As an application of the subformula principle we prove that the calculus
we are considering is a conservative extension of the positive implicational
calculus.

A cut free deduction of a purely implicational formula from purely
implicational hypotheses is purely implicational.

This corollary was suggested by William Howard. It is an immediate
consequence of the subformula principle.

REFERENCES

H. B. Curry AND R. FEYs
Combinatory logic, vol. I (North-Holland, Amsterdam) 1958.



[11] Infinite terms and a system of natural deduction 103

G. GENTZEN
Untersuchungen iiber das logische Schliessen, Math. Z, 39 (1934) 176-210, 405-431.

W. A. HOowArRD
The formulae-as-types notion of construction, privately circulated notes, 1969.

D. PRAWITZ
Natural deduction (Almgqvist & Wiksell, Stockholm) 1965.

W. W. Tart
Infinitely long terms of transfinite type, Formal Systems and Recursive Functions,
edited by J. N. Crossley and M. A. E. Dummet (North-Holland, Amsterdam),
(1965) 176-185.
Normal derivability in classical logic, Lecture Notes in Mathematics (Springer-
Verlag, Berlin), 72 (1968) 204-236.

O. VEBLEN

Continuous increasing functions of finite and transfinite ordinals, Trans. Amer.
Math. Soc. 9 (1908) 280-292).

(Oblatum 18-111-71) Barnhusgatan 4
111 23 Stockholm

Sweden



