
COMPOSITIO MATHEMATICA

SAMUEL EILENBERG
Généralisation du théorème de M. H. Hopf sur les
classes des transformations en surfaces sphériques
Compositio Mathematica, tome 6 (1939), p. 428-433
<http://www.numdam.org/item?id=CM_1939__6__428_0>

© Foundation Compositio Mathematica, 1939, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1939__6__428_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Généralisation du théorème de M. H. Hopf sur les
classes des transformations en surfaces sphériques

par 

Samuel Eilenberg
Warszawa

1. Le i-ème groupe d’homotopie 7Ci(sm) de la surface sphérique
m-dimensionnelle S m (pour m&#x3E;0) sera désigné par (mi). C’est

un groupe abelien au plus dénombrable 1). (mi)* désignera le

groupe topologique compact orthogonal à (mi) 2). En particulier,
(mm) sera interprêté comme le groupe des nombres entiers et,

par conséquent, (mm)* comme celui des nombres réels réduits
mod 1.

2. Soit pn un polyèdre n-dimensionnel et f une transfor-
mation continue telle que f(pn) C Sm. A tout cycle m-dimen-
sionnel Zm de pn à coefficients puisés de (mm)* correspond alors
un élément g(f; Zm) E (mm)* qui est le degré de la transformation
f sur le cycle Zm. Cette correspondance est une homomorphie
(continue) x( f ) du groupe Bm(Pn) coef (mm)* 3) en groupe (mm)*,
c.-à-d. un caractère du groupe Bm(Pn) coef (mm)*.

Si deux transformations fo(-Pn) C S- et fl(pn) C S m appear-
tiennent à la même classe, c. à d. sont homotopes, les caractères
qui leur correspondent sont - comme on sait - égaux : :x (f0) =x (f1 ).
Ainsi: à toute classe 0 de transformations continues f(pn) C Sm
(m&#x3E;0) correspond un caractère X(O) du groupe Bm(pn) coef (mm)*.

3. On doit à M. Hopf 4) le théorème suivant:
(H) Si n = m &#x3E; 0, les classes 0 de transformations continues

1) W. HUREWICZ [Proc. Akad. Amsterdam 38 (1935)], 113-114.

2) L. PONTRJAGIN [Ann. of Math. (2) 35 (1934), 361-373].
3) Nous désignons par Bm(pn) coef G le groupe d’homologie qu’on obtient en

considérant les cycles m-dimensionnels de pn à coefficients appartenant au groupe
abelien G . Si le groupe G est topologique compact, ce groupe d’homologie l’est

aussi; cf. L. PONTRJAGIN [Ann. of Math. (2) 35 (1934)], 906.
4) H. HoPF [Comm. Math. Helv. 5 (1933),38201354]; H. FREUDENTHAL [Comp.

Math. 4 (1937), 2352013238]; H. iVHITNEY [Duke Math. Journ. 3 (1937), 46-55].
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f(pn) C Sm et les caractères X du groupe Bm(pn) coef (mm)* sont
en correspondance biunivoque, déterminée par X(f/J).

Je me propose d’établir ici la généralisation suivante de ce
théorème: 

THÉORÈME 1. Soit Pn un polyèdre tel que

pour i =-m +1, m-f-2,....
Alors les classes 0 de transformations continues f( pn) C Sm et

les caractères X du groupe Bm(Pn) coef (mm)* sont en correspon-
dance biunivoque déterminée par X(l/J).

Ce théorème résulte de deux théorèmes suivants qui seront
démontrés plus loin:
THÉORÈME II. Soit Pn un polyèdre tel que

pour i == m + l, m + 2, ....
Pour que deux transf ormations continues f0( pn) C S m et fi ( Pn ) CSm

soient alors homotopes, il faut et il suffit que x(fo) .--- X(!l).
THÉORÈME III. Soit Pn un polyèdre tel que

pour i=m+l, m + 2, ....
Alors, pour tout caractère X du groupe Bm(pn) coef (rnm)*, il

existe une transformation continue f( pn) C S m pour laquelle
x(f) = x.
En particulier, dans les hypothèses du th. II, les transfor-

mations inessentielles f(pn) C S m sont caracterisées par la con-
dition x(f) = 0 (ce que nous avons démontré ailleurs, plus
généralement pour les espaces pn métriques compacts quel-
conques de dimension finie 6)) .

4. Un polyèdre Pn est dit acyclique en dimensions &#x3E; k
(où k&#x3E;0) lorsque

pour tout i &#x3E; k.
Pn est dit acyclique, lorsqu’il est connexe et acyclique en

dimensions&#x3E; 1.

6) c.-à.-d. que le groupe en question se réduit à l’élément neutre.
6) Fund. Math. 31 (1938), 193, th. VI.
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On sait 7) que, pour un polyèdre acyclique en dimensions
&#x3E; m + 1, les conditions (3.1)i et (3.2)i sont satisfaites pour tout
i &#x3E; m + 1. Le th. 1 implique donc le
THÉORÈME la. Soit Pn un polyèdre acyclique en dimensions

&#x3E; m+1. Alors les classes 0 de transformations continues f(pn) C Sm
et les caractères X du groupe Bm(pn) coef (rnm)* sont en correspon-
dance biunivoque déterminée par X(f/J).

THÉORÈME IV. Pour qu’un polyèdre pn soit acyclique en dimen-
sions &#x3E; k, il faut et il suffit que toute transformation continue
f( pn) C S m soit inessentielle pour tout m &#x3E; k.

THÉORÈME IVa 8). Pour qu’un polyèdre Pn soit acyclique, il

faut et il suffit que toute transformation continue f( pn) C Sm soit
inessentielle pour m = 0, 1, ....
Pour montrer que la condition du th. IV est nécessaire, on n’a

qu’à appliquer le th. la. Pour prouver qu’elle est suffisante,
désignons par m le plus grand entier tel que

Il existe 2) alors un caractère y :A 0 du groupe (4.2). Le polyèdre
pu étant acyclique en dimensions &#x3E; m + l, on obtient en vertu
du th. la une transformation continue f(Pn) C Sn’ pour laquelle
x(f) = Z :A 0, donc une transformation f essentielle.

I’our déduire le th. IVa du th. IV, on n’a qu’à remarquer que
la connexité de pu équivaut à ce que toute transformation

continue f( Pll) C S° est inessentielle.

5. Soit X un sous-ensemble fermé d’un polyèdre P’?. Une

transformation continue f(X) C S- sera dite algébriquement
prolongeable sur pn lorsque, pour tout cycle convergent (m+1)-
dimensionnel Z"i+1 mod JY de pn 9) à coefficients de (mm)*,
on a g(f; ôZ?’i+1) = 0 10). Evidemment c’est une condition né-
cessaire pour l’existence d’un prolongement f(pn) C Sm.
THÉORÈME V 11). Soit X un sous-ensemble fermé d’un polyèdre

pu tel que 

i) N. E. STLI:NROD [Amer. Journ. of Math. 58 (1936)], 675-676.

8) Une partie de ce théorème (la nécessité) a été établie par M. K. Borsuk
dans les Fund. Math 28 (1937), 203. L’autre partie (la suffisance) constitue une

réponse affirmative à un des problèmes de M. Borsuk posés ibid., 210.

9) Ce sont toujours les cycles à support compact; pour plus de détails voir
S. EiLENBERG [Fund. Math. 31 (1938)], 185-186.

10) c. à d. f(Z?m+1) ex&#x3E; 0 dans Sm, ZZm+i désignant la frontière combinatoire
de Zm+1. 

11) Pour le cas n = m, voir le renvoi 1).
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pour i = m + 1, m. -E- 2, .... Pour qu’une transformation continue
f (.X ) C S’m admette un prolongement f(pn) C Sm, il faut et il suffit
qu’elle soit algébriquement prolongeable sur pn.

Démonstration. Admettons que pn est un sous-polyèdre sim-
plicial de S2n+1. Soit Y C S2n+1 - pn un polyèdre tel que

(5.2) Chaque cycle convergent mod X de S2n+l _ y est
homologue mod X dans S2n+1 - Y à un cycle eonver-
gent mod X de Pn 12).

Ceci implique que

(5.3) Toute transformation continue f(X) C S- qui est

algébriquement prolongeable sur Pn est aussi algé-
briquement prolongeable sur S2n+l - Y.

Les propositions (5.2) et (5.1)i donnent

pour i = m + 1, ni + 2, ....

Or, comme nous l’avons démontré ailleurs 13), (5.4 )i im-

plique que

(5.5) Toute transformation continue f(X) C Sm algébri-
quement prolongeable sur S2n+1 - Y admet un

prolongement f(S2n+l- Y) C S m.

La thèse du th. V résulte de (5.3) et (5.5).

6. Démonstration du th. Il. Désignons par I l’intervalle fermé

[0, 1], par Pn+l le produit cartésien pn xl et par X l’ensemble
p’z X (0) + pn X (1) C pn+1. On déduit de (3.1)i que

pour i =z--m+ 1, 1n +2,....

Envisageons deux transformations continues

pour lesquelles

12) Il suffit dans ce but de faire Y égal à la somme de tous les simplexes fermés
de 5211+1 disjoints à P .

13) Fund. Math. 31 (1938), 189, th. IV.
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En posant

on obtient une transformation continue f(X) C Sm.
Soit Z-+’ un cycle (m + 1) -dimensionnel mod X de

coefficients de (mm)*. On a alors 

où Z. est un cycle de pn X (0) et Zî en est un de P"X(1).
* *

En désignant par Zm et Z§J les cycles correspondants dans pn,0 1
on a en vertu de (6.5) z- - Z dans pn, ce qui implique en
vertu de (6.3) que 

et d’après (6.4) que

d’où selon (6.5)

La transformation f(X) C Sm étant ainsi algébriquement
prolongeable sur Pn+1, il existe en vertu de (6.1)i et du th. V
un prolongement f(pn+1) C S-, ce qui prouve en vertu de (6.4)
que les transformations (6.2) sont homotopes.

7. Démonstration du th. III. Admettons que Pn est donné 
dans une division simpliciale et désignons par Pm la somme
de tous les simplexes au plus m-dimensionnels de Pn. En vertu
de (3.4)i, on a alors

pour i = m + 1, m + 2
Tout caractère X du groupe Bm(pn) coef (mm)* est en même

temps un caractère du groupe Bm(pm) coef (mm)*. En vertu
du th. de M. Hopf 4)@ il existe donc une transformation continue
(pm) C sm telle que x(f) - x. Pour tout cycle Z m de P m à

coefficients de (mm)*, tel que Z- - 0 dans Pn, on a alors

g(f; zm) = 0, c.-à-d. que la transformation f est algébriquement
prolongeable sur Pn. Les conditions (7.1)i étant satisfaites, il

existe en vertu du th. V un prolongement f(pn) C S m, ce qui
achève la démonstration.
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8. Remarquons pour terminer que la démonstration du th. V
repose entièrement sur l’application du théorème cité dans le

renvoi 13), après avoir plongé Pn dans S2n+1. Cependant la dé-
monstration de ce théorème exige à son tour l’emploi de l’ap-
pareil des théorèmes de dualité tout entier. Il serait intéressant
de démontrer le th. V (dont tous les autres théorèmes de cet
article résultent) d’une facon intrinsèque.

(Reçu le 10 septembre 1938.)


