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Über eine Eigenwertabschätzung bei gewissen
homogenen linearen Differentialgleichungen

zweiter Ordnung
von

E. Makai

Budapest

Es ist bekannt, dals der n-te Eigenwert Ân der Differential-
gleichung -

mit den Randbedingungen

der Bedingung -

unterworfen ist 1). Diese Abschatzuug ist ill einigen Fâllen wenig
wertvoll, z.B. dann, wenn emin’ der kleiiiste Wert von e(x) ini

betrachteten Intervalle, gleich 0 wird. In diesem Falle hat die
Abschâtzung (3) keinen Sinn.
Es sei im Folgendell gezeigt, da13 sieh die Abschâtzung (3)

erheblich verbessern läßt, falls die Funktion e(x) eine überall
negative zweite Ableitung besitzt. Wir beweisen den Satz:
Es sei e(x) eine beliebige nicht negative Funktion, zeaelehe für

a  x  b eine stückweise stetige durchweg negative zweite Ablei-
tung e"(x)  0 besitzt. Dann gilt fiir den n-ten Eigenwert Àn der
Dif, ferentialgleichung

mil den Randbedingungen y(a) = y(b ) = 0 die Ungleichung

1) Siehe z B. Courant-Hilbert: Methodcn der math. Physik. Erste Auflage e
S. 334.
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wobei sich die Konstante n durch keine kleinere ersetzen lapt.
Es sei zugleich bemerkt, daB dies für eine beliebige Funktion

e(ae) nicht mehr gilt. Doch werden wir im Laufe des Beweises
sehen, daf3 unser Ergebnis sich verallgemeinern läßt.

Diesem Satz wollen wir noch eine andere Gestalt geben, die
dem Wesen der Dinge naherkommt: bei den obigen Bedingungen

bleibt die Quadratwurzel des Koeffizienten von y in (1), d.h. - -y
integriert im Intervalle (a, b), unter der Schranke nn. Also, wenn

ist, so besteht die Beziehung

Noch vor dem eigentlichen Beweis werden wir zeigen, dai3
wenn wir die Ungleichung (6) für das Intervall (0, n) bestâtigen
kônnen, sie für beliebige Intervalle gültig sein wird. In der Tat,
wenn wir eine neue Verânderlichen

einführen, die das Intervall (a, b) mittels einer linearen Trans-
formation auf das Intervall (0, n) abbildet, so bleibt das Integral
(5) invariant. Denn die Gleichung (1) transformiert sich in

und es wird

sein. Dieses Integral làI3t sich mit der Transformation (7) auf
das Integral (5) zurückführen; denn es ist

also es gilt: J*(Â) = J(Â).
Die Bedingung o"  0 ändert sich ebenfalls nicht, da

ist.



370

Jetzt normieren wir noch die Funktion e(ae). Diese Bedingung
beschränkt - wie leicht zu sehen ist - die Allgemeinheit gar-
nicht. Wir setzen weiterhin voraus, daß 

ausfâllt, und beweisen den Satz zunâchst für den Fall n = 1,
a = 0, b = x. Wir haben daher zu zeigen ((Gl. (5), (6), (10)),
daB der erste Eigenwert in diesem Fall kleiner als 1 sein muB.
Daraus folgt aber - indem wir die Differentialgleichung (1) als
Variationsproblem auffassen - daB bei gewissen Beschrän-

kungen bezüglich der Funktion 9(x) das absolute Minimum

von kleiner als 1 ausfâllt,

für eine an den beiden Enden des Intervalles (0, n) yerschwin-
dende, übrigens aber beliebig gewàhlte stetige Funktion Y(x) mit
stückweise stetiger erster und zweiter Ableitung.
Der Gang des Beweises wird jetzt der folgende sein: wir suchen

eine Funktion Y(x), die die erste Eigenfunktion einigermaBen
approximiert und untersuchen, unter welchen Umständen der
Quotient Q(Y) kleiner als 1 ausfällt. Da der zur ersten Eigen-
funktion gehôrige Quotient Q(y1l) = Â, noch kleiner ist, so kônnen
wir behaupten, daß der erste Eigenwert a fortiori kleiner als 1

ist. Dann werden ivir jene Umstände, die die Mannigfaltigkeit
der wâhlbareii Funktionen e(x) beschrânken, diskutieren.

Als approximierende Funktion nehmen wir

wo

ist. Da nach (10) und (12) z(0) = 0 und z(x) = x ist, so ist es

klar, daB Y(x) die Randbedingungen erfüllt. Da aber auch Y(x)
im Intervalle (0, n ) nirgends verschwindet, kônnen wir sie als
Approximation der ersten Eigenfunktion betrachten.

Jetzt fragen wir: wie mu13 man e(x) wâhlen, damit der Zähler
von Q(Y) kleiner als der Nenner sei, wenn Y = sin z gesetzt
wird? Das heißt, wann wird die GröBe
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negativ sein? Zu diesem Zwecke formen wir diese letzte Gleichung
um. Nach Ausführung der Differentiation erhalten wir

dz 
da nach (12) - V(c) ist. Jetzt führen wir anstatt x eine

dx

neue Veränderliche z ein; da e(ae) hôchstens in 0 und n verschwin-
den kann, ist z eine monotone Funktion von x. Es soll

sein. Dann wird

Da aber

ist, kônnen wir mach einer leichten Umformung schreiben:

Die Negativitât dieses Ausdruckes ist eine hinreichende, aber
nicht notwendige Bedingung dafür, daß der erste Eigenwert
kleiner als 1 ausfalle. Wann wird dies vorkommen ? Sicherlich

dann, wenn im Integral die Funktion in den eckigen Klammern
im Intervalle 0, 4 durchweg negativ ist. Hinreichende Bedin-
gung dafür ist wiederum, daß die Funktion f(z) im Intervalle
(0, n) von unten konkav sei. Wenn nàmlich

ist, so ist in (13) der Ausdruck in den eckigen Klammern gleich

Nun sind YI + y, und Y2 + Y3 die Ordinaten der Punkte Q, bzw. P.2 2
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Es ist leicht einzusehen, daß Q immer unter F liegt, wenn f(z)

von unten konkav ist. 
d2 f(z)

Aiso kônnen wir behaupten, daB, wenn -  0 ist, der
dZ2

erste Eigenwert im Intervalle (0, n) kleiner ist als 1. Was be-

deutet aber die Negativitat dieses zweiten Differentialquotienten?
Um das zu beantworten, führen wir die alte anschaulichere

Koordinate x und die Funktion e(x) wieder ein. So erhalten
wir nach kurzer Rechnung

Die rechte Seite muB also negativ sein. Das Vorzeichen der
rechten Seite hângt aber vom Vorzeichen der Determinante ab.
Es wird immer negativ sein, wenn e positiv und é"  0 ist,
also die Funktion e(x) von unten konkav ist. Wir sehen aber

gleichzeitig, daB zum Bestehen des Satzes anstatt Lo"  0 die
mildere Voraussetzung 

j , , j 

genügt. 
Bisher haben wir also bewiesen: wenn die Funktion e(x) in

einem gewissen Intervalle positiv und der Bedingung (14) unter-
worfen ist 2) zcnd a, b zwei in diesem Intervall liegende benachbarte

2) Eigentlich haben wir den Satz bei der Bedingung (14) nur für das Intervall
(0, n) bewiesen. Es läßt sich aber zeigen, daß das Vorzeichen der Determinante
(14) ebenso invariant gegen einer linearen Transformation (7)ist, wie das Vorzeichen
der zweiten Ableitung von o. Beide Größen werden nâmlieh bei durchgeführter

Transformation mit der positiven Grôl3e dlx multipliziert. (Siehe Formel (9)).
Bda?/ 

Daraus folgt aber der Satz für beliebigen Intervalle (a, b).
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Nullstellen von y, der Lôsung von (1), sind, so gilt die Be-

ziehung

Daraus folgt aber gleich (6) mit beliebigem n. Es sei namlich
y. die n-te Eigenfunktion im Intervalle (a, b). Sie besitzt also

n - 1 Nullstellen al, a2, ..., an-1 zwischen a und b, die das

Intervall in n Teile zerlegen. In jedem dieser Teilintervalle ist

yn die erste Eigenfunktion mit dem Eigenwerte Àn. So gilt für
jede dieser Teilintervalle die Ungleichung (15). Es ist also

wo a = ao, b = an gesetzt worden ist.
Jetzt kônnen wir uns noch von der Bedingung der Nicht-

negativitât von e(x) befreien, wenigstens für von unten konkave
Funktionen é(x). Von unten aus konkave Funktionen, die in
der Mitte des Intervalles positiv sind, kônnen an einem oder
an beiden Enden des Intervalles schon negativ werden. Wir
kônnen auch diesen Fall leicht diskutieren auf Grund des Courant-
schen Prinzips der "Milderung der Bedingungen". Es sei nàmlich
eine Funktion 9(x) gegeben, welche im Intervalle (a, b) end-
lich bleibt. In einem Teilintervalle (a’, b’ ) soll diese Funktion

positiv sein und die Bedingung (14) erfüllen. Dann gilt: der

’n-te Eigenwert A,, im Intervalle (a’, b’ ) ist größer, als der n-te
Eigenwert Ân im Intervalle (a, b). Aber es gilt im Intervalle
(a’, b’ ) der eben bewiesene Satz

also es gilt im ganzen Intervalle

wo R den Realteil bedeutet.
Wir zeigen noch, daß in (6) die obere Schranke nn nicht durch

eine kleinere ersetzt werden kann. Setzen wir nâmlieh den Grenz-
fall e(x) = 1, so ist in jedem Intervall (a, b) das Integral
J(Ân) = nn. Da wir aber die Funktion e(x) =: 1 mit von unten
aus konkaven Funktionen beliebig annähern kônnen, wird für
diese Funktionen J(Ân) beliebig nahe n1t kommen.
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Bei diesem Beispiel gilt statt der Ungleichung (4) die Gleichung

Darüber hinaus kann man aber sogar ein Beispiel finden, in dem
Lo(x) &#x3E; 0 ist und doch für alle n gilt

Es handelt sich um die Differentialgleichung

mit den Randbedingungen

Die n-te Eigenfunktion ist

der n-te Eigenwert

ferner gilt

so daß man für die rechte Seite von (4" )

erhâlt, was in der Tat  Ân ist. 3)
Wir haben hier bewiesen, daß die Größe J(Ân) für gewisse

Klassen der Funktion e(x) eine obere Schranke nr; besitzt. Es
lâ13t sich die Vermutung aussprechen, daB J(Ân) für dieselben

Funktionen e(x), die untere Schranke ( n --) n besitzt.2

(Eingegangen den 5. Dezember 1938.)

3) Dieser Absatz ist nachtraglich (19.12.1938) eingegangen.


