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On the Rotation Number of a Normal Curve
by
John S. Griffin, Jr.

In the mid-thirties Hopf [1] gave a proof that the rotation
number of a simple closed curve is either 2z or — 2z; Whitney [2]
then showed how to calculate the rotation number of any normal
curve from properties of its crossing points.

From these theorems and the consideration of a few simple
examples, it would seem that the differential-geometric notion of
rotation number should be related to the topological notion of
index, at any rate for normal curves. The object of the present
note is to exhibit such a relation.

The author takes pleasure in recording his indebtedness to the
remarks of Professors Samelson and H. Hopf.

1. The Rotation Number of a Curve. Let R be the field of real
numbers. Let Z be the Euclidean plane with a chosen rectangular
coordinate system, that is, suppose that #Z = R X R.In particular,
then, £ is a two-dimensional vector space with basis vectors
e; = (1, 0) and e, = (0,1) and with norm defined by || (z, y) || =
= Va? + y2.

Let S be the unit circle, that is the family of all vectors which
have norm 1, and define p: R — S by

p(t) = (cos t, sint)

for all points ¢ of R. Now R is a covering space for S under the
projection p, and hence there is the following well-known lemma:
If A is any simply connected arcwise connected topological space,
and f: A — S is continuous, then for any @ in 4 and any ¢ in R
such that p(t) = f(a) there is a unique continuous function
* : A — R such that pf* = f and f*(a) = t; such a function f*
is called a covering function for f. This is essentially the proposition
of Hopf (1b of [1]) and thus may be taken as a basis for the meas-
ure of angles. Indeed, if 4 = [a, b] is any closed interval and
u: A - is any continuous function which never vanishes,
then the angle turned by « is defined to be v*(b) — v*(a), where
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v* is any covering function for the function v : 4 — S defined by
u(?
o) — 0
[lu() ]
for all real numbers ¢ in 4. Again, if ¢ and d are any two linearly

independent vectors then < (c, d) the angle from ¢ to d is defined to
be the angle turned by u, where

u(t) =c+ t(d — ¢c)

for 0 <t < 1.

Let f be a continuous function on a closed interval [a, b} to Z.
Then f is a closed curve if f(a) = f(b), and a simple closed curve if
furthermore f(s) s~ f(t) for s different from a, b, and ¢ If f is a
closed curve and c is a point of 2 which is not on £, then the index

0
of ¢ with respect to f is 2 where 0 is the angle turned by u, the
7

function u being defined to satisfy

u(t) = f(t) — ¢
for all points ¢ of the interval [a, b]. If f is a simple closed curve
then by the Jordan theorem the index of cach exterior point is 0,
and the indices of all interior points are equal, and have either the
value 4 1 or else the value — 1. The orientation number w, of a
simple closed curve f may thus be defined to be the index of any
interior point of f. 7

A smooth curve is a continuous functlon f on a closed interval 4
to & which has a continuous non- vamshlno derivative throughout
A; this derivative f' is the tangent curce of f. A smooth closed curve is
a closed curve which is smooth and whose tangent curve is also
closed; the rotation number of a smooth closed curve f is the angle
turned by its tangent curve f'.

Iff: [a, b] — 2 is a closed curve, the multiplicity of a point ¢ of
2 is the number (possibly infinite) of points s such thatae < s < b
and f(s) = ¢. A crossing point of f is a point ¢ of multiplicity 2
such that if f(s) = c then f has a derivative at s, and furthermore
if f(s) = ¢ and f(t) = ¢ but s < t then f'(s) and f'(¢) are linearly
independent unless s = a and ¢ = b, in which case f'(s) = f'(¢). A
smooth curve is normal if there are but a finite number of points
whose multiplicity is greater than 1, and each of these is a crossing
point. As shown by Whitney [2], any smooth closed curve f may be
deformed into a normal curve by a homotopy which modifies both
f and f' only a very little, and which in particular leaves the
rotation number of f unchanged.
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A class of curves which arise in the study of normal curves are
the broken curves: Let f: [a,b] — £ be a closed curve; f is
broken if there are points ¢;, a =¢y, <¢; < ... <¢, =0b, such
that for ¢+ =1,2,...,nf]|,,_ .y is a smooth curve, say with
tangent curve 7;; furthermore for ¢ = 1, 2, . . ., n — 1, the vectors
7,(¢;) and 7,44(c;) are linearly independent; and finally either the
vectors 7,(a) and 7,(b) are equal, or else they are linearly independ-
ent. The corner points of f are the points ¢, .. ., ¢,_; together
with a if 7,(a) # 7,(b).

The concept of rotation number may be extended to the class of
broken curves by making proper allowance for corner points: if «,
is the angle turned by 7; then the rotation number of f is

S o +z % [ru(eo)s Tana(e)] + B

i=1
where f = < [7,(b), 7,(a)] if a is a corner point, and g =0
otherwise.

In the paper mentioned above Hopf showed that the rotation
number of a simple closed curve is always 2z of else — 2z, and he
gave a rule to determine the sign. Since it is implicit in his proof
that this sign is the sign of the orientation number, his theorem
may be rephrased as follows:

If f is a simple closed curve, either smooth or broken, then the
rotation number of f is 2n w,.

2. Circuits in a Closed Curve. Let [a, b] be a closed interval, and
let f: [a, b] — £ be a closed curve. It may happen that there is a
proper sub-interval [c, d] of [a, b] such that f|, ; is also a
closed curve; if so, then f(c) = f(d), and therefore the function g
defined by

g(t) = f(t + a) for0=t=c—a
and
g(t) = f(t + d) forc—a=st=(c—a)+ (b —d)
is continuous, and hence is also a closed curve. Now f |, 4 or g
may be easier to deal with than f, as for example if f |, ,; were a
simple closed curve; hence the study of f might be facilitated by
this sort of decomposition.

These considerations may easily be formalized. First let us

agree that if 4 is a union of a finite number of closed intervals, say

A=0U7%¢, [a;b]

and f is a continuous function on 4 to & such that f(b,) = f(a,,,)
for t=1,2,...n — 1 then
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£700, 3 (b — a)] > 2

is defined by
17 (@) = f(t + a;)

i—1 )

for0 <t <b, —a,ifi=1,and for > b, —a, <t< >b;,—a,
=1 i=1

J

for 1 < i < n. Thus in the above example g = (f |4, cjira,01) -

A circuit in a closed curve f: A — 2 is a restiction of f to a
subset B of A which is a union of a finite number of closed intervals,
say

B = Ui, [a: ),

and such that f(b;) = f(a,;,) for cach ¢ and f | is a simple closed
curve. A decomposition of f is a family of circuits ¢, b, ..., ¢,,
such that if ¢; = f |, for each i then 4 = U}, B;and B;N B, is
discrete unless 7 = j.

LemMa. If f: A — 2 is a normal curve then there is a decom-
position of [ into circuits; if &y, ..., §, ts any such decomposition
then the rotation number of f is the sum of the rotation numbers
of the curves ¢ .

Proor. Let C be the family of all curves satisfying all the
hypotheses of the lemma except possibly smoothness: members of
C may be broken but they must be closed and have only a finite
number of points of multiplicity greater than 1, all these being
crossing points. For g : 4 — 2 a member of C, let S, be the family
of all points s of 4 such that g(s) is the image of at least one point
other than s. Clearly S, is always finite; the end-points of 4 are
members of S;, and S, has no other members if and only if g is
simple.

An induction on the number of members of S, now yields the
desired decomposition. Trivially for any member g of C for which
S, has exactly two points there is a decomposition. Suppose
therefore that there is a decomposition for any g € C such that S,
has at most n points, and let f : [a, b] — P be a member of C such
that S, has exactly n 4 1 points, say s¢, 8y, . . ., 5,. Let # be the
family of all intervals [s,, s;] such that f(s;) = f(s;), and partially
order _# by inclusion. Since £ is finite, there is a minimal member,
say [s,, s,]. Clearly f|, ,,is a circuit, and if

g = (/ lia, s, 1005, 5)
then ¢ € C and S, has at most n points; it follows that ¢, and hence
f, has a decomposition into circuits.
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Observe that neither the decomposition nor even the number of
circuits is unique for a given curve. For example, the algorithm
implicit in the above argument yields a decomposition of the curve
in the accompanying figure into two circuits, each with one corner

P

at P; but this curve can also be decomposed into four circuits as
indicated by the arrows.

To return to the proof, it remains to show that if ¢,, ..., ¢,is a
decomposition of the normal curve f : 4 — P into circuits, and 7,

is the rotation number of ¢, , then > r, is the rotation number of f.
i

Suppose that for each i ¢, is defined on the intervals I§, I3, . . ., I,
where for each j§

I = [a;, bj];
thus we arec assuming that

A= Ui,:‘ I;>
that for each j

B i, but () = Ha),
that each ¢, is a simple closed curve, and that I} and I} have at
most one common point unless ¢ = k and j = k. Note that it may
happen that I is to the right of I, even though j < £, as for exam-
ple in two of the four circuits indicated in the figure.
Let o} be the angle turned by f on the interval I}, and let
i, =0, 1, 2,...p(¢), represent the angles at the corners of
¢; :ifj < p(i)
By = x (1'%}, f'(a's))
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and

Igf;(i) = X (f(b;(i))’ f'(a(i)))
unless a and b}, are the left and right end points of 4, in which
case leave B, undefined. One then has

r= 2+ 2 B

and hence

Sro- X34+ 330

Since f is smooth, the rotation number of fis > > «f, and it
i 3
remains to see that the second sum vanishes. Here the crucial fact

is that the corners of members of the decomposition occur in pairs:
corners arise from crossing points and therefore must have mates.
Let then ¢, ¢,, . . ., ¢, be the images of the points b} under f (ex-
cluding the right end-point b of A if the left end point of 4 is a;),
and let the pair (¢, §) belong to o, if and only if f(b}) = ¢;; it
follows that
228=2 2 B
i 7 k=1 (i,5)€eoy
And now finally for each k
2 Bi=0:
(¢,d)eoy
if (3, 7) € oy there is exactly one member (k, m) of ¢, distinct from
(¢ 7) and
105) = f(B) = e,
and furthermore
H(@541) = f(ap41) =
(unless 7 + 1 = p(¢) respectively m + 1 = p(k), in which case
j -+ 1 respectively m -+ 1 must be replaced with 0). Since ¢; is of
multiplicity two,
bj = ., and b, = aj,;
since

B =« (1)), f(@11))

B = % (f'(bn) f(ani))
it follows that gi = — .
8. The Subdivision of a Normal Curve. The proposed relation-
ship now follows.

and

THEOREM. A normal curve f may be decomposed into a finite
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number of circuits; if ¢y, ..., ¢, s such a decomposition, and o,

is the orientation number of ¢, , then the rotation mnumber of f is

2% > w,, and the index with respect to f of a point P not | is
i

> a; w;, where a; is 1 or 0 according as P is interior or exterior
to ¢, .

Proor. In virtue of the lemma and the proposition of Hopf, it
remains only to consider the index of a point P not on f.

Using the notation of § 2, let s;,, ¢ = 0, 1, . . . m be the points of
s;, and suppose that

S < 81 < vv e < 83

and let §, = f |, so that each interval [s;, s,,,] is a subset of
exactly one of the sets B,. Now the index of any point ¢ of Z which
is not on f is the angle turned by the curve « divided by 2z, where

«(t) = f(t) — ¢

so if
ﬁ7 = I[sl’sﬁl]

then the index of ¢ with respect to f is the sum of the angles turned
by the curves f;, again divided by 2x. On the other hand, the
index of ¢ with respect to ¢, is the angle turned by y, divided by
27, where

7i(t) = ¢, () — c.
The angle turned by v, is the sum of the angles turned by those 3,
for which [s;, s;,,] C B;. Therefore the index of ¢ with respect to
f is the sum of the indices of ¢ with respect to the curves ¢, ; each
of these, however, is w, or 0 according as ¢ is interior or exterior
to ¢, . Thus the latter part of the theorem is proved.

The University of Michigan.
(Oblatum 6-3-56).
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