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Uber eine Eigenwertabschitzung bei gewissen
homogenen linearen Differentialgleichungen
zweiter Ordnung

E. Makai
Budapest

Es ist bekannt, daBl der n-te Eigenwert A, der Differential-
gleichung -

y' + de(@y =0  (e(z) =0) (1)
mit den Randbedingungen
y(0) = y(=) =0 (2)
der Bedingung
b= (3)
Omin

unterworfen ist ). Diese Abschitzung ist in einigen Fillen wenig
wertvoll, z.B. dann, wenn p_;,, der kleinste Wert von ¢(2) im
betrachteten Intervalle, gleich 0 wird. In diesem Falle hat die
Abschéitzung (3) keinen Sinn.

Es sei im Folgenden gezeigt, daB3 sich die Abschitzung (3)
erheblich verbessern 148t, falls die Funktion g(z) eine iiberall
negative zweite Ableitung besitzt. Wir beweisen den Satz:

Es sei o(x) eine beliebige nicht negative Funktion, welche fiir
a = @ = b eine stiickweise stetige durchweg negative zweite Ablei-
tung o''(x2) < O besitzt. Dann gilt fiir den n-ten Eigenwert A, der
Differentialgleichung

y'(2) + Ze(@)y(x) =0
mit den Randbedingungen y(a) = y(b) = 0 die Ungleichung

A< [ an 2
" (Ib vV a;)dx) , (4)

a

1) Siehe z.B. Courant-Hilbert: Methoden der math. Physik. Erste Auflage,
S. 334.
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wobei sich die Konstante n durch keine kleinere ersetzen laft.
Es sei zugleich bemerkt, da3 dies fiir eine beliebige Funktion
o(z) nicht mehr gilt. Doch werden wir im Laufe des Beweises
sehen, daB3 unser Ergebnis sich verallgemeinern l4a8t.
Diesem Satz wollen wir noch eine andere Gestalt geben, die
dem Wesen der Dinge ndherkommt: bei den obigen Bedingungen

bleibt die Quadratwurzel des Koeffizienten von y in (1), d.h. V—y?

integriert im Intervalle (a, b), unter der Schranke nm. Also, wenn
J(A) = V— "dr = f vV 2o(z)dz (5)

1st, so besteht die Bezwhung
J(4,) < nn. (6)

Noch vor dem eigentlichen Beweis werden wir zeigen, dal
wenn wir die Ungleichung (6) fiir das Intervall (0, &) bestatigen
konnen, sie fiir beliebige Intervalle giiltig sein wird. In der Tat,
wenn wir eine neue Verdnderliche

*—a

f=mn— (7)

einfithren, die das Intervall (a, b) mittels einer linearen Trans-
formation auf das Intervall (0, =) abbildet, so bleibt das Integral
(8) invariant. Denn die Gleichung (1) transformiert sich in

d*y b—a) 2 b—a
=t (T) 1@(7 §+a)y =0,

o - Pl
0

und es wird

sein. Dieses Integral 148t sich mit der Transformation (7) auf
das Integral (5) zuriickfithren; denn es ist

T*(3) = H/ ()2-2561 H/ S dx,  (8)

also es gilt: J*(4) = J(4).
Die Bedingung o < 0 andert sich ebenfalls nicht, da

d% de\ % d2p
= () % ®)

24

ist.
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Jetzt normieren wir noch die Funktion g¢(z). Diese Bedingung
beschrankt — wie leicht zu sehen ist — die Allgemeinheit gar-
nicht. Wir setzen weiterhin voraus, daf3

Jn\/E(?)dmzn (10)

ausfillt, und beweisen den Satz zunichst fir den Fall n =1,
a =0, b =n. Wir haben daher zu zeigen ((GlL (5), (6), (10)),
daB der erste Eigenwert in diesem Fall kleiner als 1 sein muB.
Daraus folgt aber — indem wir die Differentialgleichung (1) als
Variationsproblem auffassen — daBl bei gewissen Beschrin-
kungen beziiglich der Funktion p(z) das absolute Minimum

JT
von Q(Y) = (J‘" Y’Zdw) / (J' Qdem) kleiner als 1 ausfallt,
0

0
fiir eine an den beiden Enden des Intervalles (0, =) verschwin-

dende, iibrigens aber beliebig gewahlte stetige Funktion Y (z) mit
stiickweise stetiger erster und zweiter Ableitung.

Der Gang des Beweises wird jetzt der folgende sein: wir suchen
eine Funktion Y(z), die die erste Eigenfunktion einigermafen
approximiert und untersuchen, unter welchen Umstédnden der
Quotient Q(Y) kleiner als 1 ausféllt. Da der zur ersten Eigen-
funktion gehorige Quotient Q(y;) = A; noch kleiner ist, so kénnen
wir behaupten, daB der erste Eigenwert a fortiori kleiner als 1
ist. Dann werden wir jene Umstdnde, die die Mannigfaltigkeit
der wihlbaren Funktionen g(«) beschranken, diskutieren.

Als approximierende Funktion nehmen wir

7 = sin 3, (11)

wo

3= fx\/ﬁdw (12)

ist. Da nach (10) und (12) =(0) = 0 und 2(%) = = ist, so ist es
klar, da8 Y(«) die Randbedingungen erfiillt. Da aber auch Y (2}
im Intervalle (0, #) nirgends verschwindet, konnen wir sie als
Approximation der ersten Eigenfunktion betrachten.
Jetzt fragen wir: wie mull man g(x) wahlen, damit der Zahler
von Q(Y) kleiner als der Nenner sei, wenn Y = sin g gesetzt
. wird? Das hei3t, wann wird die GroBe

K = [(sinz)?da — ["o(2)(sin 2)" da
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negativ sein? Zu diesem Zwecke formen wir diese letzte Gleichung
um. Nach Ausfithrung der Differentiation erhalten wir

K = fng(w) + (cos? g — sin? g)dx = Jﬂg(w) - cos 2zduz,
0 0

dz
da nach (12) Fr V(z) ist. Jetzt fithren wir anstatt @ eine
z

neue Verinderliche 2 ein; da g(2) héchstens in 0 und 7 verschwin-
den kann, ist 3 eine monotone Funktion von 2. Es soll

Vo(z) = f(x(2))

sein. Dann wird
JT
K = f Jf(z) cos 2zdz.
0
Da aber

44 T
cos 22 = — cos 2(»2———@) = — cos 2(—2—+z) = cos 2(z—=z)

2

ist, konnen wir nach ciner leichten Umformung schreiben:

K = rﬁ [f(z) —f(%~ ) —f (§+z) —I—f(n—z)] cos 2zdz. (13)

Die Negativitat dieses Ausdruckes ist eine hinreichende, aber
nicht notwendige Bedingung dafiir, daB der erste Eigenwert
kleiner als 1 ausfalle. Wann wird dies vorkommen? Sicherlich
dann, wenn im Integral die Funktion in den eckigen Klammern

im Intervalle (0, %) durchweg negativ ist. Hinreichende Bedin-

gung dafiir ist wiederum, daB die Funktion f(z) im Intervalle
(0, #) von unten konkav sei. Wenn nimlich

Y1 = f(z)

T
Yo =f (3— )
T
Ys=1r (*2‘ +z)
Ys = flmn—2)
ist, so ist in (18) der Ausdruck in den eckigen Klammern gleich

2 y1+y4_yz+y3
2 2 )

Nun sind 7% und ¥ 7% die Ordinaten der Punkte Q, bzw. P.
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Es ist leicht einzusehen, daBl Q immer unter P liegt, wenn f(2)
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-~
von unten konkav ist.

d2
Also kénnen wir behaupten, daB, wenn /)

/22

< 0 ist, der

erste Eigenwert im Intervalle (0, z#) kleiner ist als 1. Was be-
deutet aber die Negativitit dieses zweiten Differentialquotienten?
Um das zu beantworten, fiihren wir die alte anschaulichere
Koordinate # und die Funktion g(a) wieder ein. So erhalten
wir nach kurzer Rechnung

d?f(z) 1 d? 1
=——— —1log () = —
dz? 2V o(z) d® ge 29%

Die rechte Seite muBl also negativ sein. Das Vorzeichen der
rechten Seite héngt aber vom Vorzeichen der Determinante ab.
Es wird immer negativ sein, wenn p positiv und p’’ < 0 ist,
also die Funktion g(z) von unten konkav ist. Wir sehen aber
gleichzeitig, da8 zum Bestehen des Satzes anstatt ¢’ < 0 die
mildere Voraussetzung

e ¢
22 <0 (14)
genligt.

Bisher haben wir also bewiesen: wenn die Funkition o(z) in
einem gewissen Intervalle positiv und der Bedingung (14) unter-

worfen ist 2) und a, b zwei in diesem Intervall liegende benachbarte

2) Eigentlich haben wir den Satz bei der Bedingung (14) nur fiir das Intervall
(0, w) bewiesen. Es 148t sich aber zeigen, dal3 das Vorzeichen der Determinante
(14) ebenso invariant gegen einer linearen Transformation (7)ist, wie das Vorzeichen
der zweiten Ableitung von p. Beide GroBen werden nimlich bei durchgefiihrter

2
Transformation mit der positiven GroSe (%) multipliziert. (Siehe Formel (9)).

Daraus folgt aber der Satz fiir beliebige Intervalle (a, b).
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Nullstellen von y, der Losung von (1), sind, so gilt die Be-
ziehung

jb\/zg(w)‘dm <. (15)

Daraus folgt aber gleich (6) mit beliebigem n. Es sei ndmlich
Y, die n-te Eigenfunktion im Intervalle (a, b). Sie besitzt also
n — 1 Nullstellen ay, a, . . ., @,_; zwischen a¢ und b, die das
Intervall in n Teile zerlegen. In jedem dieser Teilintervalle ist
y, die erste Eigenfunktion mit dem Eigenwerte 1,. So gilt fiir
jede dieser Teilintervalle die Ungleichung (15). Es ist also

n=1 . —_— N
nw > X ja‘“\/ Ano(x)de = jb»/zng(m)dm = J(4,)
=0y p
wo a = ay, b = a, gesetzt worden ist.

Jetzt konnen wir uns noch von der Bedingung der Nicht-
negativitit von g(z) befreien, wenigstens fiir von unten konkave
Funktionen g(2). Von unten aus konkave Funktionen, die in
der Mitte des Intervalles positiv sind, kénnen an einem oder
an beiden Enden des Intervalles schon negativ werden. Wir
konnen auch diesen Fall leicht diskutieren auf Grund des Courant-
schen Prinzips der ,,Milderung der Bedingungen”. Es sei ndmlich
eine Funktion g(z) gegeben, welche im Intervalle (a, b) end-
lich bleibt. In einem Teilintervalle (a’, b’) soll diese Funktion
positiv sein und die Bedingung (14) erfillen. Dann gilt: der
n-te Eigenwert 4, im Intervalle (a’, b’) ist groBer, als der n-te
Eigenwert 1, im Intervalle (a, b). Aber es gilt im Intervalle
(a’, b’) der eben bewiesene Satz

o
I V1l o(x)dz < na,
also es gilt im ganzen Intervalle
b S o
[ #Vie@)de = [ Vi,0@)de < na, (16)
a a’

wo R den Realteil bedeutet.

Wir zeigen noch, daf3 in (6) die obere Schranke nz nicht durch
eine kleinere ersetzt werden kann. Setzen wir ndmlich den Grenz-
fall o(z) =1, so ist in jedem Intervall (a,b) das Integral
J(4,) = nn. Da wir aber die Funktion g(z) = 1 mit von unten
aus konkaven Funktionen beliebig anndhern kénnen, wird fiir
diese Funktionen J(4,) beliebig nahe nax kommen.
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Bei diesem Beispiel gilt statt der Ungleichung (4) die Gleichung

= [\ (+)
. J‘\/@(az)dw

Dariiber hinaus kann man aber sogar ein Beispiel finden, in dem
o(z) > 0 ist und doch fiir alle n gilt
2

e vk @)
[ Vel@)de

Es handelt sich um die Differentialgleichung
44 l
y'+my=0
mit den Randbedingungen
y(1) =y(e™™) =0  (m>0).
Die n-te Eigenfunktion ist

-
Y, = Vasin (ﬁ log w):

der n-te Eigenwert

ferner gilt
b e g
J.\/g(w)dmzi[ — = m

so daB3 man fiir die rechte Seite von (4"')

nn\2 n?
mn] ~ m?

erhilt, was in der Tat << 4, ist.3)

Wir haben hier bewiesen, dal die GroBe J(4,) fir gewisse
Klassen der Funktion g(z) eine obere Schranke nz besitzt. Es
148t sich die Vermutung aussprechen, dal J(4,) fiir dieselben

. . 1 .
Funktionen g(z), die untere Schranke (n ——?) 7 besitzt.
(Eingegangen den 3. Dezember 1938.)

3) Dieser Absatz ist nachtriglich (19.12.1938) eingegangen.



