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On Certain Periodic Characteristic Functions
by

Eugene Lukacs
Office of Naval Research, Washington, D.C.

1. Introduction.

The purpose of this note is to derive certain properties of periodic
characteristic functions and to determine those distributions whose
characteristic functions are entire periodic functions.

Let F(z) be a probability distribution, that is, a never-decreas-

ing, right continuous function such that lim F(z) =0 and
z—>—

lim F(2) = 1. The Fourier transform of F(z), that is the func-

&—>o

tion
(1) 1) = [ _e"=dF(z)

is called the characteristic function of F(z).

A distribution is called a lattice distribution if it is purely
discontinuous and if its discontinuity points form a (proper or
improper) subset of a sequence of equidistant points.

A characteristic function is said to be an analytic characteristic
function if it coincides with an analytic function in some neigh-
borhood of the origin.

We prove the following theorems:

THEOREM 1. An analytic characteristic function which is single
valued and periodic has either a real or a purely imaginary period.
The period s real if, and only if, the characteristic function belongs
to a lattice distribution.

THEOREM 2. A characteristic function is an entire periodic func-
tion (not = 1) if, and only if, it is the characteristic function of a
lattice distribution.

2. The lemmas.

For the proof of these theorems we need two lemmas which we
derive in this section.
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LeMMA 1. A characteristic function f(t) assumes the value 1 for
some real t, # 0 tf, and only if, it is the characteristic function of a
lattice distribution.

Proor: Let us first assume that for some real {, # 0 the value
f(t) = f(0) = 1. We see then from (1) that

[0 (—em®)dF(z) =0
and therefore also
[*_(1— costyz)dF(z) = 0

Since the function 1—cos ¢,z is continuous and nonnegative this
relation can hold only if F(z) is a purely discontinuous distribu-
tion such that its discontinuity points are contained in the point
set 2nsfty (s =0, 41, +2,...) where 1 — cos #yz vanishes. The
distribution function F(z) has therefore necessarily the form

) F(z) = 3 p,e(@—2nsfty)

8=—00

where

plgo’ z P, =1

and where

0if 2<<0
3 —
@) ¢(@) {1ifmgo

is the degenerate distribution. On the other hand, if F(2) has
the form (2) then

(4) &) = 3 p, exp (2nitsty)

8= — 0
so that f(¢,) = 1.
Lemma 1 is a particular case of a somewhat more general result
of A. Wintner ([2], p. 48). Wintner proves that |f(§)| = 1 for
some real £ 5 0 if, and only if, F(z) is a lattice distribution.

LeMMa 2. Let f(2) be an analytic characteristic function with the
strip of convergencel) —a <Im(2)<<p and assume that there are
three real numbers n,, ny, ny such that

(i) —a<<n<n,<ny,<p,
(ii) ny,+ng = 2n,,

(iii) f(ny) = f(iny) = f(iny),

Then f(z) = 1.

1) For the properties of analytic characteristic functions see [1].
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Proor: We rewrite (iii) as

) {f(inz)—ﬂz'nl) =0

f(ing)—f(ing) = 0
We conclude from (i) that the three points in; (j = 1, 2, 8) are
in the interior of the strip of convergence of f(z) so that the
integral representation (1) is valid at these points. Then

flin) = [~ _emdF(a) for j=1,2,3

and

flin3)—f(in;) = [ _[e=mn—e==]dF () for j =1, 2.

If we put

gle) = e (j=1,2)
(6) _ (" -

I, = [ e(2)dF(a) (G=1,2)
We can write (5) as
(7) I,=I,=0

We carry the proof of lemma 2 indirectly and assume therefore
tentatively that f(z) £ 1 and show that this leads to a contra-
diction with (7). If f(z) s 1, then also f(t) % 1 for real ¢t and
the corresponding distribution function is nondegenerate and
therefore there exists a real h>>0 such that at least one of the two
relations

(8a) j::dF(m) =1—-F(h)>0

(8b) j:: dF(z) = F(—h)>0

is satisfied.

From (ii) we see that n;—n, = n,—n,; and obtain therefore
from (6)

81(w)—g2(m) = —e % [e—z(n,—nl) —1].
Therefore
9) {gl(w) < go(@) if @ #0
81(0) = g,(0) =0

Let us first assume that (8a) is satisfied and choose % ac-
cordingly. We see then from (9) that

(10a) [a@iF@) < [ g@)aF@) <o
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and
0
(11) o< [ a@)dF@) <[ g(@)dF()
From (8a) we conclude that there exists a finite A >h such that

[ 4F(2)>0. We see from (9) that gy(2)—g,(2)>0 for 0<h=<a=<A

and there exists a real number x>0 such that g,(z)—g,(z)=x>0
for h=ax<A. Since g,(z)—g,(z) is positive for z=h, we see that

[7 2a(@)~&:(@)1dF (@) = [ [gae) —&1(2)]dF (@) 2 u [ dF () > 0
and therefore

(10b) [ (@) dF(2) < [ gy(x)dF(e)

Adding (10a), (10b) and (11) we obtain

00 + o
[7 a(@)dF(2) < [ ga(@) dF (a)
or
(12) I,<1,.
In case (8b) is valid we obtain by a similar reasoning again (12).
Thus if at least one of the conditions (8a) of (8b) is satisfied,
relation (12) must be valid in contradiction to (7). Therefore

no h exists such that at least one of the relations (8a) or (8b)
is satisfied. But this means that 1—F (k) = F(—h) = 0 for any

h>0, in other words, J.t:dF (z) =1 for any h>0, i.e. the distri-

bution F(z) is necessarily equal to the degenerate distribution
g(@).

In this proof condition (iii) is apparently not used fully. In
the argument only the relation f(in,)—f(in,) = f(ing) —f(iny) = M
was used. Nevertheless (iii) can not be weakened since for M # 0
the function f(¢) could not be a characteristic function.

3. Proof of the theorems.

We next prove theorem 1. Let us therefore assume that f(z) is
a single valued analytic characteristic function which has the
period

(18) o = &4y (&, n real).
It is known (see for instance [1]) that the relation
(14) H(—2) = f(z)

is satisfied for every analytic characteristic function in its do-
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main of regularity. On account of the periodicity of f(2) we see that

f(—é—in) = f(0) =1,
we deduce then from (14) that

f(§—in) = 1.
Adding to the argument the period w = £+, we obtain
(15) f(2¢6) = 1.

We consider first the case where & £ 0. In this case we see from
(15) and from lemma 1 that f(z) is the characteristic function of
a lattice. distribution. We see from (2) and (4) that its charac-
teristic function is given by

© +o
(16) f(t) = X p, exp (itms/f)  (p, =0, _pr, =1)

Therefore f(t) is a simply periodic function with the real period
2¢ while 7 = 0. If on the other hand & = 0, then (15) is satisfied
and we see from (18) that w = 47, i.e. that the period is purely
imaginary. This establishes theorem 1.
The case of a characteristic function which has a purely imaginary
period can actually occur. As an example we mention the well
1

cosh ¢
From the proof of theorem 1 we obtain the following corollary:

known characteristic function f(z) =

CoroLLARY TO THEOREM 1. A characteristic function which does
not reduce to a constant can not be doubly periodic.

We proceed to prove theorem 2. Let therefore f(t) be an entire
characteristic function which does not reduce to a constant and
assume that it is periodic. From theorem 1 we see that f(¢) must
be simply periodic with either a real or a purely imaginary
period. From lemma 2 we see that f(t) can not have a purely
imaginary period. The theorem follows then from lemma 1.
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