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On the Rotation Number of a Normal Curve

by

John S. Griffin, Jr.

In the mid-thirties Hopf [1] gave a proof that the rotation
number of a simple closed curve is either 2n or - 2n ; Whitney [2]
then showed how to calculate the rotation number of any normal
curve from properties of its crossing points.
From these theorems and the consideration of a few simple

examples, it would seem that the differential-geometric notion of
rotation number should be related to the topological notion of
index, at any rate for normal curves. The object of the present
note is to exhibit such a relation.

The author takes pleasure in recording his indebtedness to the
remarks of Professors Samelson and H. Hopf.

1. The Rotation Number of a Curve. Let R be the field of real
numbers. Let -9 be the Euclidean plane with a chosen rectangular
coordinate system, that is, suppose that 9 = R X R. In particular,
then, Y is a two-dimensional vector space with basis vectors

e1 = (1, 0 ) and e2 = (0,1) and with norm defined by 1B (x, y ) J ) =
= x2 + y2.
Let S be the unit circle, that is the family of all vectors which

have norm 1, and define p : R - S by

for all points t of R. Now R is a covering space for S under the
projection p, and hence there is the following well-known lemma:
If A is any simply connected arcwise connected topological space,
and f : A - S is continuous, then for any a in A and any t in R
such that p(t) = f(a) there is a unique continuous function

f * : A -+ R such that pf* = f and f*(a) = t ; such a function f*
is called a covering function for f. This is essentially the proposition
of Hopf (lb of [1]) and thus may be taken as a basis for the meas-
ure of angles. Indeed, if A = [a, b] is any closed interval and

u : A ~ F is any continuous function which never vanishes,
then the angle turned by u is defined to be v*(b) - v*(a), where
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v* is any covering function for the function v : .4 - S defined b3T

for all real nunoehers i in A. Again, if c and d are any two linearly
independent vectors then  (c, d) the angle from c to d is defined to
be the angle turned by u, where

for 0 ~ t ~ 1.
Let f be a continuous function on a closed interval [a, b] to 9.

Then f is a closed curve if f(a) = f(b), and a sÏ1nple closed curve if
furthermore f(s) ~ f(t) for s différent from a, b, and t. If f is a
closed curve and c is a point of P which is not on f, then tlle in,dcl1J

0
of c with respect to f is 203C0 , wliere 0 is the angle turned by u, thé
function u being defined to satisfy

for all points i of thé interval [a, b]. If f i’s a simple eloscd curvc
then by the Jordan theorem the index of cacli exterior point is 0,
and the indices of all interior points are equal, and have cither thé
value + 1 or else thé valuc - 1. Thc orientation number 03C9f of a

simple closed curve f may thus be defined to bc the index of any
interior point of l. 
A smooth curve is a continuous function , i on a closed interval A

to 9 which has a continuous non-vanishing derivative throughout
A ; this derivative f ’ is the tangent curve of f. A sniooth closed curvc is
a closed curve which is smoeth and whose tangent curve is also
closed; the rotation numbcr of a smooth closed curve f is the angle
turned by its tangent curve f ’.

If f : [a, b] ~ P is a closed curve, the multiplicity of a point c of
,9 is the number (possibly infinité) of points s such that a ~ s  b
and f(s) - c. A crossing point of f is a point c of multiplicity 2
such that if f(s) = c then f has a derivative at ç, and furthermore
if f(s) = c and f(t) - c but s  t then 1’(s) and 1’(t) are linearly
independent unless s = a and t = b, in which case f ’ (s ) = 1’(t). A
smooth curve is nor1nal if there are but a finite number of points
whose multiplicity is greater than 1, and each of these is a crossing
point. As shown by Whitney [2], any smooth closed curve f may be
deformed into a normal curve by a homotopy which modifies both
f and f’ only a very little, and which in particular leaves the
rotation number of f unchanged.
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A class of curves which arise in the study of normal curves are
the broken curves: Let f : [a, b] ~ P bc a closed curve; f is

broken if there are points ci, a = co  cl  ...  cn = b, such
that for i = 1, 2, ..., n f |[ci-1, ci] is a smooth curve, say with

tangent curve ii; furthermore for i = 1, 2, ..., n - 1, the vectors

03C4i(ci) and 03C4i+1(ci) are linearly independent; and finally either the
vectors 03C41(a) and 03C4n(b) are equal, or else they are linearly independ-
ent. The corner points of f are the points cl, ..., cn-1 together
with a if 03C41(a) ~ tn(b).
The concept of rotation number may be extended to the class of

broken curves by making proper allowance for corner points: if ai
is the angle turned by 03C4i then the rotation number of f is

where 03B2 =  [03C4n(b), 03C41(a)] if a is a corner point, and 03B2 = 0
otherwise.

In the paper mentioned above Hopf showed that tlie rotation
number of a simple closed curve is always 203C0 of else - 203C0, and he

bave a rule to determine the sign. Since it is implicit in his proof
that this sign is the sign of the orientation number, his theorem
may be rephrased as follows:

lf f is a simple closed curve, either smooth or broken, then the
rotation number of f is 2n cof.

2. Circuits in a Closed Curve. Let [a, b] be a closed interval, and
let f : [a, b] ~ P be a closed curve. It may happen that there is a
proper sub-interval [c, d] of [a, b] such that f |[c,d] is also a

closed curve; if so, then f(c) = f(d), and therefore the function g
defined by

and

is continuous, and hence is also a closed curve. Now f L d] or g
may be easier to deal with than f, as for example if f 1 [,, dl were a
simple closed curve; hence the study of f might be facilitated by
this sort of decomposition.

These considerations may easily be formalized. First let us
agree that if A is a union of a finite number of closed intervals, say

and f is a continuous function on A to .9 such that f(bi) = f(ai+1)
for i = 1, 2, ... n - 1 then
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is defined by

i-1 i

for 0  t ~ bl - ai if i = 1, and for 1 bi - ai ~ t ~ 03A3bj - ai
for 1  i  n. Thus in the above example g = (f |[a,c]~[d,b]).
A circuit in a closed curve f : A ~ P is a restiction of f to a

subset B of A which is a union of a finite number of closed intervals,
say

and such that f(bi) - f(ai+1) for each i and f |B is a simple closcd
curve. A decompositioit of f is a family of circuits ~1, ~2, ..., ~n,
such that if cPi = f 1 B, for each i then A = ~ni=1 Bi and Bi n Bj is
discrete unless i = i.
LEMMA. Il f : A ~ P is a normal curve then there is a decom-

position of f into circuits; i f ~1, ..., cPn is any such decomposition
titen the rotation number of.f is the sum of the rotation numbers
of the curves ~i.
PROOF. Let C be the family of all curves satisfying all the

hypotheses of the lemma except possibly smoothness: members of
C may be broken but they must be closed and have only a finite
number of points of multiplicity greater than 1, all these being
crossing points. For g : A ~ P a member of C, let Sg be the family
of ail points s of A such that g(s) is the image of at least one point
other than s. Clearly Sg is always finite; the end-points of A are
members of Sg, and Sg has no other members if and only if g is
simple.
An induction on the number of members of Sg now yields the

desired decomposition. Trivially for any member g of C for which
Sg has exactly two points there is a decomposition. Suppose
therefore that there is a decomposition for any g E C such that S,,
has at most n points, and let f : [a, b] ~ P be a member of C such
that S. has exactly n + 1 points, say so, si, ..., sn. Let î be the
family of all intervals [si, sj] such that f(si) = f(sj), and partially
order fi by inclusion. Since fi is finite, there is a minimal member,
say [s., 8qJ. Clearly f |[sp,sq] is a circuit, and if

then g E C and Sg has at most n points; it follows that g, and hence
f , has a decomposition into circuits.
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Observe that neither the decomposition nor even the number of
circuits is unique for a given curve. For example, the algorithm
implicit in the above argument yields a decomposition of the curve
in the accompa.nying figure into two circuits, each with one corner

at P; but this curve can also be decomposed into four circuits as
indicated by the arrows.
To return to the proof, it remains to show that if ~1, ..., CPn is a

decomposition of the normal curve f : A ~ P into circuits, and ri
is the rotation number of ~i, then Y r, is the rotation number of f.

Suppose that for each i ~i is defined on the intervals Iô, Ii, ..., Iip(i),
where for each j

thus ive arc assuming that

that for each i

that each ~i is a simple closed curve, and that h and Ihk have at
most one common point unless i = h and j = k. Note that it may
happen that 7j is to the right of Iik even though j  k, as for exam-

ple in two of the four circuits indicated in the figure.
Let 03B1ij be the angle turned by f ’ on the interval Iij, and let

03B2ij j 0, 1, 2, ... p(i), represent the angles at the corners of
~i ifi  p(i)
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and

unless ao’ and bip(i) are the left and right end points of A, in which
case leave 03B2ip(i) undefined. One then has

and hence

Since f is smooth, the rotation number of f is 03A3 03A3 ex;, and it

remains to see that the second sum vanishes. Here the crucial fact

is that the corners of members of the decomposition occur in pairs:
corners arise from crossing points and therefore must have mates.
Let then c1, c2, ..., en be the images of the points b’ under f (ex-
cluding the right end-point bij of A if the left end point of A is ai0),
and let the pair (i, j) belong to a, if and only if f(bij) = c,; it

follows that

And now finally for each k

if (i, j) E a, there is exactly one member (h, m) of a, distinct from
(i, j) and

and furthermore

(unless i + 1 = p (i ) respectively m + 1 = p (h), in which case
i + 1 respectively m + 1 must be replaced with 0). Since ck is of
multiplicity two,

since

and

it follows that 03B2ij = - fJ’:n.
3. The Subdivision o f a Normal Curve. The proposed relation-

ship now follows.
THEOREM. A normal curve f may be decomposed into a finite,
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number of circuits ; i f ~1, ..., CPn is such a decomposition, and 03C9i
is the orientation number o f CPi-’ then the rotation number o f f is
203C0 03A3 coi, and the index with respect to f of a point P not f is

03A3 ai coi, where ai is 1 or 0 according as P is interior or exterior

to ~i.
PROOF. In virtue of the lemma and the proposition of Hopf, it

remains only to consider the index of a point P not on f.
Using the notation of § 2, let si, i = 0, 1, ... m be the points of

sf, and suppose that

and let tPi = f |Bi, so that each interval [sj, sj+1] is a subset of
exactly one of the sets Bi. Now the index of any point c of Y which
is not on f is the angle turned by the curve oc divided by 2x, where

so if

then the index of c with respect to f is the sum of the angles turned
by the curves 03B2j, again divided by 203C0. On the other hand, the
index of c with respect to §§ is the angle turned by yi divided by
203C0, where

The angle turned by Yi is the sum of the angles turned by those
for which [sj, Si+1J C Bi . Therefore the index of c with respect to
f is the sum of the indices of c with respect to the curvcs ~i; each
of these, however, is o)i or 0 according as c is interior or exterior
to cp;. Thus the latter part of the theorem is proved.

Thc University of 8Iichigan.
(Oblatum 6-3-56).
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