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Der Lévysche Umordnungssatz und seine
intuitionistische Übertragung

von

M. J. Belinfante

Amsterdam

Die zuerst von Lévy 1) verôffentlichte und später von Steinitz 2)
einwandfrei für den n-dimensionalen Fall bewiesene Verallge-
meinerung des Riemannschen Umordnungsprinzips besagt für
den zweidimensionalen Fall, dals die Zahlen, die man durch

Umordnung einer konvergenten Reihe mit komplexen Gliedern
als Reihensumme erhalten kann, in der Zahlenebene entweder
einen Punkt oder eine Gerade oder die ganze Ebene bilden.
Für den intuitionistisehen Standpunkt ist die Disjunktion

,,entweder’’ ein Punkt oder eine Gerade oder die ganze Ebene"

nicht stichhaltig, wie aus den einfachen Beispielen

nummer derjenigen Ziffer in der Dezimalentwieklung von n, bei
der die erste Sequenz 0123456789 in dieser Entwicklung anfàngt)
ersichtlich. Auch n1u13 der klassische Konvergenzbegriff durch
eine intuitionistische Verscharfung 3) (positive oder negative
Konvergenz) ersetzt werden. Im Ansehluf3 an diese Bemerkung
beweisen wir als die natürlichen intuitionistischen Übertra-
gungen des Lévysche11 Satzes:

A. Falls eine unendliche Reihe E Un 1nit koinplexen Gliedern

1) Nouv. Ann. Math. (4) 5, 1905, 506-511. Da STEINITZ selbst in seiner Kritik
der LÉvyschen Arbeit erkennt, daß LÉVy den zweidimensionalen Fall der Haupt-
sache nach richtig erledigt hat, halte ich es wenigstens für diesen Fall für unbe-

rechtigt, den Satz wie üblich mit dem Namen STEiNiTZ zu verbinden.

1) Journal f. r. u. angew. Math. 143 (1913), 128-175.

3) Man vergleiche:
L. E. J. BROUWER, ÎUber die Bedeutung des Satzes vom ausgeschlossenen Dritten

in der Mathematik [Journ. f. r. u. angew. Math. 154 (1924%, 1-7].
A. HEVTIXG, Mathematische Grundlagenforschung. [Springer, Berlin 1934], S. 23.
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zwei Anordnungen hat, die beide positiv bzw. negativ konvergent
sind und von einander entfernte Summen SI und S2 haben, so lâpt
sich jede Zahl as, + bs, mit reellen a und b durch passende Anord-
nung der Glieder dieser Reihe als Sunime der positiv bzw. negatii,
konvergenten Reihe erzielen.
B. Falls eine unendliche Reihe mit komplexen Gliedern drei

Anordnungen hat, die positiv bzw. negativ konvergent sind, und
deren Summen die Eckpunkte eines Dreiecks bilden, so läßt sich
jede komplexe Zahl durch passen,de Anordnuna der Glieder dieser
Reihe als Summe der positiv bzzv. negativ konvergenten Reihe

erzielen.

Es ist Satz B eine unmittelbare Folge von Satz A, denn wenn
der Summenbereich einer Reihe die Eckpunkte eines Dreiecks
enthâlt, so enthâlt sie nach Satz A jede Seite folglich jeden Strahl
durch einen Eckpunkt, mithin die ganze Ebene. Aus dem nun
folgenden Beweis für Satz A kann man einen erheblich ein-

facheren neuen nichtintuitionistisehen Beweis für den Levyschen
Satz gewinnen, indem man nur den Beweis für die positive
Konvergenz beibehalt und die Betrachtung der komplex ratio-
nalen Hilfszahlen w’ auf die komplexeii Glieder Wi selbst an-

wendet, wodurch die Einführung dieser Hilfszahlen sieh er-

übrigt.

HILFSSATZ 1. Es seien die Glieder ui einer endlichen Reihe

Àl u, komplexe Zahlen, die dem absoluten Betrage nach kleinere
als eine positive Zahl K sind, und es sei ihre Summe gleich Null.
Alsdann lâflt sich eine derartige Anordnung dieser Glieder treffen,
dap alle Teilsummen dem absoluten Betrage nach kleiner als 3K
bleiben.

Vorbemerkung. Wir brauchen diesen Hilfssatz nur für den

Fall, daf3 die Glieder ui komplex rational sind, und geben unseren
Beweis nur für diesen Fall. Den allgemeinen Fall erledigt man,
indem man den komplexen Gliedern ui in solcher Weise komplex
rationale Zahlen u§ zuordnet, da13 je zwei einander zugeordneten
Zahlen uni weniger als N verschieden sind (N = Anzahl der

ui; e eine solche positive Zahl, daf3 für jedes i auch die Unglei-
chung 1 ui |  K - e gilt). Die Anwendung des Hilfssatzes auf

die Reihe u’i liefert dann eine Anordnung für die ui, aus welcher
die verlangte Anordnung für die zugeordneten ui sieh sofort
entnehmen läßt.

Beweis. Wir denken die Reihe zunachst so geordnet, dal3
für jedes i
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ist 4) und bezeichnen die Teilsummen der so geordneten Reihe
mit sl, S2’ .... Wir kônnen nun k und 1 &#x3E; k derart bestimmen,
da13 für jedes von (k ; l ) verschiedene (i; j) die Ungleichung

gilt. Sei arg (sl-sk) = 99. Wir betrachten zuerst die nicht in

sk vorkommenden Glieder von s l, welche wir mit vi bezeichnen.
Es ist offenbar für ein solches vi = upi

Denn wäre (3) nicht erfüllt, so wâre (wie aus (1) und

arg (Uk+l)  P  arg (ul)  P + n ersichtlich) die Ungleichung
cos {arg (up) - p}  0 entweder für p = k + 1 oder für p = 1
erfüllt; also hâtten wir nach der Cosinusregel entweder

BSl - Sk+lB I &#x3E; BSl- Sk I oder BSl-l - Sk 1 &#x3E; 1 s - Sk 1 entgegen (2).
Wir ordnen nun die Reihe 1 vi um. Als erstes Glied der neuen

Reihe E Vi n wâhlen wir ein beliebiges vi. Bei jeder folgenden Wahl
bestimmen wir zuerst das Argument Pl der Summe aller schon
geordneten vi. Falls sin (Pl - p) &#x3E; 0 bzw. sin (Pl - p)  0 ist,
so wählen wir als nâchstes Glied der neuen Reihe ein solches

vi, daf3 sin {arg (vi ) - p}  0 bzw. sin {arg (vi ) - p} &#x3E; 0 ist;
sonst wâhlen wir ein beliebiges vi. Offenbar gilt für jede Teil-
summe a der so geordneten Reihe 1 Vin

Die übrigen Glieder der Reihe L 1Ji bezeichnen wir mit Wi-
Es ist offenbar

Wir ordnen die wi in analoger Weise. Als erstes Glied der neuen
Reihe S wi,, wâhlen wir ein beliebiges Wi. Bei jeder folgenden
Wahl bestimmen wir zuerst das Argument CPl der Summe aller

schon geordneten zvi. Ist sin (CPI-CP) &#x3E; 0 bzw. sin (çi-ç)  0,
so wâhlen wir als nächstes Glied der neuen Reihe ein solches w,,
daB sin {arg (Wi) - cp}  0 bzw. sin {arg (zvi) - 991 &#x3E; 0 ist; sonst
wâhlen wir ein beliebiges Wi. Offenbar gilt für jede Teilsumme t der
so geordneten Reihe Wi n

4) Mit arg (z) ist hier derjenige Wert dieser Funktion gemeint, welcher der
Ungleichung 0  arg (z)  2n genügt.
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Jetzt bilden wir aus den Reihen 1 Vi n und Zwi. unter Bei-
behaltung der gcgenseitigen Anordnung ihrer Glieder eine ein-

zige Reihe Ui , indem wir als erstes Glied vil wàhlen und bei
jeder folgenden Wahl zuerst das Argument f!JI der Summe der

schon bestimmten Ui n betrachten. Ist cos (99,-99) &#x3E; 0 bzw.

cos (,Tl-99)  0, so wahlen wir als nächstes Glied das erst-

folgende Glied der Reihe Wi bzw. der Reihe 1 v2n. Für jede
Teilsumme T der so entstehenden Reihe E ui. gilt offenbar, wie
aus (3) und (5) bzw. aus (4) und (6) ersichtlich,

bzw.

Aus (7) und (8) folgt 1 TI  3K, ,v.z.b.,v.

HILFSSATZ la. Es seien die Glieder Ui einer endlichen Reihe

£ u, komplexe Zahlen, die dem absoluten Betrage nach kleiner als
eine positive Zahl K sind, und es sei ihre Summe s absolut genommen
kleiner als eine positive Zahl L. Alsdann lâflt sich eine derartige
Anordnung für diese Glieder treffen, dap alle Teilsummen dem
absoluten Betrage nach kleiner als 3K + L sind.

Beweis. Bestimmt man eine solche ganze Zahl n, daI3 L  nK

ist, und fügt man der Reihe noch n Glieder zu, die alle = - s
n

sind, so ergibt die Anwendung von Hilfssatz 1 eine Anordnung
für die neue Reihe, wobei die Teilsummen absolut genommen
kleiner als 3K sind. Schafft man nun die hinzugefügten Gliedern =
wieder fort, so 3,ndert sich dadurch jede Teilsumme um weniger
als L.

HILFSSATZ II. Es seien die Glieder ui einer endlichen Reihe

lui komplexe Zahlen, die dem absoluten Betrage nach kleiner als
eine positive Zahl K sind, und es sei ihre Summe um weniger als
K von einer reellen Zahl S verschieden. Es sei s eine solche reelle

Zahl, da,6 1 s I  ) 1 S 1 und sS &#x3E; 0 ist. Alsdann läßt sich eine

Anzahl dieser Glieder bestimmen, deren Summe um weniger als

2K von s verschieden ist.

Vorbemerkung. Wir brauchen diesen Hilfssatz nur für den

Fall, daf3 die Glieder ui komplex rational und die Zahlen K, S
und s rational sind. Wir geben unseren Beweis also in dieser
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Voraussetzung. Der allgemeine Fall wird in analoger Weise wie
bei dem Hilfssatz 1 erledigt.

Beweis. Wir betrachten den Fall, daß S und s &#x3E; 0 sind (der
andere Fall wird in ganz derselben Weise erledigt). Wir betrachten
zuerst die positiven ui, falls es solche gibt. Ist ihre Summe &#x3E; s,
so wâhlen wir einfach so lange positive ui, bis ihre Summe zum
ersten Male &#x3E; s 2013 K ist. Ist die Summe so der positiven Glieder
dagegen C s (falls es keine positiven Glieder gibt, setzen wir
so = 0), so ordnen wir die Glieder mit positivem Imaginàrteil
derart, daB der Realteil eines Gliedes nie kleiner ist als derjenige
des unmittelbar vorangehenden Gliedes. Die Teilsummen der so
geordneten Glieder bezeichnen wir mit s’p (0  p  Nl). In

derselben Weise ordnen wir die Glieder mit negativem Imaginär-
teil zu einer Reihe, deren Teilsummen wir mit s"p (0  p  N2)
bezeichnen. Es ist dann s’ + s’’N2 um weniger als K von einer
positiven Zahl &#x3E; S - so verschieden. Wir ordnen nun jedem
si bzw. jedem s’’p diejenigen s’’q bzwT. diejenigen s’ zu, deren

Imaginarteil um weniger als K von dem Imaginarteil von - s§
bzw. - s’’p verschieden ist. Es wird dalln jedem sp bzw. s’; wenig-
stens ein s’ bzw. s’ zugeordnet. Auch gibt es offenbar zu jedem
Paar s, s;’ von einander zugeordneten Teilsummen mit

k 1
k1 + l1  N 1 + N 2 ein zweites Paar s’ s" derart, daf3 k2 -ki &#x3E; 0,
l2 - l1 &#x3E; 0 und k2 + l2 &#x3E; k1 --I-- l1 ist, während die Realteile von

s’k1 + s;’ 1 und sk2 + s"’ einen Unterschied kleiner als 2K aufwei-k1 1, Sk2 12
sen. Da der Realteil von SN 1 + sN2 größer als S - so - K &#x3E; s - so - K
ist, kônnen wir m so wâhlen, daß der Realteil von s’ + sl’ um

m 
+ 

m

weniger als K von s - so versehieden ist. Da der Imaginàrteil
von s’ + slm absolut genommen kleiner als K ist, gilt jetzt

Mithin sind die in

gesuchten Glieder.
enthaltenen Glieder die

Beweis von Satz A.

Wie die Betrachtung der Reihe Xl u£ , u1 = Cul--s2)e -i arg(sl-s2) 
un = une-iarg(Sl-S2), lehrt, brauchen wir nur den Fall, da13 si

positiv und S2 Null ist, zu erledigen. Die verlangte Summe s = asl
ist dann reell. Weiter lehrt die Betrachtung von Àlu§,
u’1 = - u1 + SI’ un = - Un , daB wir keine negativen Werte von
s zu betrachten brauchen. Wir beweisen nun erstens, daB wir jede
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nicht-negative Zahl  s, als Summe einer Umordnung unserer
Reihe erhalten kënnen und zweitens, daß es gelingt, durch Um-
ordnung die Summe 2s zu erhalten, sobald eine konvergente
Anordnung mit der Summe s und eine zweite konvergente
Anordnung mit der Summe Null vorliegt. Durch wiederholte

Anwendung dieser beiden Fâlle läßt sich dann jede positive Zahl
als Summe einer Umordnung erzielen. Es bleibt also nur noch der
Fall übrig, daß von der verlangten Summe s weder s = 0 noch
s # 0 festgestellt ist 5). Wir bestimmen dann zwei konvergente
Umordnungen, welche die Sumnxen -11 und + 2 haben und
wenden die Substitution u’1 = ul + 1/2 , un = un (n &#x3E; 1) an.

Die nun noch fehlenden Beweise führen wir jedesmal in zwei
Etappen. Zuerst geben wir eine Konstruktion an, welche eine
Umordnung Zn von I: Un erzeugt, und dann beweisen wir, daB
die Reihe Zn positiv bzw. negativ konvergent ist und die ver-
langte Summe hat, falls die vorgelegten Umordnungen  vn
und Wn positiv bzw. negativ konvergent sind.

Erster Fall. Es sei also 1 vn bzw. Xl wn eine (positiv oder
negativ) konvergente Umordnung von Un mit der Summe S
bzw. mit der Summe Null, und es sei die verlangte Summe s
(0 ç s  S). Auf der ersten Stufe wâhlen wir ul als erstes Glied
der neu zu bildeiiden Reihe Zil’ deren Teilsummen wir mit sn
bezeichnen werden. Auf der ln-tell Stufe betrachten wir die

Summe C der schon auf den vorigen Stufen gewàhlten Glieder 6 ).
Wir bestimmen einen Abschnitt A der Reihe 1 Vn, welcher alle
Glieder von C enthâlt und einen Abschnitt B der Reihe E Wn,
welcher alle Glieder von A enthâlt. Die Anzahl der Glieder von
B bezeichnen wir mit h(n). Jedem Gliede zvi von B ordnen wir

eine komplex rationale Zahl w’i zu, die um weniger als 1nh(n) + n
von wi verschieden ist. Die Summe der den Gliedern von A, B
und C zugeordneten komplex rationalen Zahlen bezeichnen wir
bzw. mit A’, B’ und C’. Es sei weiter s’ bzw. S’ eine positive
rationale Zahl, die um weniger als 1 von s bzw. S verschie-

nh(n) + n
den ist. Wir suchen nun eine solche Anzahl von nicht in A’ 

5) HEYTING, I.c., S. 20. 

6) Mit C bezeichnen wir sowohl die Menge der auf den ersten (n 2013 1) Stufen
gewâhlten Glieder ais ihre Summe. Eine analoge Verabredung treffen wir für
C’, A, B usw.
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vorkommenden Gliedern b’ von B’, daß der Unterschied zwi-
schen der Summe dieser Glieder und s’ - S’ dem absoluten

Betrage nach so klein môglich wird. Es soll aber wenigstens ein
nicht in A’ vorkommendes Glied von B’ genommen werden.

Jetzt bilden wir eine endliche Reihe G’, die aul3er diesen Gliedern

b’i noch diejenigen Glieder von A’, die nicht in C’ vorkommen

enthâlt, und wir ordnen G’ so, dals das Maximum für den abso-
luten Betrag der Teilsummen von G’ so klein wie môglich wird.
Sei G die Summe der den Gliedern von G’ zugeordneten Glieder
in entsprechender Anordnung. Es werden nun auf der n-ten
Stufe die so geordneten Glieder von G der Reihe nach als die
nächsten Glieder der neu zu bildenden Reihe gewâhlt. Wir be-
zeichnen mit v(m) eine solche ganze Zahl (inklusive Null), daf3
C auf der m-ten Stufe der Konstruktion die ersten v(m) Glieder
der beiden vorgelegten Reihen Vn und Wn enthâlt. Für n1 - oJ
strebt offenbar v(m) gegen oo. Wir bezeichnen weiter die Rang-
nummer der Stufe, auf welcher z. gewàhlt wird, mit Zn. Wir
zeigen nun, daß die durch diese Konstruktion erzeugte Reihe
Y, z,, positiv bzw. negativ konvergent ist und die Summe s hat,
falls Yà vn und E w. positiv bzw. negativ konvergent sind.

a) Es seien 1 v,, und Y, Wn positiv konvergent. Wir zeigen, daf3
sich zu jedem positiven e ein solches N bestimmen läßt, daB
1 s,, - s [  e ist, sobald n &#x3E; N genommen wird. Hierzu setzen

wir q = 0,01 - e und bestimmen wir M &#x3E; 1 derart, daß für

jedes n &#x3E; M 
lî

und

ist. Sei nun m &#x3E; M eine solche ganze Zahl, daB auch v(m) &#x3E; M

ist. Auf der m-ten Stufe (und auf jeder hôheren Stufe) gilt dann

wâhrend jedes Glied von B’, das nicht in C’ vorkommt, dem
absoluten Betrage nach  3iî ist. Es ist weiter die Summe der
Glieder von B’, welche nicht in A vorkomnien, nach (c) und (d)
um weniger als 4q von - S’ verschieden. Aus der Konstruktion
von G’ erkennt man nun nach dem Hilfssatz II, mit K = 4r, daB
die zuerst gewählten Glieder b2 von G’ eine Summe haben, die 
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um weniger als 8q von s’ - S’ verschieden ist. Da die übrigen
Glieder von G’ die nicht in C’ vorkommenden Glieder von A’

sind, so ist offenbar auch C’ + G’ - A’ - (s’ -5’) 1  8,q,
mithin nach (c),,,

Folglich ist auf der (m+1)-ten Stufe (und auf jeder hôheren

Stufe ) 1 C’ - s’l I  12q und da (e) auch auf dieser Stufe gilt,
so ist weiter I G’ 1  22n und folglich nach Hilfssatz la jede
Teilsumme von G’ dem absoluten Betrage nach kleiner als 31n.
Es ist somit jede Teilsumme von C’ + G’, die nicht in C’ ent-
halten ist, um weniger als 43q von s’ verschieden. Mithin ist

auf der (m+1)-ten Stufe (und auf jeder hôheren Stufe) jede
Teilsumme von C -f-- G die nicht in C enthalten ist, um weniger
als 44q  e von s verschieden. Bestimmen wir nun N derart,
daß lN &#x3E; m ist, so gilt nach dem vorigen 1 sp - s 1  e, sobald

p &#x3E; N genommen wird, w.z.b.w.

b ) Es seien 1 v. und £ Wn negativ konvergent. Wir beweisen

für jedes e &#x3E; 0 die Unmôglichkeit des Bestehens einer solchen
unendlichen Reihe wachsender positiver ganzer Zahlen pl, P2, ...,
da13 für jedes i

ist. Denken wir uns also ein solches e und eine derartige Funda-
mentalreihe {Pi} vorgelegt. Wir setzen n = 0,01 e und bestimmen
ein ganzes M &#x3E; 2 . Sei i so groB genommen, daB m = lpi - 1 &#x3E; M

ist. Falls nun sowohl auf der m-ten als auf der (m+1)-ten Stufe
die obigen Ungleichungen (c) und (d) erfüllt wären und jedes
Glied von B’, das nicht in C’ vorkommt, dem absoluten Betrage
nach  3q were, so hâtten wir, wie sofort aus dem oben geführten
Beweis ersichtlich, Isp.-si 1  e entgegen unserer Voraussetzung
(1). Es gilt also 
entweder

oder
t

oder aber

für ein gewisses = ni’ das jedenfalls
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Falls (IV) gilt für ein n &#x3E; v(m), so gilt natürlich auch (III)
für ein n &#x3E; v(m).

Wiederholen wir nun diese Untersuchung mit einem solchen
pj &#x3E; p2, dal3 v (lpi - 1) &#x3E; ni ist, so bekommen wir ein 11, = nj &#x3E; ni,

für welches wenigstens eine der Ungleichungen (II) und (III)
erfüllt ist. So fortfahrend bekommen wir eine solche Fundamen-
talreihe ni  nj  ..., daß für jedes ihrer Glieder wenigstens
eine der Ungleichungen (II) und (III) erfüllt ist. Da aber nach
Voraussetzung weder (II) noch (III ) für eine solche Fundamental-
reihe erfüllt sein kann, sind ivir zu einem Widerspruch gelangt,
w.z.b.w.

Zweiter Fall. Es sei £ Vn bzw. E wn eine (positiv oder negativ)
konvergente Umordnung von 2 Un init der Summe S bzBv. mit
der Summe Null. Wir erzeugen in folgender Weise eine (positiv
oder negativ) konvergente Reihe mit der Summe s = 25. Auf
der ersten Stufe wâhlen wir ul als erstes Glied der neu zu bil-

denden Reihe Y, z,,, deren Teilsuininen wir mit sn bezeichnen
werden. Auf der n-ten Stufe betrachten wir zuerst die Summe C

der schon auf den vorigen Stufen gewahlten Glieder. Wir bestim-
men einen Abschnitt B, der Reihe Vrp wvelcher alle Glieder

von C enthalte, und einen Abschnitt A der Reihe 1 Wn, welcher
alle Glieder von B1 enthâlt. Schließlich bestimmen wir einen Ab-
schnitt B2 der Reihe Vrl,’ welcher a,lle Glieder von A enthalte. Die
Anzahl der Glieder von B2 bezeichnen wir mit h(n). Jedem Gliede
vi von B2 ordnen wir eine komplex rationale Zahl v’ zu, die um

weniger als 1 +n von Vi verschieden ist. Ebenso ordnen wir
+fi 

S eine rationale Zahl S’ zu, die um weniger als nh( n) 1 -- n von Snh(n) + n
verschieden ist. Die Summen der den Gliedern von A, B1, B2
und C zugeordneten komplex rationalen Zahlen bezeichnen wir
bzw. mit A’, B1, B’ und C’. Wir ordnen nun die Glieder von
B’1, die nicht in C’ enthalten sind, und die Glieder von B’2 , die
nicht in A’ enthalten sind, in solcher Weise zu einer einzigen
Reihe G’, daf3 das Maximum des absoluten Betrages der Teil-

summen von G’ so klein wie môglich wird. Sei G die Summe der den
Gliedern von G’ zugeordneten Glieder in entsprechender Anord-
nung. Es werden dann auf der n-ten Stufe die so angeordneten
Glieder von G als die nächsten Glieder der neu zu bildenden

Reihe 1 Zn gewâhlt. Wir bezeichnen mit v(m) eine solche ganze
Zahl (inklusive Null), daB die Summe C auf der m-ten Stufe der
Konstruktion die ersten v(m) Glieder der beiden vorgelegten
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Reihen  vn und Wn enthâlt. Für m2013&#x3E;oo strebt offenbar v(m)
gegen oo. Wir bezeichnen weiter die Rangnummer der Stufe,
auf welcher z,, gewàhlt wird, mit ln . Wir beweisen nun, daß die
durch unsere Konstruktion erzeugte Reihe Zn positiv bzw.
negativ konvergent ist und die Summe 2S hat, falls S v. und

 Wn positiv bzw. negativ konvergent sind.
a) Es seien 1 v,, und 1 Wn positiv ko,nvergent. Wir zeigen, da13

sich zu jedem positiven E ein solches N bestimmen la13t, da13

1 s. - 2S 1  E ist, sobald n &#x3E; N genommen wird. Hierzu setzen

wir -q = 0,01 - e und bestimmen wir M &#x3E; derart, daB für
jedes n &#x3E; M 

1]

und

ist. Sei nun m &#x3E; M eine solche ganze Zahl, daù auch v(m) &#x3E; M

ist. Auf der m-ten Stufe (und auf jeder hôheren Stufe) gilt dann

wâhrend jedes Glied von Bz, das nicht in C’ enthalten ist, dem
absoluten Betrage nach  3q ist. Es ist nach (c) und (e) die
Summe derjenigen Glieder von B§ , die nicht in A’ enthalten sind,
um weniger als 4n von S’ verschieden. Aus der Konstruktion
von G’ erkennt man nun leicht, daß auch 1 C 1 + G 1 - B- S l  4 îl
mithin nach (d)

ist. Folglich ist auf der (m+1)-ten Stufe (und auf jeder hbheren

Stufe) C’ - 2S’ C 8r¡, und da (f) auch auf dieser Stufe gilt,
so ist hier I G’  14n und folglich nach Hilfssatz la jede Teil-
summe G’ dem absoluten Betrage nach  23q. Es ist somit

jede Teilsumme von C’ --f- G’, die nicht in C’ enthalten ist, um

weniger als 31 Yi von 2S’ verschieden. Mithin ist auf der (m+1)-
ten Stufe (und auf jeder hôheren Stufe) jede Teilsumme von
C + G, die nicht in C enthalten ist, um weniger als 33n  e
von 2S verschieden. Bestimmen wir nun N derart, daß lN &#x3E; m

ist, so gilt nach dem vorigen Isp - 2S 1  e, sobald p &#x3E; N

genommen wird, w.z.b.w.
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b) Es seien L Vn und 1 Wn negativ konvergent. Wir beweisen
für jedes positive e die Unmôglichkeit des Bestehens einer solchen
unendlichen Reihe wachsender positiver ganzer Zahlen pi, P2, - - -,
daß für jedes i 

ist. Denken wir uns also ein solches e und eine derartige Funda-
mentalreihe pi, p2, ... vorgelegt. Wir setzen n = 0,01 - e und bestim-

men ein M &#x3E; 2 Sei i so gro13 genommen, daB m = lpi - 1 &#x3E; M
lî 

ist. Falls nun sowohl auf der m-ten als auf der (m+1)-ten Stufe
die obigen Ungleichungen (c ), (d) und (e) erfüllt wären und jedes
Glied von B2, das nicht in C’ enthalten ist, dem absoluten Betrage
nach  3q wäre, so hâtten wir, wie sofort aus dem oben geführten
Beweis ersichtlich, 1 spi, - 25 1  e entgegen unserer Voraus-

setzung (1). Also gilt entweder

oder

oder aber

für ein gewisses n = ni, das jedenfalls &#x3E; v (m ) = V(lPi -1) ist.

Falls (IV) gilt für ein n &#x3E; v(m), so gilt natürlich auch (II) für
ein n &#x3E; v(m). Wiederholen wir nun die Untersuchung mit einem
solchen pj, daß v(lp,- 1) &#x3E; ni ist, und fahren wir in dieser

Weise fort, so entsteht eine solche Fundamentalreihe nini ..., 
dal3 für jedes Glied entweder (II) oder (III) erfüllt ist. Da

aber nach Voraussetzung weder (II) noch (III) für eine Funda-
mentalreihe solcher Zahlen erfüllt sein kann, sind wir zu einem

Widerspruch gelangt.

(Eingegangen den 15. September 1937.)

Nachtrag.
ZUSATZ A. Sind von einer Reihe Y, Un zwei Anordnungen vor-

gelegt, die mit der Summe v bzw. w konvergieren, so läßt sich die
Zahl ocv + (i-ce)zv für jedes reelle oc als Summe einer konver-

genten Anordnung von 1 un erzielen.
ZUSATZ B. Sind von einer Reihe 1 Un drei Anordnungen vor-

gelegt, die mit der Summe u, v und w konvergieren, so läßt sich die
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Zahl flu + yv + (l-fJ--y)w für reelle fJ und y als Summe einer
konvergenten Anordnung von £ Un erzielen.

In diesen Sâtzen ist mit "konvergent" entweder ,,positiv’’
oder "negativ konvergent" gemeint. Es braucht aber für die

Zahlen v und w bzw. u, v und w keine Beziehung von der Art
v#w oder v = w usw. bekannt zu sein 7). Zusatz B ist eine unmittel-
bare Folgerung von Zusatz A. Denn man hat offenbar entweder
p # 1 oder y # 1 oder fl + y # 0. Falls P # 1 ist, setze man

Zusatz A in derselben Weise wie Satz A. Man braucht nur

den Fall, daß w = 0 und v reell ist, zu betrachten (man setze
u’ 1 =- (ul-w)e-iarg (v-zv) uf n = une-iarg (v-w» und den Beweis für
0  ce  1 und « = 2 zu führen. Durch wiederholte Anwendung
folgt der Satz für jedes a &#x3E; 0. Für negatives ce setze man

u1 - -u, + v, un = un; ist weder oc # 0 noch ce = 0 bekannt,
so wende man den Satz an mit 1 - ce statt ce unter Vertau-

schung von 1 v. und Y, wn. SchlieBlich läßt sich der in der

vorliegenden Arbeit geführte Beweis von Satz A für 0  s C S
und s = 2S wbrtlich auf die beiden noch zu erledigenden Fälle
o  oc  1 und ce = 2 übertragen, wenn man dort s bzw. S durch
av bzw. v ersetzt und entsprechende Abänderungen bei den
approximierenden, rationalen Hilfszahlen s’ und S’ macht.

r

(Eingegangen den 10. Januar 1938.)

7) Die Betrachtung dieser Môglichkeit hat die Redaktion angeregt.


