

COMPOSITIO MATHEMATICA

JOHN S. GRIFFIN, JR

On the rotation number of a normal curve

Compositio Mathematica, tome 13 (1956-1958), p. 270-276

http://www.numdam.org/item?id=CM_1956-1958__13__270_0

© Foundation Compositio Mathematica, 1956-1958, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (<http://www.compositio.nl/>) implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/*

On the Rotation Number of a Normal Curve

by

John S. Griffin, Jr.

In the mid-thirties Hopf [1] gave a proof that the rotation number of a simple closed curve is either 2π or -2π ; Whitney [2] then showed how to calculate the rotation number of any normal curve from properties of its crossing points.

From these theorems and the consideration of a few simple examples, it would seem that the differential-geometric notion of rotation number should be related to the topological notion of index, at any rate for normal curves. The object of the present note is to exhibit such a relation.

The author takes pleasure in recording his indebtedness to the remarks of Professors Samelson and H. Hopf.

1. *The Rotation Number of a Curve.* Let R be the field of real numbers. Let \mathcal{P} be the Euclidean plane with a chosen rectangular coordinate system, that is, suppose that $\mathcal{P} = R \times R$. In particular, then, \mathcal{P} is a two-dimensional vector space with basis vectors $e_1 = (1, 0)$ and $e_2 = (0, 1)$ and with norm defined by $\| (x, y) \| = \sqrt{x^2 + y^2}$.

Let S be the unit circle, that is the family of all vectors which have norm 1, and define $p : R \rightarrow S$ by

$$p(t) = (\cos t, \sin t)$$

for all points t of R . Now R is a covering space for S under the projection p , and hence there is the following well-known lemma: If A is any simply connected arcwise connected topological space, and $f : A \rightarrow S$ is continuous, then for any a in A and any t in R such that $p(t) = f(a)$ there is a unique continuous function $f^* : A \rightarrow R$ such that $p f^* = f$ and $f^*(a) = t$; such a function f^* is called a covering function for f . This is essentially the proposition of Hopf (1b of [1]) and thus may be taken as a basis for the measure of angles. Indeed, if $A = [a, b]$ is any closed interval and $u : A \rightarrow \mathcal{P}$ is any continuous function which never vanishes, then the angle turned by u is defined to be $v^*(b) - v^*(a)$, where

v^* is any covering function for the function $v : A \rightarrow S$ defined by

$$v(t) = \frac{u(t)}{\|u(t)\|}$$

for all real numbers t in A . Again, if c and d are any two linearly independent vectors then $\preccurlyeq(c, d)$ the *angle from c to d* is defined to be the angle turned by u , where

$$u(t) = c + t(d - c)$$

for $0 \leq t \leq 1$.

Let f be a continuous function on a closed interval $[a, b]$ to \mathcal{P} . Then f is a *closed curve* if $f(a) = f(b)$, and a *simple closed curve* if furthermore $f(s) \neq f(t)$ for s different from a, b , and t . If f is a closed curve and c is a point of \mathcal{P} which is not on f , then the *index* of c with respect to f is $\frac{\theta}{2\pi}$, where θ is the angle turned by u , the function u being defined to satisfy

$$u(t) = f(t) - c$$

for all points t of the interval $[a, b]$. If f is a simple closed curve then by the Jordan theorem the index of each exterior point is 0, and the indices of all interior points are equal, and have either the value +1 or else the value -1. The *orientation number* ω , of a simple closed curve f may thus be defined to be the index of any interior point of f .

A *smooth curve* is a continuous function f on a closed interval A to \mathcal{P} which has a continuous non-vanishing derivative throughout A ; this derivative f' is the *tangent curve* of f . A *smooth closed curve* is a closed curve which is smooth and whose tangent curve is also closed; the *rotation number* of a smooth closed curve f is the angle turned by its tangent curve f' .

If $f : [a, b] \rightarrow \mathcal{P}$ is a closed curve, the *multiplicity* of a point c of \mathcal{P} is the number (possibly infinite) of points s such that $a \leq s < b$ and $f(s) = c$. A *crossing point* of f is a point c of multiplicity 2 such that if $f(s) = c$ then f has a derivative at s , and furthermore if $f(s) = c$ and $f(t) = c$ but $s < t$ then $f'(s)$ and $f'(t)$ are linearly independent unless $s = a$ and $t = b$, in which case $f'(s) = f'(t)$. A smooth curve is *normal* if there are but a finite number of points whose multiplicity is greater than 1, and each of these is a crossing point. As shown by Whitney [2], any smooth closed curve f may be deformed into a normal curve by a homotopy which modifies both f and f' only a very little, and which in particular leaves the rotation number of f unchanged.

A class of curves which arise in the study of normal curves are the broken curves: Let $f : [a, b] \rightarrow \mathcal{P}$ be a closed curve; f is *broken* if there are points $c_i, a = c_0 < c_1 < \dots < c_n = b$, such that for $i = 1, 2, \dots, n$ $f|_{[c_{i-1}, c_i]}$ is a smooth curve, say with tangent curve τ_i ; furthermore for $i = 1, 2, \dots, n-1$, the vectors $\tau_i(c_i)$ and $\tau_{i+1}(c_i)$ are linearly independent; and finally either the vectors $\tau_1(a)$ and $\tau_n(b)$ are equal, or else they are linearly independent. The *corner points* of f are the points c_1, \dots, c_{n-1} together with a if $\tau_1(a) \neq \tau_n(b)$.

The concept of rotation number may be extended to the class of broken curves by making proper allowance for corner points: if α_i is the angle turned by τ_i then the rotation number of f is

$$\sum_{i=1}^n \alpha_i + \sum_{i=1}^{n-1} \not\propto [\tau_i(c_i), \tau_{i+1}(c_i)] + \beta$$

where $\beta = \not\propto [\tau_n(b), \tau_1(a)]$ if a is a corner point, and $\beta = 0$ otherwise.

In the paper mentioned above Hopf showed that the rotation number of a simple closed curve is always 2π or else -2π , and he gave a rule to determine the sign. Since it is implicit in his proof that this sign is the sign of the orientation number, his theorem may be rephrased as follows:

If f is a simple closed curve, either smooth or broken, then the rotation number of f is $2\pi \omega_f$.

2. *Circuits in a Closed Curve.* Let $[a, b]$ be a closed interval, and let $f : [a, b] \rightarrow \mathcal{P}$ be a closed curve. It may happen that there is a proper sub-interval $[c, d]$ of $[a, b]$ such that $f|_{[c, d]}$ is also a closed curve; if so, then $f(c) = f(d)$, and therefore the function g defined by

$$g(t) = f(t + a) \quad \text{for } 0 \leqq t \leqq c - a$$

and

$$g(t) = f(t + d) \quad \text{for } c - a \leqq t \leqq (c - a) + (b - d)$$

is continuous, and hence is also a closed curve. Now $f|_{[c, d]}$ or g may be easier to deal with than f , as for example if $f|_{[c, d]}$ were a simple closed curve; hence the study of f might be facilitated by this sort of decomposition.

These considerations may easily be formalized. First let us agree that if A is a union of a finite number of closed intervals, say

$$A = \cup_{i=1}^n [a_i, b_i],$$

and f is a continuous function on A to \mathcal{P} such that $f(b_i) = f(a_{i+1})$ for $i = 1, 2, \dots, n-1$ then

$$f \sim : [0, \sum_{i=1}^n (b_i - a_i)] \rightarrow \mathcal{P}$$

is defined by

$$f \sim (t) = f(t + a_i)$$

for $0 \leq t \leq b_1 - a_1$ if $i = 1$, and for $\sum_{j=1}^{i-1} b_j - a_i \leq t \leq \sum_{j=1}^i b_j - a_i$ for $1 < i < n$. Thus in the above example $g = (f|_{[a, c] \cup [d, b]}) \sim$.

A *circuit* in a closed curve $f : A \rightarrow \mathcal{P}$ is a restriction of f to a subset B of A which is a union of a finite number of closed intervals, say

$$B = \bigcup_{i=1}^n [a_i, b_i],$$

and such that $f(b_i) = f(a_{i+1})$ for each i and $f|_B$ is a simple closed curve. A *decomposition* of f is a family of circuits $\phi_1, \phi_2, \dots, \phi_n$, such that if $\phi_i = f|_{B_i}$ for each i then $A = \bigcup_{i=1}^n B_i$ and $B_i \cap B_j$ is discrete unless $i = j$.

LEMMA. *If $f : A \rightarrow \mathcal{P}$ is a normal curve then there is a decomposition of f into circuits; if ϕ_1, \dots, ϕ_n is any such decomposition then the rotation number of f is the sum of the rotation numbers of the curves ϕ_i .*

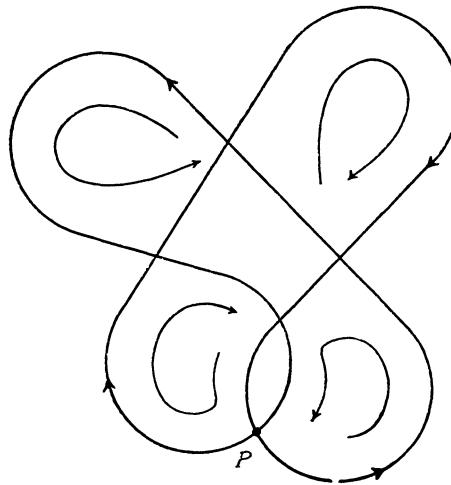
PROOF. Let C be the family of all curves satisfying all the hypotheses of the lemma except possibly smoothness: members of C may be broken but they must be closed and have only a finite number of points of multiplicity greater than 1, all these being crossing points. For $g : A \rightarrow \mathcal{P}$ a member of C , let S_g be the family of all points s of A such that $g(s)$ is the image of at least one point other than s . Clearly S_g is always finite; the end-points of A are members of S_g , and S_g has no other members if and only if g is simple.

An induction on the number of members of S_g now yields the desired decomposition. Trivially for any member g of C for which S_g has exactly two points there is a decomposition. Suppose therefore that there is a decomposition for any $g \in C$ such that S_g has at most n points, and let $f : [a, b] \rightarrow \mathcal{P}$ be a member of C such that S_f has exactly $n + 1$ points, say s_0, s_1, \dots, s_n . Let \mathcal{J} be the family of all intervals $[s_i, s_j]$ such that $f(s_i) = f(s_j)$, and partially order \mathcal{J} by inclusion. Since \mathcal{J} is finite, there is a minimal member, say $[s_p, s_q]$. Clearly $f|_{[s_p, s_q]}$ is a circuit, and if

$$g = (f|_{[a, s_p] \cup [s_q, b]}) \sim$$

then $g \in C$ and S_g has at most n points; it follows that g , and hence f , has a decomposition into circuits.

Observe that neither the decomposition nor even the number of circuits is unique for a given curve. For example, the algorithm implicit in the above argument yields a decomposition of the curve in the accompanying figure into two circuits, each with one corner



at P ; but this curve can also be decomposed into four circuits as indicated by the arrows.

To return to the proof, it remains to show that if ϕ_1, \dots, ϕ_n is a decomposition of the normal curve $f : A \rightarrow P$ into circuits, and r_i is the rotation number of ϕ_i , then $\sum_i r_i$ is the rotation number of f .

Suppose that for each i ϕ_i is defined on the intervals $I_0^i, I_1^i, \dots, I_{p(i)}^i$, where for each j

$$I_j^i = [a_j^i, b_j^i];$$

thus we are assuming that

$$A = \cup_{i,j} I_j^i,$$

that for each j

$$b_j^i \neq a_{j+1}^i \quad \text{but} \quad f(b_j^i) = f(a_{j+1}^i),$$

that each ϕ_i is a simple closed curve, and that I_j^i and I_k^h have at most one common point unless $i = h$ and $j = k$. Note that it may happen that I_j^i is to the right of I_k^h even though $j < k$, as for example in two of the four circuits indicated in the figure.

Let α_j^i be the angle turned by f' on the interval I_j^i , and let β_j^i , $j = 0, 1, 2, \dots, p(i)$, represent the angles at the corners of ϕ_i : if $j < p(i)$

$$\beta_j^i = \alpha_j^i - \alpha_{j+1}^i$$

and

$$\beta_{p(i)}^i = \asymp (f'(b_{p(i)}^i), f'(a_0^i))$$

unless a_0^i and $b_{p(i)}^i$ are the left and right end points of A , in which case leave $\beta_{p(i)}^i$ undefined. One then has

$$r_i = \sum_j \alpha_j^i + \sum_j \beta_j^i,$$

and hence

$$\sum_i r_i = \sum_i \sum_j \alpha_j^i + \sum_i \sum_j \beta_j^i.$$

Since f is smooth, the rotation number of f is $\sum_i \sum_j \alpha_j^i$, and it remains to see that the second sum vanishes. Here the crucial fact is that the corners of members of the decomposition occur in pairs: corners arise from crossing points and therefore must have mates. Let then c_1, c_2, \dots, c_n be the images of the points b_j^i under f (excluding the right end-point b_j^i of A if the left end point of A is a_0^i), and let the pair (i, j) belong to σ_k if and only if $f(b_j^i) = c_k$; it follows that

$$\sum_i \sum_j \beta_j^i = \sum_{k=1}^n \sum_{(i, j) \in \sigma_k} \beta_j^i.$$

And now finally for each k

$$\sum_{(i, j) \in \sigma_k} \beta_j^i = 0:$$

if $(i, j) \in \sigma_k$ there is exactly one member (h, m) of σ_k distinct from (i, j) and

$$f(b_j^i) = f(b_m^h) = c_k,$$

and furthermore

$$f(a_{j+1}^i) = f(a_{m+1}^h) = c_k$$

(unless $j+1 = p(i)$ respectively $m+1 = p(h)$, in which case $j+1$ respectively $m+1$ must be replaced with 0). Since c_k is of multiplicity two,

$$b_j^i = a_{m+1}^h \quad \text{and} \quad b_m^h = a_{j+1}^i;$$

since

$$\beta_j^i = \asymp (f'(b_j^i), f'(a_{j+1}^i))$$

and

$$\beta_m^h = \asymp (f'(b_m^h), f'(a_{m+1}^h))$$

it follows that $\beta_j^i = -\beta_m^h$.

3. The Subdivision of a Normal Curve. The proposed relationship now follows.

THEOREM. *A normal curve f may be decomposed into a finite*

number of circuits; if ϕ_1, \dots, ϕ_n is such a decomposition, and ω_i is the orientation number of ϕ_i , then the rotation number of f is $2\pi \sum_i \omega_i$, and the index with respect to f of a point P not on f is $\sum_i a_i \omega_i$, where a_i is 1 or 0 according as P is interior or exterior to ϕ_i .

PROOF. In virtue of the lemma and the proposition of Hopf, it remains only to consider the index of a point P not on f .

Using the notation of § 2, let s_i , $i = 0, 1, \dots, m$ be the points of s_f , and suppose that

$$s_0 < s_1 < \dots < s_m;$$

and let $\phi_i = f|_{B_i}$, so that each interval $[s_j, s_{j+1}]$ is a subset of exactly one of the sets B_i . Now the index of any point c of \mathcal{P} which is not on f is the angle turned by the curve α divided by 2π , where

$$\alpha(t) = f(t) - c;$$

so if

$$\beta_j = \alpha|_{[s_j, s_{j+1}]}$$

then the index of c with respect to f is the sum of the angles turned by the curves β_j , again divided by 2π . On the other hand, the index of c with respect to ϕ_i is the angle turned by γ_i divided by 2π , where

$$\gamma_i(t) = \phi_i(t) - c.$$

The angle turned by γ_i is the sum of the angles turned by those β_j for which $[s_j, s_{j+1}] \subset B_i$. Therefore the index of c with respect to f is the sum of the indices of c with respect to the curves ϕ_i ; each of these, however, is ω_i or 0 according as c is interior or exterior to ϕ_i . Thus the latter part of the theorem is proved.

The University of Michigan.

(Oblatum 6-3-56).

REFERENCES.

H. HOPF,

[1] Über die Drehung der Tangenten und Sehnen ebener Kurven. Compositio Math. 2 (1935), pp. 50—62.

H. WHITNEY,

[2] On regular closed curves in the plane. Compositio Math. 4 (1937), pp. 276—284.