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In 1961 Anderson [1 ] published a proof that the group of stable ho-
meomorphisms of a manifold is simple. Fisher [2] had previously shown
this for manifolds of low dimension. The question was also considered
by Ulam and von Neumann [5], who proved the same result for S2.
The recent work of Chernavski, Kirby and Edwards shows that the
group of stable homeomorphisms is the same as the group of homeo-
morphisms isotopic to the identity.

Recently Smale has asked whether the group of diffeomorphisms which
are differentiably isotopic to the identity is simple. In this paper we show
that the commutator subgroup of such C’’ diffeomorphisms is simple for
1 ~ r ~ ao. We also show that the group of such C’ diffeomorphisms
has no closed normal subgroups. In the last part of the paper we exa.mine
the piecewise linear situation, where simplicity is proved for PL ho-
meomorphisms of R1 and S1.

If the group of diffeomorphisms, which are isotopic to the identity, is
simple, then any class of such diffeomorphisms which is closed under
conjugation will generate the whole group. For example we would know
that any such diffeomorphism is the product of Morse-Smale diffeo-
morphisms. Or we could deduce that any such diffeomorphism was the
product of time one diffeomorphisms of flows.
The partial result we have proved does not enable us to go so far.

However we can say that any class of diffeomorphisms closed under
conjugation generates a subgroup which is C’ dense in all diffeomorphisms
isotopic to the identity.

1 would like to thank M. W. Hirsch and J. Palis for helpful conver-
sations.

1

Let X be a paracompact Hausdorff space, G a group of homeomor-

phisms of X and U a basis of open neighbourhoods of X satisfying the
following axioms.
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AXIOM 1. If U~U and g E G, then gU~U.

AXIOM 2. G acts transitively on U.
If° g is a homeomorphism of X we define supp g, the support of g, to

be the closure of {x|x ~ gx}.
AXIOM 3. Let 9 E G, U ~ U and let ll§ G U be a covering of X. Then

there exists an integer n, elements gl , ’ ’ ’ , 9n E G and Vi , ... , Vn~B
such that g = gngn-1 ··· g1, supp gi c Vi and

1.1. THEOREM. If these axioms are satisfied then [G, G], the commu-
tator subgroup of G, is simple.
The proof of this theorem will occupy the first half of this paper.
Let X be a paracompact connected Cr manifold of dimension n

(1 ~ r ~ ~). Let U be the set of subsets of X of the form 9B where
9 : Rn ~ X is a Cr embedding and B is the open unit ball in Rn. Let
G = Diff (X, r) be the group of those C’’ diffeomorphisms f of X for
which there exists a compact subset K of X and an isotopy H of f to
the identity, with H fixed outside K.

1.2. PROPOSITION. In the situation just described, the axioms are sa-

tisfied.

COROLLARY. If G = Diff (X, r), then [G, G] is simple.

PROOF OF PROPOSITION 1.2. We have only to check Axiom 3. It is

well-known (see for example Palis and Smale [3], Lemma 3.1) that
we can write g = On ... 01 with supp gi c Vi ~B. It follows that

we need only prove the following lemma in order to complete the proof
of the proposition.

1.3. LEMMA. Let g E Diff (X, r) where X is a connected paracompact
manifold and let supp g c V where V is an open ball as described just
before Proposition 1.2. Let U be an open subset with U e X. Then we
can write 9 = g2g1 with gi E Diff (X, r), supp gi c V (i = 1, 2),

PROOF. If SUPP g 9 ï7 then we can take gl = id and 92 = g. Otherwise
let x, 0 C7 with gxl :0 xl and choose X2 e  with X2 distinct from xi
and gxi. Let h E Diff (X, r) be the identity in a small neighbourhood
N2 of x2 and let hx 1 = gxl and Dh(x1) = Dg(x1) and supp h - V.
(If X is one dimensional, we must choose X2 so as not to separate xl
and gxi in V.)

Let f : Rn, 0 ~ Rn, 0 with Df(0) = id. Let ç : Rn, 0 - R be a
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bump function equal to 1 in a neighbourhood of 0 and equal to 0
outside a compact set. We define

where &#x3E; 0. It is easy to see that for 03BB very large f03BB is a diffeomorphism
of Rn which is the identity outside a very small compact set. Moreover
if f is cr then f03BB E Diff (Rn, r).
Hence we can define p : X - X to be a diffeomorphism which is the

identity outside a small neighbourhood of xi and is equal to h-19 on an
even smaller neighbourhood Ni of xl . We put g, = hp and g2 = 9(91)-1.
Now 911H2 = id and supp g1 ~ V. Hence supp 92 - V and X2 e

(supp g 1 u ). Finally g1 x1 ~ (supp 92 U g1 ), for x1 ~ LT and

This completes the proof of the lemma and hence of proposition 1.2.

1.4. THEOREM. Let (X, G, U) satisfy the three axioms above and let
N be a non-trivial subgroup of G which is normalized by [G, G] (i.e.
if n E N and g E [G, G ] then [n, g] = n-1g-1ng E N). Then [G, G] ~ N.
Theorem 1.1 is obviously a corollary. Another corollary is that every

normal subgroup of G contains the commutator subgroup. We start with
some remarks.

1.4.1. If G has more than one element (which we may obviously
assume), then X is connected. For if X = U~ V and U and V are
disjoint open subsets, then by Axiom 3, G is generated by elements
supported either in U or in V and this contradicts Axiom 2. In particular
no open subset is finite, for otherwise X would be discrete by Axiom 2.

1.4.2. Let V ~ U and let h ~ G with supp h - V. Let W ~ U with

W n supp h = 0. By Axiom 2 we can find g E G with g W = V. Then

is equal to h on supp h, to g - lh - lg on g-1 (supp h) z W, and to the
identity elsewhere.

1.4.3. We now show that (G, G] acts transitively on U. Let U and Ui
be elements of U and let g E G with g U = Ul. By Axiom 3, we can
find an integer n, and V1, ···, V. ~U and h1, ···, hn E G such that
g - hn ... Ai, supp h ~ Yi and Ki supp h ~ (hi-1 ··· h 1 ) ~ X. Let
Wi ~ X - Xi be an element of U. Let gi E G with g Wi = Vi.
Then applying 1.4.2., it is easy to see that
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1.4.4. Let id ~ 03B1 ~ N. Let x E X with etX f:. x. Let U ~ U with

U~03B1-1U=Ø. Let V, W~U be as in 1.4.2., with V~ W=Ø,~~ U
and V a neighbourhood of x. Then with g and h as in 1.4.2

P = [a,[g, h]]~N. Then p is equal to h on V, U-1h-1U on W, a-lha
on ex-l V, 03B1-1g-1h-1g03B1 on 03B1-1 W and the identity elsewhere.
Using 1.4.3 and conjugating p by an element of [G, G], we may assume

that V is an arbitrary element of U and h is an arbitrary element of G
supported on V and p E N.

1.4.5. We now show that the orbits of N are the same as the orbits of G

(which are dense in X by Axiom 2). Let gx = y and let y = Un ... gl x
be an expression with n minimal, gi E G and supp gi contained in some
element Vi of U for each 1. Since n is minimal, gi-1 ’ ’ ’ g1 x ~ Vi for
each 1 (1 ~ 1 ~ n). Constructing elements of N as in 1.4.4, we can find
Pi E N such that pil Vi = gi| Vi (1 ~ i ~ n). We obviously have

1.4.6. Let x E X and choose by 4.5 oei, a2 E N with x, 03B11-1 x and a2 1 x
distinct. Let U~U be a small neighbourhood of x with U, 03B11-1 U and
a21 U disjoint. Let gl , g2 E G with x, gi lx, g2 lx distinct elements of U.
Let V ~ U be a neighbourhood of x such that V, g1-1 V and g2-1 V are
disjoint subsets of U. We can construct elements pi of N as in 1.4.4

using a i , gi , Wi = gi 1 Y and with hi an arbitrary element of G supported
on V (i = 1, 2). pl is supported on the four sets V, gl 1 Y, 03B11-1 V, 03B11-1g1-1 V,
and p2 is supported on the four sets V, g2-1 V, 03B12-1 V, a2 lg2 1 v. All
of the seven sets occurring in these two lists are disjoint. Hence

What we have shown is that if h 1 and h2 are arbitrary elements of G
supported on V, then [hl, h2] E N. Since N is normalised by [G, G] and
by 1.4.3. [G, G] acts transitively on U, we may assume moreover that V
is an arbitrary element of U.

1.4.7. Since X is paracompact, we can find a covering B ~ U such
that if V1, V2 ~ B and Vi (") V2 =1= 0, then there is an element U E U
with vl U V2 £; U. By Axiom 3, G is generated by elements h for
which there exists W ~ B with h supported on W. Let h 1 and h2 be two
such generators, supported on Wl and W2 respectively. Then either
Wl n W2 = 0 in which case [h1 , h2] = id E N or Wi n W2 ~ Ø in
which case both hl and h2 are supported on some element U of U,
in which case [h1, h2] E N by 1.4.6.
To complete the proof of Theorem 1.4 we need only show that all
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conjugates in G of [h1, h2] are in N (for then such conjugates generate
a normal subgroup S of G and G/S is abelian since the generators
commute). Let 0 E G. We wish to show that g[h1 ,h2]g-1 ~ N. By
Axiom 3 there is an integer n, elements g1, ··· , gn E G and V1, ···,
vn e B, with g = gn ... 01’ supp gi ce vi and

(Here hl is supported on Wi , h2 supported on W2, W, u W2 ~ U as
in the preceding paragraph.)

Choose Ui ~ U with Ui in the complement of Ki. Let 03B2i ~ G with
Pi Ui = Vi. Put 7j = [03B2i, gi]. As in 4.2 Yi is equal to gi on supp gi,
to 03B2i-1gi-103B2i on Ui and to the identity elsewhere. It follows that

and this is an element of N.

This completes the proof of Theorem 1.4.

2

In this part of the paper, we restrict ourselves to the case where X
is a paracompact connected Cr manifold and G, = Diff(X, r). We topol-
ogize G, with the fine Cr topology.

CONJECTURE 1. G, is a simple group for 1 ~ r ~ oo.
This implies the weaker conjecture:

CONJECTURE 2(r). [Gr, G,] is dense in Gr.
Conjecture 2(r) obviously implies Conjecture 2(s) for s  r. We have

been able to prove conjecture 2(r) in the case r = 1 only.
2.1. THEOREM. [C1, Gi] is dense in G, (with respect to the fine Cl

topology).
COROLLARY. Gi has no closed normal subgroups except for e and G1.

PROOF. We have to show that [G1, G1] = G 1. Let 0 c- Gl. Without
loss of generality we may assume that 0 is near the identity and is sup-
ported on a small ball, so that we can work in a single coordinate chart.
(This is because G1 is generated by such elements.) Hence there is no
loss of generality in assuming that our manifold is Rn and that 0 is sup-
ported on the ball B of radius 1 with centre at (4, 0, ···, 0).
We take the usual norm on Rn
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and the associated operator norm on (n x n) matrices. Let

We may assume without loss of generality that ~03B8~  1 8, and we
wish to prove that 0e [Gl, G1]. Since ~03B8~  t.

defines an isotopy of 0 to the identity.
We first find a bound for 110-11,.

Let D8(x) = id-03B1(x) so that ~03B1(x)~ ~ i. Then

Therefore ~D03B8-1(y)-id~ ~ ~03B8~+~03B8~2 + ··· = ~03B8~/(1-~03B8~). It follows
that ~03B8-1~ ~ ~03B8~/(1-~03B8~).

Let 0 1 = ~ 1 2, so that 01(X) = (x+Ox)j2. Then we see immediately that
110111 ~ 11011/2.

Let 02 = 03B803B81-1. We compute a bound for ~03B82-1~.

So 03B82-1 bears the same relationship to 03B8-1 as 03B81 does to 0. Hence

Since

we see that

If ~03B8~  1 8, we have 03B8=03B8203B81 with

We can now factorize 03B81 = 03B812 03B811 and 03B82 = 03B822 e21 in the same way.
Formally suppose we have defined 0, for all r-tuples (1 ~ r  n) of
l’s and 2’s. If I = (i1, ··· , in-1) we define J = (i1, ···, in-l, 1) and
K = (i1 , ··· , in-1, 2 and we put 0j = (01)1 and 03B8K = (03B8I)2, so that
0, = 03B8K03B8J. By induction we have

2.2. REMARKS. Let 9 E Diff (X, r) where X is a connected paracompact
Cr manifold. Let 9 = 03C303C1 and let 03C3, p E Diff (X, r) supported on a ball U.
Let g, h E Diff (X, r) be diffeomorphisms such that U, g-1 U and h -1 U
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are disjoint. Then in the commutator subgroup of Diff (X, r), we have the
element [g, 03C3][h,03C1] and this element is equal to 9 on U, g-103C3-1g on
g-1U, h-103C1-1h on h-1 U and the identity elsewhere. In particular we
can take qJ = °1’ 0’ = OK and p = 03B8J.
We now construct a sequence of diffeomorphisms

The sequence is constructed in blocks of three. The first diffeomorphism
in a block has the form 03B8I, the second has the form 0 j ’ and the third has
the form 03B8K-1, where I, J, K are as described above. Suppose that we have
already constructed i blocks of three. To construct the (i + 1 )st block of
three, read from left to right along the list already constructed, and take
the first diffeomorphism of the form 03B8I-1, such that 03B8I does not already
appear further to the right. This 0, will be the first term in the (i + 1 )st
block.

Call the sequence which we have constructed ~0,03B81,~2, ···. We are
supposing that 0 = (po is supported on a ball of radius one, with centre
at (4, 0, ··· , 0). Then each (pi i is supported on the same ball. Let

Bn = (1 2n)B. That is, Bn has radius I" and centre at (22 -", 0, - - - , 0).
We define gi : Rn ~ Rn by putting ~n in Bn. More formally, we set

Obviously 1/I(Bn) = B" so 1/1 is a homeomorphism, which is a diffeo-
morphism everywhere except possibly at 0. But since CPn tends to id in
the C1-topology as n tends to infinity, we have

which tends to id as n tends to infinity. Hence 4( is differentiable at 0
and is therefore a diffeomorphism. (Formally, we apply the mean
value theorem to (03C8-id) in order to show 4( is differentiable at 0).

NOTE. 1/1 is not C’, except in exceptional circumstances.
The proof of Theorem 2.1 is completed by proving that both 1/1 and

03B8-103C8 are contained in the closure in G1 = Diff (Rn, 1) of [G1, G1]
with respect to the fine Cl-topology.
According to Remark 2.2, if we work modulo [G,, G1 ] we may

delete any finite number of blocks of the form 0j, 03B8J-1, 03B8K-1, where I, J
and K are as described just before the remark. This shows that 1/1 is in the
closure of [G1, G1 ].
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According to 4.2, if we work modulo [G 1, G1], we may delete from gi
a finite number of pairs of the form 01, Oi 1. Hence 03B8-103C8 is in the closure
of [G1, G1]. This completes the proof of Theorem 2.1.

3

Throughout this section of the paper, let X be a connected piecewise
linear n-dimensional manifold and let G = PL(X) be the group of those
PL homeomorphisms which are PL isotopic to the identity by an isotopy
fixed outside a compact set. Let U be the set of all PL n-dimensional
balls in X. According to Hudson and Zeeman [4] every element of G
is the product of elements of G, each element supported on a ball.
As in Proposition 1.2, we see that Axioms 1, 2 and 3 are true. Hence we
have as a consequence of Theorem 1.4,

3.1. THEOREM. Let G = PL(X). Then [G, G] is simple and every non-
trival normal subgroup of G contains [G, G].
We can also prove

3.2. THEOREM. Let X = R1 or S’. Then PL(X) is simple.
PROOF. By Theorem 3.1, we need only show that PL(X) is equal to

its commutator subgroup. Since every element of PL(S1) is the product
of elements supported on intervals, we may restrict ourselves to PL(R1).

Let 0  a  03B2  1 2. Let 03C3(03B1) : R1 ~ fR 1 be the PL homeomorphism
whose graph lies on the diagonal outside [0, 1 ] x [0, 1 ] and which has
corners at (0, 0), (1, 1) and (t, a). Let 03BC = 03C3(03B1)-103C3(03B2)-103C3(03B1)03C3(03B2).
Then the graph of g has corners at

and

Conjugating Il by an element which is linear on [0, 1 ], we obtain an
element 03BB in the commutator subgroup, such that the graph of 03BB has

exactly three corners, and these are at (0, 0), (1, 1) and

Writing u = a/(1-2a) and v = fi/(l - 2fi) so that 0  u  v  co, the

corner for 03BB is at

Writing u = yv with 0  y  1, this point becomes ((1 + 03B3v)/(1+v), y).
For fixed y, (1 + yv)/(1 +v) varies between y and 1.
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This shows that the commutator subgroup contains all éléments

whose graphs have corners at (0, 0), (1,1 ) and (x, y) with x &#x3E; y and no
other corners. Taking inverses and conjugating, we see that the com-
mutator subgroup contains all elements 03BB whose graphs have exactly three
corners. But such elements obviously generate PL(R). This completes the
proof of Theorem 3.2.
The above proof raises the following question. We define a glide

on a connected piecewise linear n-manifold M to be a PL homeomorphism
h : M ~ M such that there is a ball B in M with hl M - B = id. Further,
with respect to some PL coordinate system, B is the linear join of S"-2
with I, h(x) = y where x, y E I and h is extended to Sn-2 * I by mapping
each ray ax with a E Sn-2 * DI linearly to the ray ay. (Note that 03BB has
this form in the preceding proof.)
The subgroup of PL(M) generated by glides is obviously normal.

The question is, is it the whole of PL(M)? In other words, is every
element of PL(M) a product of glides? An affirmative answer is equivalent
to the simplicity of PL(M).
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