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Der Lévysche Umordnungssatz und seine
intuitionistische Ubertragung

von
M. J. Belinfante
Amsterdam

Die zuerst von Lévy 1) veroffentlichte und spéter von Steinitz 2)
einwandfrei fiir den n-dimensionalen Fall bewiesene Verallge-
meinerung des Riemannschen Umordnungsprinzips besagt fiir
den zweidimensionalen Fall, da3 die Zahlen, die man durch
Umordnung einer konvergenten Reihe mit komplexen Gliedern
als Reihensumme erhalten kann, in der Zahlenebene entweder
einen Punkt oder eine Gerade oder die ganze Ebene bilden.

Fir den intuitionistischen Standpunkt ist die Disjunktion
,entweder ein Punkt oder eine Gerade oder die ganze Ebene”

nicht stichhaltig, wie aus den einfachen Beispielen E: (_n:c) ,

x(\/_l) und X;° {(\/—1)"—{—(\/-—1)3n (\/ i }(k Rang-
nummer der]emgen Zlffer in der Dezimalentwicklung von 7, bei
der die erste Sequenz 0123456789 in dieser Entwicklung anfiangt)
ersichtlich. Auch muf der klassische Konvergenzbegriff durch
eine intuitionistische Verschéarfung 3) (positive oder negative
Konvergenz) ersetzt werden. Im Anschlu8 an diese Bemerkung
beweisen wir als die natiirlichen intuitionistischen Ubertra-
gungen des Lévyschen Satzes:

A. Falls eine unendliche Rethe X wu, mit komplexen Gliedern

1) Nouv. Ann. Math. (4) 5, 1905, 506—511. Da SteINITZ selbst in seiner Kritik
der Levyschen Arbeit erkennt, daB3 LEvy den zweidimensionalen Fall der Haupt-
sache nach richtig erledigt hat, halte ich es wenigstens fiir diesen Fall fiir unbe-
rechtigt, den Satz wie iiblich mit dem Namen STEINITZ zu verbinden.

2) Journal f. r. u. angew. Math. 143 (1913), 128—175.

3) Man vergleiche:

L. E. J. BROUWER, Uber die Bedeutung des Satzes vom ausgeschlossenen Dritten
in der Mathematik [Journ. f. r. u. angew. Math. 154 (1924), 1—7].

A. HEYTING, Mathematische Grundlagenforschung. [Springer, Berlin 1934], S. 23.
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zwet Anordnungen hat, die beide positiv bzw. megativ konvergent
sind und von einander entfernte Summen s, und s, haben, so ldft
sich jede Zahl as, + bs, mit reellen a und b durch passende Anord-
nung der Glieder dieser Rethe als Summe der positiv bzw. negativ
konvergenten Reihe erzielen.

B. Falls eine unendliche Reihe mit komplexen Gliedern drei
Anordnungen hat, die positiv bzw. megativ konvergent sind, und
deren Summen die Eckpunkte eines Dretecks bilden, so ldft sich
jede komplexe Zahl durch passende Anordnung der Glieder dieser
Rethe als Summe der positiv bzw. negativ konvergenten Rethe
erzielen.

Es ist Satz B eine unmittelbare Folge von Satz A, denn wenn
der Summenbereich einer Reihe die Eckpunkte eines Dreiecks
enthalt, so enthilt sie nach Satz A jede Seite folglich jeden Strahl
durch einen Eckpunkt, mithin die ganze Ebene. Aus dem nun
folgenden Beweis fiir Satz A kann man einen erheblich ein-
facheren neuen nichtintuitionistischen Beweis fiir den Levyschen
Satz gewinnen, indem man nur den Beweis fiir die positive
Konvergenz beibehilt und die Betrachtung der komplex ratio-
nalen Hilfszahlen w; auf die komplexen Glieder w,; selbst an-
wendet, wodurch die Einfiihrung dieser Hilfszahlen sich er-
iibrigt.

Hivrssatz 1. Es seien die Glieder w; einer endlichen Reihe
2 u; komplexe Zahlen, die dem absoluten Betrage nach kleiner
als eine positive Zahl K sind, und es sei thre Summe gleich Null.
Alsdann laft sich eine derartige Anordnung dieser Glieder treffen,
daf alle Teilsummen dem absoluten Betrage nach kleiner als 8K
bletben.

Vorbemerkung. Wir brauchen diesen Hilfssatz nur fir den
Fall, daB3 die Glieder u, komplex rational sind, und geben unseren
Beweis nur fiir diesen Fall. Den allgemeinen Fall erledigt man,
indem man den komplexen Gliedern u; in solcher Weise komplex
rationale Zahlen u; zuordnet, daB je zwei einander zugeordneten

Zahlen um weniger als % verschieden sind (N = Anzahl der

u,;; ¢ eine solche positive Zahl, daB fiur jedes ¢ auch die Unglei-
chung |u1| < K — ¢ gilt). Die Anwendung des Hilfssatzes auf
die Reihe X u; liefert dann eine Anordnung fiir die u;, aus welcher
die verlangte Anordnung fiir die zugeordneten w, sich sofort
entnehmen 148t.

Beweis. Wir denken die Reihe zunichst so geordnet, daB
fiir jedes 1
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arg (u;4,) = arg (u;) (1)
ist ) und bezeichnen die Teilsummen der so geordneten Reihe
mit §;, §p, . . .. Wir kénnen nun & und ! > k derart bestimmen,
daB fir jedes von (k;1) verschiedene (i;§) die Ungleichung

(2)
gilt. Sei arg (s;—s;) = ¢. Wir betrachten zuerst die nicht in
s;, vorkommenden Glieder von s;, welche wir mit v; bezeichnen.
Es ist offenbar fiir ein solches v; =

cos {arg (v;) — ¢} > 0. (3)
Denn wire (3) nicht erfillt, so ware (wie aus (1) und
arg (up,,) < p=arg (u;) = ¢ + = ersichtlich) die Ungleichung
cos {arg (u,) — ¢} = 0 entweder fiir p =k 4 1 oder fiir p =1
erfillt; also hitten wir nach der Cosinusregel entweder
‘sl—sk+1| > ls,—skl oder ]s,_l—sk| > Is,—-skl entgegen (2).
Wir ordnen nun die Reihe X v, um. Als erstes Glied der neuen
Reihe Z v;, withlen wir ein beliebiges v;. Bei jeder folgenden Wahl
bestimmen wir zuerst das Argument ¢, der Summe aller schon
geordneten v;. Falls sin (p;—¢) > 0 bzw. sin (p;—¢) < 0 ist,
so wihlen wir als néchstes Glied der neuen Reihe ein solches
v, daB sin{arg (v;) — @} <0 bzw. sin{arg (v;) — ¢} > 0 ist;
sonst wihlen wir ein beliebiges v,. Offenbar gilt fiir jede Teil-
summe o der so geordneten Reihe X v,

|0 sin {arg (¢) — ¢} | < K. (4)

Die iibrigen Glieder der Reihe X u; bezeichnen wir mit w,.
Es ist offenbar

|31—3k| =8 —8;

cos {arg (w;) — ¢} < 0. (5)

Wir ordnen die w,; in analoger Weise. Als erstes Glied der neuen
Reihe X w,; wihlen wir ein beliebiges w;. Bei jeder folgenden

Wahl bestimmen wir zuerst das Argument ¢; der Summe aller
schon geordneten w;. Ist sin (p;—¢) > 0 bzw. sin (p;—¢) < 0,
so wihlen wir als nichstes Glied der neuen Reihe ein solches w,,
daB sin {arg (w;) — @} < 0 bzw. sin {arg (w;) — @} > 0 ist; sonst
wahlen wir ein beliebiges w;. Offenbar gilt fiir jede Teilsumme 7 der
so geordneten Reihe X 1w,

|7 sin {arg (r) — g} <K. (6)

4) Mit arg (z) ist hier derjenige Wert dieser Funktion gemeint, welcher der
Ungleichung 0 < arg (2) < 27 geniigt.
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Jetzt bilden wir aus den Reihen Xv; und Xw; unter Bei-
behaltung der gegenseitigen Anordnung ihrer Glieder eine ein-
zige Reihe Zuin, indem wir als erstes Glied v; wiahlen und bei
jeder folgenden Wahl zuerst das Argument ¢; der Summe der
schon bestimmten wu; betrachten. Ist cos (p;—¢) =0 bzw.

cos (p;—¢) <0, so wihlen wir als niichstes Glied das erst-
folgende Glied der Reihe Xw; bzw. der Reihe Xv; . Fiir jede

Teilsumme 7 der so entstehenden Reihe X u; gilt offenbar, wie
a.;lS (8) und (5) bzw. aus (4) und (6) ersichtlich,

- | T cos {arg (T) — ¢} < K (7)
bzw.

| T sin {arg (T) — ¢}| < 2K . (8)
Aus (7) und (8) folgt |T| < 8K, w.z.b.w.

Hivrssatz Ia. Es seien die Glieder u,; einer endlichen Reihe
2 u; komplexe Zahlen, die dem absoluten Betrage nach kleiner als
eine positive Zahl K sind, und es sei thre Summe s absolut genommen
kleiner als eine positive Zahl L. Alsdann lift sich eine derartige
Anordnung fur diese Glieder treffen, daf alle Teilsummen dem
absoluten Betrage nach kleiner als 8K + L sind.

Bewets. Bestimmt man eine solche ganze Zahl n, dal L < nK

ist, und fiigt man der Reihe noch n Glieder zu, die alle = —%

sind, so ergibt die Anwendung von Hilfssatz I eine Anordnung
fiir die neue Reihe, wobei die Teilsummen absolut genommen
kleiner als 8K sind. Schafft man nun die hinzugefiigten Glieder.
wieder fort, so andert sich dadurch jede Teilsumme um weniger
als L.

Hivrssatz II. Es seien die Glieder w,; einer endlichen Reihe
2 u; komplexe Zahlen, die dem absoluten Betrage nach kleiner als
eine positive Zahl K sind, und es sei thre Summe um weniger als
K von einer reellen Zahl S verschieden. Es sei s eine solche reelle
Zahl, dap |s‘ < \S| und S =0 ist. Alsdann 1dfit sich eine
Anzahl dieser Glieder bestimmen, deren Summe um weniger als
2K wvon s verschieden ist.

Vorbemerkung. Wir brauchen diesen Hilfssatz nur fir den
Fall, daB3 die Glieder «; komplex rational und die Zahlen K, S
und s rational sind. Wir geben unseren Beweis also in dieser
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Voraussetzung. Der allgemeine Fall wird in analoger Weise wie
bei dem Hilfssatz I erledigt.

Beweis. Wir betrachten den Fall, daBl S und s = 0 sind (der
andere Fall wird in ganz derselben Weise erledigt). Wir betrachten
zuerst die positiven wu,, falls es solche gibt. Ist ihre Summe = s,
so wahlen wir einfach so lange positive u;, bis ihre Summe zum
ersten Male > s — K ist. Ist die Summe s, der positiven Glieder
dagegen << s (falls es keine positiven Glieder gibt, setzen wir
so = 0), so ordnen wir die Glieder mit positivem Imaginéarteil
derart, da3 der Realteil eines Gliedes nie kleiner ist als derjenige
des unmittelbar vorangehenden Gliedes. Die Teilsummen der so
geordneten Glieder bezeichnen wir mit s, (0=p <N,). In
derselben Weise ordnen wir die Glieder mit negativem Imaginér-
teil zu einer Reihe, deren Teilsummen wir mit s;,' 0=p=N,)
bezeichnen. Es ist dann sy -+ sy um weniger als K von einer
positiven Zahl =S — s, verschieden. Wir ordnen nun jedem
s, bzw. jedem s, diejenigen s, bzw. diejenigen s, zu, deren
Imaginérteil um weniger als K von dem Imaginérteil von — s;,
bzw. — s, verschieden ist. Es wird dann jedem s/, bzw. s/, wenig-
stens ein s, bzw. s, zugeordnet. Auch gibt es offenbar zu jedem
Paar s}cl , s;: von einander zugeordneten Teilsummen mit
k,+1,<N,+N, ein zweites Paar 8;62 , s'l; derart, daB8 k, —Fk, =0,
l,—1,=0 und ky,+1,>k;+ 1, ist, wiahrend die Realteile von
S;Cl + S;ll und s,'cz + s;; einen Unterschied kleiner als 2K aufwei-
sen. Da der Realteil von 31'\,1 -+ S;\;z groflerals S—sp—K=s—s5,—K
ist, konnen wir m so wahlen, dal der Realteil von S;ﬂm 4 s'l; um
weniger als K von s — s, verschieden ist. Da der Imaginédrteil
von s, s absolut genommen Kkleiner als K ist, gilt jetat

‘so+s;cm+s;;~—s\<2K.

Mithin sind die in s, + s, -+ s; enthaltenen Glieder die
gesuchten Glieder.

Beweis von Satz A.

Wie die Betrachtung der Reihe X u,, , u; = (u;—s,)e ™" ¥ 86780,
u, = u,e t8E:=8)  Jehrt, brauchen wir nur den Fall, daB s,
positiv und s, Null ist, zu erledigen. Die verlangte Summe s = as,
ist dann reell. Weiter lehrt die Betrachtung von by u;z s
Uy = — U, + 8, w, = — u,, daB wir keine negativen Werte von
s zu betrachten brauchen. Wir beweisen nun erstens, da3 wir jede
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nicht-negative Zahl < s; als Summe einer Umordnung unserer
Reihe erhalten kénnen und zweitens, dal3 es gelingt, durch Um-
ordnung die Summe 2s zu erhalten, sobald eine konvergente
Anordnung mit der Summe s und eine zweite konvergente
Anordnung mit der Summe Null vorliegt. Durch wiederholte
Anwendung dieser beiden Falle 148t sich dann jede positive Zahl
als Summe einer Umordnung erzielen. Es bleibt also nur noch der
Fall iibrig, daB3 von der verlangten Summe s weder s = 0 noch
s 4t 0 festgestellt ist ). Wir bestimmen dann zwei konvergente

Umordnungen, welche die Summen —% und +% haben und

wenden die Substitution u; = u, +%, w, = u, (n>1) an.

Die nun noch fehlenden Beweise fithren wir jedesmal in zwei
Etappen. Zuerst geben wir eine Konstruktion an, welche eine
Umordnung X 2, von X u, erzeugt, und dann beweisen wir, daf3
die Reihe Xz, positiv bzw. negativ konvergent ist und die ver-
langte Summe hat, falls die vorgelegten Umordnungen 2Xv,
und X w, positiv bzw. negativ konvergent sind.

Erster Fall. Es sei also Xv, bzw. 2w, eine (positiv oder
negativ) konvergente Umordnung von X u, mit der Summe S
bzw. mit der Summe Null, und es sei die verlangte Summe s
(0 =5 <S). Auf der ersten Stufe wihlen wir u,; als erstes Glied
der neu zu bildenden Reihe X z,, deren Teilsummen wir mit s,
bezeichnen werden. Auf der n-ten Stufe betrachten wir die
Summe C der schon auf den vorigen Stufen gewéhlten Glieder €).
Wir bestimmen einen Abschnitt A der Reihe X v,, welcher alle
Glieder von C enthilt und einen Abschnitt B der Reihe X w,,
welcher alle Glieder von A4 enthilt. Die Anzahl der Glieder von

B bezeichnen wir mit h(n). Jedem Gliede w; von B ordnen wir
1

nh(n) +n
von w,; verschieden ist. Die Summe der den Gliedern von 4, B
und C zugeordneten komplex rationalen Zahlen bezeichnen wir
bzw. mit A’, B’ und C’. Es sei weiter s’ bzw. S’ eine positive

eine komplex rationale Zahl w; zu, die um weniger als

. . . 1 .
rationale Zahl, die um weniger als —————von s bzw. S verschie-
nh(n) +n

den ist. Wir suchen nun eine solche Anzahl von nicht in 4’
%) HevTtINng, lc., S. 20. !

®) Mit C bezeichnen wir sowohl die Menge der auf den ersten (n — 1) Stufen
gewihlten Glieder als ihre Summe. Eine analoge Verabredung treffen wir fiir
C’, A, B usw.
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vorkommenden Gliedern b;. von B’, daBB der Unterschied zwi-
schen der Summe dieser Glieder und s"— S’ dem absoluten
Betrage nach so klein moglich wird. Es soll aber wenigstens ein
nicht in A’ vorkommendes Glied von B’ genommen werden.
Jetzt bilden wir eine endliche Reihe G’, die auBer diesen Gliedern
b; noch diejenigen Glieder von A’, die nicht in C’ vorkommen
enthilt, und wir ordnen G’ so, daB3 das Maximum fiir den abso-
luten Betrag der Teilsummen von G’ so klein wie moglich wird.
Sei G die Summe der den Gliedern von G’ zugeordneten Glieder
in entsprechender Anordnung. Es werden nun auf der n-ten
Stufe die so geordneten Glieder von G der Reihe nach als die
nachsten Glieder der neu zu bildenden Reihe gewahlt. Wir be-
zeichnen mit »(m) eine solche ganze Zahl (inklusive Null), da@3
C auf der m-ten Stufe der Konstruktion die ersten »(m) Glieder
der beiden vorgelegten Reihen X v, und X w, enthilt. Fiir m — oo
strebt offenbar »(m) gegen co. Wir bezeichnen weiter die Rang-
nummer der Stufe, auf welcher z, gewahlt wird, mit [,. Wir
zeigen nun, daf3 die durch diese Konstruktion erzeugte Reihe
2z, positiv bzw. negativ konvergent ist und die Summe s hat,
falls v, und X w, positiv bzw. negativ konvergent sind.

a) Es seien X v, und X w,, positiv konvergent. Wir zeigen, daf3
sich zu jedem positiven & ein solches N bestimmen 1a8t, da3
|s, —s| <e ist, sobald n >N genommen wird. Hierzu setzen
wir #=0,01:¢ und bestimmen wir M >~117— derart, dafB3 fiir
jedes n > M

| 2o, — S| <9 (a)

und
|Stw <y (b)
ist. Sei nun m > M eine solche ganze Zahl, daB3 auch »(m) > M
ist. Auf der m-ten Stufe (und auf jeder héheren Stufe) gilt dann

|4’ — 5

1
<n4— <29, (c)

| B’

<77+;1—<2n (d)

wahrend jedes Glied von B’, das nicht in C’ vorkommt, dem
absoluten Betrage nach < 37 ist. Es ist weiter die Summe der
Glieder von B’, welche nicht in 4’ vorkommen, nach (¢) und (d)
um weniger als 47 von — S’ verschieden. Aus der Konstruktion
von G’ erkennt man nun nach dem Hilfssatz II, mit K = 47, dal3
die zuerst gewihlten Glieder b; von G’ eine Summe haben, die
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um weniger als 87 von s’ — S’ verschieden ist. Da die iibrigen
Glieder von G’ die nicht in C’ vorkommenden Glieder von A’
sind, so ist offenbar auch |C’' 4 G' — A’ — (8’——5')' < 87,
mithin nach (c), 4

o : |C"+ G —s'| <10, ()

Folglich ist auf der (m-4-1)-ten Stufe (und auf jeder héoheren
Stufe) |C’ — §'| <1279 und da (e) auch auf dieser Stufe gilt,
so ist weiter G'[ < 227 und folglich nach Hilfssatz Ia jede
Teilsumme von G’ dem absoluten Betrage nach kleiner als 817.
Es ist somit jede Teilsumme von C’ -+ G’, die nicht in C’ ent-
halten ist, um weniger als 487 von s’ verschieden. Mithin ist
auf der (m+1)-ten Stufe (und auf jeder hoheren Stufe) jede
Teilsumme von C + G die nicht in C enthalten ist, um weniger
als 44n <e von s verschieden. Bestimmen wir nun N derart,
daB3 Iy > m ist, so gilt nach dem vorigen Isp — Sl < &, sobald
p > N genommen wird, w.z.b.w.

b) Es seien X v, und X w, negativ konvergent. Wir beweisen
fir jedes ¢ > 0 die Unmoglichkeit des Bestehens einer solchen
unendlichen Reihe wachsender positiver ganzer Zahlen py, p,, - - -,
daB fir jedes ¢

lSpi—Sl>8 (I)

ist. Denken wir uns also ein solches ¢ und eine derartige Funda-
mentalreihe {p;} vorgelegt. Wir setzen # = 0,01¢ und bestimmen

ein ganzes M > 2. Seiiso grof3 genommen, daBm =1, —1> M

ist. Falls nun sowohl auf der m-ten als auf der (m+1)-ten Stufe
die obigen Ungleichungen (c¢) und (d) erfiillt wiren und jedes
Glied von B’, das nicht in C’ vorkommt, dem absoluten Betrage
nach < 87 wire, so hitten wir, wie sofort aus dem oben gefiihrten
Beweis ersichtlich, | Spi—'gl <& entgegen unserer Voraussetzung
(I). Es gilt also

entweder

| Zf o—S|> 57 (I1)
oder

|Zf w0 | >4 n (I11)
oder aber

|w,| > 7 (IV)

fiir f:in gewisses n = n;, das jedenfalls > »(m) = v(l, — 1) ist.



132 M. J. Belinfante. [9]

Falls (IV) gilt fir ein n > »(m), so gilt natiirlich auch (III)
fir ein n =»(m).

Wiederholen wir nun diese Untersuchung mit einem solchen
p; > pss daBv(l, — 1) > n,ist, so bekommen wir ein n = n; > n;,
fiir welches wenigstens eine der Ungleichungen (II) und (III)
erfillt ist. So fortfahrend bekommen wir eine solche Fundamen-
talreihe n; <m; <..., daB fiir jedes ihrer Glieder wenigstens
eine der Ungleichungen (II) und (III) erfiillt ist. Da aber nach
Voraussetzung weder (II) noch (IIT) fiir eine solche Fundamental-

reihe erfiillt sein kann, sind wir zu einem Widerspruch gelangt,
w.z.b.w.

Zweiter Fall. FEs sei Zv, bzw. X w, eine (positiv oder negativ)
konvergente Umordnung von X u, mit der Summe S bzw. mit
der Summe Null. Wir erzeugen in folgender Weise eine (positiv
oder negativ) konvergente Reihe mit der Summe s = 2S. Auf
der ersten Stufe wihlen wir u, als erstes Glied der neu zu bil-
denden Reihe X z,, deren Teilsummen wir mit s, bezeichnen
werden. Auf der n-ten Stufe betrachten wir zuerst die Summe C
der schon auf den vorigen Stufen gewahlten Glieder. Wir bestim-
men einen Abschnitt B; der Reihe X2 v,, welcher alle Glieder
von C enthilt, und einen Abschnitt 4 der Reihe X w,, welcher
alle Glieder von B, enthilt. SchlieBlich bestimmen wir einen Ab-
schnitt B, der Reihe X v,, welcher alle Glieder von 4 enthéilt. Die
Anzahl der Glieder von B, bezeichnen wir mit 2(n). Jedem Gliede
v; von B, ordnen wir eine komplex rationale Zahl v; zu, die um

weniger als von v; verschieden ist. Ebenso ordnen wir

1
nh(n) +n

S eine rationale Zahl S’ zu, die um weniger als von S

1
e
verschieden ist. Die Summen der den Gliedern von A4, B,, B,
und C zugeordneten komplex rationalen Zahlen bezeichnen wir
bzw. mit A’, B;, B, und C’. Wir ordnen nun die Glieder von
B;, die nicht in C’ enthalten sind, und die Glieder von B;, die
nicht in A’ enthalten sind, in solcher Weise zu einer einzigen
Reihe G', daBl das Maximum des absoluten Betrages der Teil-
summen von G’ so klein wie moéglich wird. Sei G die Summe der den
Gliedern von G’ zugeordneten Glieder in entsprechender Anord-
nung. Es werden dann auf der m-ten Stufe die so angeordneten
Glieder von G als die néichsten Glieder der neu zu bildenden
Reihe Xz, gewihlt. Wir bezeichnen mit »(m) eine solche ganze
Zahl (inklusive Null), da8 die Summe C auf der m-ten Stufe der
Konstruktion die ersten »(m) Glieder der beiden vorgelegten
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Reihen X v, und X w, enthilt. Fiir m — co strebt offenbar »(m)
gegen co. Wir bezeichnen weiter die Rangnummer der Stufe,
auf welcher z, gewahlt wird, mit /,. Wir beweisen nun, daB3 die
durch unsere Konstruktion erzeugte Reihe 2z, positiv bzw.
negativ konvergent ist und die Summe 2S hat, falls X v, und
2w, positiv bzw. negativ konvergent sind.

a) Es seien X v, und X w, positiv konvergent. Wir zeigen, daB3
sich zu jedem positiven ¢ ein solches N bestimmen laf3t, da@
|sn — 25 | < ¢ ist, sobald n > N genommen wird. Hierzu setzen

wir #=0,01:¢ und bestimmen wir M>% derart, daB fiir
jedes n > M

|Zv—S|<n (a) s
und

lzﬁwil<77 (b)

ist. Sei nun m > M eine solche ganze Zahl, da3 auch »(m) > M
ist. Auf der m-ten Stufe (und auf jeder hoheren Stufe) gilt dann

|4 | <+ <2, (c)
| B, — S| <n++ <2, (d)
|B;—S'|<n+;1;<2n, (e)

wihrend jedes Glied von B,, das nicht in C’ enthalten ist, dem
absoluten Betrage nach < 37 ist. Es ist nach (c¢) und (e) die
Summe derjenigen Glieder von B,, die nicht in 4’ enthalten sind,
um weniger als 47 von S’ verschieden. Aus der Konstruktion
von G’ erkennt man nun leicht, daf3 auch |C’+G’——B1~S' <47
mithin nach (d)

|C"+ G —2S'| <6y (f)

ist. Folglich ist auf der (:m+1)-ten Stufe (und auf jeder héheren
Stufe) [C’ —25’| < 8%, und da (f) auch auf dieser Stufe gilt,
so ist hier ‘G’ < 147 und folglich nach Hilfssatz Ia jede Teil-
summe G’ dem absoluten Betrage nach < 28#. Es ist somit
jede Teilsumme von C’ + G’, die nicht in C’ enthalten ist, um
weniger als 817 von 2S’ verschieden. Mithin ist auf der (m-+1)-
ten Stufe (und auf jeder hoheren Stufe) jede Teilsumme von
C + G, die nicht in C enthalten ist, um weniger als 887y <e¢
von 2S5 verschieden. Bestimmen wir nun N derart, daB3 [, > m
ist, so gilt nach dem vorigen |s, — 25| <e, sobald p > N
genommen wird, w.z.b.w.
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b) Es seien Xv, und X w, negativ konvergent. Wir beweisen
fiir jedes positive ¢ die Unmoglichkeit des Bestehens einer solchen
unendlichen Reihe wachsender positiver ganzer Zahlen p;, p,, . . .,
daB fir jedes ¢

lsp.-_25l>8 (I)

ist. Denken wir uns also ein solches ¢ und eine derartige Funda-
mentalreihe py, P, . . . vorgelegt. Wir setzen 1=0,01-¢ und bestim-
men ein M > % Sei ¢ so grol genommen, daBm =1, —1>M
ist. Falls nun sowohl auf der m-ten als auf der (m+1)-ten Stufe
die obigen Ungleichungen (c), (d) und (e) erfiillt wiren und jedes
Glied von B;, das nicht in C’ enthalten ist, dem absoluten Betrage
nach << 87 wire, so hitten wir, wie sofort aus dem oben gefiihrten
Beweis ersichtlich, |s, —2S| < entgegen unserer Voraus-
setzung (I). Also gilt entweder

IZTU,C—SI>%77 (II)
oder

| 2 we| > 5 (I11)
oder aber

|0, | > (IV)

fir ein gewisses m=mn;, das jedenfalls > »(m) = »(l, —1) ist.
Falls (IV) gilt fir ein n > »(m), so gilt natiirlich auch (II) fiir
ein n = v(m). Wiederholen wir nun die Untersuchung mit einem
solchen p;, daB »(l, —1) >mn,; ist, und fahren wir in dieser
Weise fort, so entsteht eine solche Fundamentalreihe n,<n;<...,
daf3 fir jedes Glied entweder (II) oder (III) erfillt ist. Da
aber nach Voraussetzung weder (II) noch (III) fiir eine Funda-
mentalreihe solcher Zahlen erfiillt sein kann, sind wir zu einem
Widerspruch gelangt.

(Eingegangen den 15. September 1937.)

Nachtrag.

Zusatz A. Sind von einer Reihe X u, zwei Anordnungen vor-
gelegt, die mit der Summe v bzw. w konvergieren, so ldft sich die
Zahl ov + (1—a)w fiir jedes reelle « als Summe einer konver-
genten Anordnung von 2w, erzielen.

Zusatz B. Sind von einer Reihe 2 u, drei Anordnungen vor-
gelegt, die mit der Summe u, v und w konvergieren, so laft sich die
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Zahl Bu + yv + (1—B—y)w fiir reelle B und y als Summe einer
konvergenten Anordnung von X u, erzielen.

In diesen Sitzen ist mit ,,konvergent” entweder ,,positiv’’
oder ,,negativ konvergent” gemeint. Es braucht aber fiir die
Zahlen v und w bzw. u, v und w keine Beziehung von der Art
v4w oder v=w usw. bekannt zu sein?). Zusatz B ist eine unmittel-
bare Folgerung von Zusatz A. Denn man hat offenbar entweder
B4 1 oder y 341 oder f + y 4 0. Falls g 3£ 1 ist, setze man
o = Ty—:?’ v, =1u, w; = a'v + (1—a')w, folglich pv,+(1—pB)w, =
= pu + yv + (1—f—y)w; falls f 4 pH 0 ist, setze man
«=1—f—1y; = Bi—y;
folglich o'v;4(1—o')w, = pu + yv + (1—p—y)w. Man beweist
Zusatz A in derselben Weise wie Satz A. Man braucht nur
den Fall, dal w =0 und v reell ist, zu betrachten (man setze
uy = (uy—w)e P8 O=w) o — g, =128 ©=»)) yund den Beweis fiir
0=<a<1 und « =2 zu fithren. Durch wiederholte Anwendung
folgt der Satz fir jedes o =0. Fiir negatives « setze man
Uy =—u, +v, U, =—mu,; ist weder a4+ 0 noch « = 0 bekannt,
so wende man den Satz an mit 1 — « statt « unter Vertau-
schung von Xwv, und Xw,. Schlieflich 1aBt sich der in der
vorliegenden Arbeit gefiihrte Beweis von Satz A fiir 0 <s < S
und s =2S wortlich auf die beiden noch zu erledigenden Fille
0 <o <1und =2 libertragen, wenn man dort s bzw. S durch
av bzw. v ersetzt und entsprechende Abdnderungen bei den

approximierenden, rationalen Hilfszahlen s’ und S’ macht.
v
(Eingegangen den 10. Januar 1938.)

v, =w; w;=0ov+ (1—a")u,

?) Die Betrachtung dieser Moglichkeit hat die Redaktion angeregt.



