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Uber unvollstindige Orthogonalsysteme 1)
S. Sidon
Budapest

Hat das beziiglich des Intervalls @ <2 << b orthogonale Funk-
tionensystem (), . .., @,(2), . .., dessen Glieder fir a <2 <b
beschrankt sind, die Eigenschaft, daB jede Funktion

T(z)= E cktpk(a:), wo die c¢; Dbeliebige reelle Konstanten be-
deuten, fur ein reelles p > 2 die Ungleichung

(1) f|T(w)| dm<c(>:c,§)
a k=1
mit von T'(x) unabhingigem C 2) erfiillt, wiahrend fiir jedes ¢ >0

b
f | T (@) " “dee
) Imf—— =

n 2
(54
=1
gilt?), so nenne ich p den charakteristischen Exponenten des

1) Fir die in Betracht kommende Literatur siche meine Noten: I. Bemerkungen
iiber Fourier- und Potenzreihen [Acta Szeged 7 (1934), 85—94], insbesondere
Einleitung und Teil 4. II. Uber die Fourier-Konstanten der Funktionen der Klasse
L, fir p>1 [Acta Szeged 7 (1935), 175—176].

2) C wird hier auch weiter diese Bedeutung haben.

3) Auch das Erfiilltsein von

o n »

_[ Z Vipu(x)| dz
k=1

(1) im—— < o0,

wenn simtliche |y;| = 1 oder

) im———— < 0,

ist von Interesse.
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nimlichen Systems. Gilt (1) fiir jedes reelle p, so sage ich, das
System ¢@,(z), ..., g,(2), ... habe den charakteristischen Expo-

nenten oo.

Der charakteristische Exponent eines vollstindigen normierten

) cos nx
Orthogonalsystems ist 2, der des Systems cos, ..., ——, ...
n
it 1 1
is wenn o <<—, 00, Wenn « = —.
1—2a <z % =2

Es lassen sich auch normierte, gleichméBig beschriankte Ortho-
gonalsysteme ¢) von beliebigem charakteristischen Exponenten

z
> 2 angeben. Das System ¢,(z), . . ., g,(z) = —T%Lz——%, cees
[ vi@ye]

2 1 0
wo y,(x) = cos (2"x) + Eﬁ%tﬂ , hat den charakteristischen

2 1 1 .
Exponenten 1o, Wenn a<< - 0, wenn a = FL Von den Teil-
—&0l

systemen des normierten trigonometrischen Orthogonalsystems
sind solche von geradem ganzen charakteristischen Exponenten
bekannt 5). Wichtig wire die Frage der Existenz von Teil-
systemen jedes normierten vollstindigen Orthogonalsystems von
beliebigem charakteristischen Exponenten zu entscheiden.

Fir ein beziiglich des Intervalls a < <b normiertes Or-
thogonalsystem ¢,(z), . . ., ¢, (), . . . von charakteristischen Ex-

ponenten p gelten die Sitze:
A. Jede im Lebesgueschen Sinne integrierbare Funktion

f(@) ~ Zc,p,(z) gehért zur Klasse L.

n=1 0
B. Gehort f(#) zur Klasse L ,, so muB Xc%, wo

n=1

b
¢, = f f(@)@, (z)dx, konvergieren ©).
a

4) Unter einem beziiglich des Intervalls a <z <b gleichmiBig beschrinkten

Orthogonalsystem verstehe ich ein solches, dessen Funktionen fir a<a<b

dem Betrage nach simtlich unter einer gemeinsamen Schranke bleiben.
5) Hat cos n,a, sinn,2, ..., cos n,x, sin n 2, ... den charakteristischen Ex-
ponenten 2/, wo I>1 und ganz ist, so erfiillt, wenn 2¢ <!, ¢ ganz, cos (2¢n,2),
o
wo N = Y} ny, (1) mit dem Exponenten
m=1
Fiir =1 ist diese Tatsache schon in meiner ,,Uber Fourier-Reihen mit

sin (2¢n,x), ..., cos N, sin N, . ..
1 k k

Liicken” [Compositio Mathematica 4 (1986), 78—81] enthalten. Dort ist auch
eine Vermutung beziiglich des charakteristischen Exponenten von cos 2n,z,
sin 2n,2, cos (n;+mn,)z, ... ausgesprochen.

n n
¢) Ist nur (1’) oder (1”) erfiillt, so gilt 3] |c,! = 0(n}), bzw. 3 ¢, =0(nt).
k=1 k=1
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C. Fir beliebige reelle Konstanten ¢, gilt

;

a

n n é
E Ck¢k(m) dw > C( z 0,2‘) 2
k=1 k=1

o0
woraus, wenn X ¢ <<oo, die Existenz einer im Intervalle
n=1

a < z < b iiberall stetigen Funktion f(z) mit fb J@) o, (2)dz =¢,
folgt. e
Bei den bisher untersuchten gleichmiaBig beschrinkten Ortho-

gonalsystemen beziiglich eines Intervalls a <z < b vom charak-
teristischen Exponenten p gilt fiir ¢ > 0 auch

I 2 ¢ (2)
oy le=1

lim s = o0,
n 2 2
( > ck)
k=1

wenn E eine beliebige Menge von positivem MafBle des Intervalls
a <z <b bedeutet.

In den folgenden Zeilen beweise ich, daB3 es zu jeder monoton
wachsenden Funktion H(k) mit lim H(k) =00, H(k) = O (log k)
ein beziiglich des Intervalls 0 < 2 < 2x normiertes, gleichméaBig
beschranktes Orthogonalsystem gibt, fiir welches

D+E

dze

4

fm [1;:“1 Cr ‘Pk(w)] dz

(3) Iim ® < oo,
n 3
( pX H(k)c,zc)
k=1
2 g a+e
f 2 cppr(@)| de
k=1
(4) lim =00 fiir £ >0,
n 243
[Z H(k)c,i]
k=1
n »
I kz_llck‘pk(w) de
(5) Iim = -— <0, wenn p > 2,
2
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fiir gewisse E Mengen des Intervalls 0 <z <27 vom MaBe
27w — ¢, wo € > 0, aber beliebig klein, gilt 7).

Ich schicke folgende Hilfssdtze voraus.

Hiurssatz I: Fir jedes Polynom (n—1)-ter Ordnung P(z)

gilt, wenn [ eine positive ganze Zahl bedeutet und « = %ﬂ s

T [Pl < nC () i “1Pe) g,
k=0 0

wo C(I) nur von ! abhingt.
-1
Beweis: Wird [P(z)]lz 2 2/ P;(z) gesetzt, wo die Py(z) Poly-
i=0
nome hochstens (n—1)-ter Ordnung sind, so gilt

"5_.‘.1 |Pet)|= %

k=0

-1 . —1 )
ij(ezka) Z ( zkoc)

D,
<C(l)i: Ii ,P(e”‘“)[ <C(l)-n f P(e*?)|dg .

n=1
Hivrssatz II: Fiir ein beliebiges Polynom P(z3) = X a,z* gilt,
k=0

wenn ! > 0 und ganz ist, die von J. E. Littlewood herriihrende
Ungleichung

2"—1 .27; n—1 !
& E [ Zag et dy <C(k2‘.lak]2),
=0 o =0

wo die p{¥ voneinander unabhingig die Werte 4 1 annehmen
und C eine absolute Konstante bedeutet. ®)

Hivrssatz II1: Zu einer beliebigen Folge von komplexen Kon-
stanten ay, ..., o, . .., @, mit [a;] =1 und einem beliebigen é > 0
und & > 0 gibt es, wenn die positive ganze Zahl K hinreichend
groB3 ist, ein die folgenden Bedingungen erfiillendes Polynom
2nK-ter Ordnung P(z):

|P(2)] <1+¢ fir [2] =1,

P(z) 2(Ic+1 Yo

zn

— 4,

<e fir |z| =1, ———+6<arg <
k=0,1,2, ..., n—1.

— Xp41

f r
7:(@) FORRRD ?i(r) FORRE hat also den charakteristischen Ex-
ponenten 4. [H(l)] [H(k)]

8) Mit X bezeichnen wir hier, wie iiblich, die Konjugierte der komplexen

Zahl X.
?) J. E. LitrtLEwoon: On the mean values of the pover series [Journ. London

M. S. 5 (1930), 179—182].

7) Das System
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Beweis: Es bezeichne F(z) die im Intervalle 0 < x << 2n auf
die folgende Weise definierte Funktion:

k. k+1
F(2) = oy fiir 20 3 <z < 2007,
— 0 k. . 2k k.

Gilt fiir das trigonometrische Polynom Kn-ter Ordnung
T(z) |F(x)— T(z)| <e iiberall im Intervalle 0 < z < 2, so hat
das durch P(z) =z"*T(argz) fiir |2| =1 definierte Polynom
P(z) die gewiinschte Eigenschaft.

Wir kénnen nun ein (8), (4) und (5) erfiillendes, normiertes,
gleichméaBig beschrianktes Orthogonalsystem konstruieren.

Es sei fiir die Folge positiver ganzer Zahlen My, M,, ..., M,, ...

]

1 ..
kZ1H(—M5 <00. Pyy(2), .« oy Pppy(®)s - - -, Pry, () sei eine Folge
nach Hilfssatz III existierender Polynome von der
N =K .2" (1 + -J%—)-ten Ordnung, wo K eine hinreichend grofle

k

positive gerade ganze Zahl bedeutet, fiir welche

1
| Pim (2)] <1+E fir |z| =1

Pk (z) _2m:Kl(m—1) 1
—%~_ykmle NMy <F’
—2 k
2
wenn
K? K2
27!K(l —I— F) 27ZK(l + 1 ——F)
— = <<argz < ,
N g N
1=0,1,2,...,2"—1,

wo die yi,,; simtliche in Betracht kommende Variationen von
+ 1 durchlaufen,

Pkm(z) . —27‘“;51(;:_1) < _1_ R
T M3
3
wenn
KZ KZ
2nK(l +—N—2) o 2nK(l+1 “F)
—_—ZV—_ g3, N )

1
l=20Mr oMk L 7, .. .,2Mk(1+—).
M,
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Durch Anwendung der Hilfssitze I und II ergibt sich, wenn

. - L 2n
I eine beliebige positive ganze Zahl bedeutet und =%
k
27 .
— = esetzt wird
=P8
2n IMpN—1 Mp—1| Mg 4
IM'N 3 Cm €%+ Py, (7
E r=0 8=0 | m=1
2n KI—1 2M;~1 Mp—1| Mk 4
= ( X | 2 Gim,ag,s, t))
IMN t=0 q=0 8=0 | m=1
1
KI-1 2Mk(1+ka) My—1| My 4 Mz \2
+ X 2 G(m,q,s,t) <C(Z c,zcm),
t=0 g=2Mx §=0 |m=1 m=1
wo

G(m, g, , t) = Cppm+ imUIKg+) oa+sf, P, [ei(KIqH)ch] ;

hingegen ist fiir ¢ > 0

4+
= 00.

9 THN-1Mo1] My .
h) ezm(roc+sﬁ) Pkm(ezM,‘ra)

m=1

lim
k=wINMZ+? r=0 8=0

Hieraus folgt durch Grenziibergang

27T My . 4 My 2
f ¥ D2 P, (7)o <c( > c,zm) :
m=1 m=1

0
_ 1 27T | M, 4+¢&
lim - f 3 m=2ep, (e?9)| dp=o0.
k= Mi+; m=1
Leicht ergibt sich auch
My, »
f b ckakm(ew) de
— % m=1
lim 7 < o
M; 2
( > c,zcm)
m=1

fiir jedes p > 2,

wo E eine Menge des Intervalls 0 <z <27z vom Mafle 27 — ¢
(mit ¢ > 0, beliebig klein) bedeutet.
Das aus der Doppelfolge der trigonometrischen Polynome

Th(@)s o« s Tia(@)s « - o5 Tiopgy(@)s Thar, 1(@)s + + o5 Tiosr, m(®@) -+ - o
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WO
Tin(@) = R[ertm=P,, (¢44)]

und 7; die Ordnung von T)_,,, A bedeutet, durch Normierung
entstehende Orthogonalsystem ist beziiglich des Intervalls
0 <z < 2n von der gewiinschten Beschaffenheit. 19)

(Eingegangen den 15. Juni 1936.)

10) Der Ubergang zu einem beliebigen Intervall ist trivial. An Stelle von 4
kann ein beliebiger Exponent > 2 treten. Erwiinscht ist natiirlich die Reduktion
des Faktors H(k) auf 1.



