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STRATIFIED WHITNEY JETS AND TEMPERED
ULTRADISTRIBUTIONS ON THE SUBANALYTIC SITE

BY N. HoNDA & G. MORANDO

ABSTRACT. — In this paper we introduce the sheaf of stratified Whitney jets of Gevrey
order on the subanalytic site relative to a real analytic manifold X. Then, we define
stratified ultradistributions of Beurling and Roumieu type on X. In the end, by means
of stratified ultradistributions, we define tempered-stratified ultradistributions and we
prove two results. First, if X is a real surface, the tempered-stratified ultradistributions
define a sheaf on the subanalytic site relative to X. Second, the tempered-stratified
ultradistributions on the complementary of a l-regular closed subset of X coincide
with the sections of the presheaf of tempered ultradistributions.

REsSUME (Jets stratifiés de Whitney et ultradistributions tempérées sur le site sous-
analytique)

Dans cet article nous introduisons le faisceau des jets de Whitney d’ordre de Ge-
vrey sur le site sous-analytique relatif & une variété analytique réelle X. Ensuite, nous
définissons les ultradistributions tempérées sur X de type Beurling et Roumieu. En-
fin, & travers les ultradistributions stratifiées, nous définissons les ultradistributions
tempérées-stratifiées et nous démontrons les deux résultats suivants : (a) si X est une
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390 N. HONDA & G. MORANDO

surface réelle, les ultradistributions tempérées-stratifiées définissent un faisceau sur le
site sous-analytique relatif & X, et (b) les ultradistributions tempérées-stratifiées sur le
complémentaire d’un sous-ensemble fermé 1-régulier de X, coincident avec les sections
du préfaisceau des ultradistributions tempérées.

Introduction

One of the aims of the present article is to define tempered ultradistributions
of Beurling and Roumieu class of order s > 1 and Whitney jets with growth
conditions as sheaves on the subanalytic site relative to a real analytic mani-
fold X. As growth conditions are not of local nature, functional spaces defined
on open subsets of X, as tempered distributions, Whitney % °°-functions or
holomorphic functions with polynomial growth at the boundary do not glue
on arbitrary coverings. In particular, such spaces do not define sheaves on
the usual topology of an analytic manifold. We recall the approach set by
S. Lojasiewicz ([12]) later reinterpreted and generalized in the works of M.
Kashiwara and P. Schapira (see [4], [6] and [7]). They defined tempered dis-
tributions and Whitney % °°-functions as sheaves on the subanalytic site, Xg,,
relative to a real analytic manifold X. The open sets of X, are the relatively
compact subanalytic open subsets of X and the coverings are those admitting
finite refinements. The use of these objects in the study of linear ordinary
differential equations gave interesting results (see [14]). Let us mention that
function spaces with growth conditions, such as holomorphic functions on the
complex plane with moderate or Gevrey growth or asymptotic expansion at the
origin, are treated as sheaves on the real blow up at the origin by B. Malgrange
in [13] and many other authors elsewhere in litterature. Such function spaces
are used in a systematic way in the study of linear ordinary differential equa-
tions. Some of these sheaves on the real blow up at the origin can be obtained
by specializing their subanalytic generalization (see [15]).

Among the motivations of this paper there is the fact that the naive defini-
tion of tempered ultradistributions, mimicking that of tempered distributions
(see [4]), does not give a sheaf on the subanalytic site, as explained in Section
1.3. Let us recall that tempered ultradistributions on an open set U in X
are defined as global sections of ultradistributions modulo ultradistributions
with support on X \ U. This latter space is the dual of Whitney jets with
Gevrey like growth conditions on X \ U. In this paper, we relax the condi-
tion on Whitney jets with Gevrey like growth conditions by introducing the
stratified Whitney jets on a real analytic manifold X. We prove decomposition
and gluing properties for stratified Whitney jets on finitely many subanalytic
subsets of X (Lemma 2.2.4). Then we study the dual of stratified Whitney jets
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STRATIFIED WHITNEY JETS AND TEMPERED ULTRADISTRIBUTIONS 391

on a closed set Z C X, the space of stratified ultradistributions on Z. This
latter space is a subspace of ultradistributions with support in Z. We study
the decomposability of stratified ultradistributions on arbitrary finitely many
subanalytic closed sets (Corollary 2.4.5 and Corollary 3.1.5). Then we define
tempered-stratified ultradistributions on U as global ultradistributions modulo
stratified ultradistributions on X \ U. We prove that, when X has dimension 2,
tempered-stratified ultradistributions define a sheaf on X,,. Further, we prove
that, if X \ U satisfies a regularity condition, tempered-stratified ultradistribu-
tions on U coincide with classical tempered ultradistributions on U (Theorem
3.2.1). We conclude by proving that tempered-stratified ultradistributions and
other spaces of ultradistributions similarly defined do not give rise to sheaves
on Xg,, if X has dimension > 2.

Similar results on the decomposability of ultradistributions were obtained by
J.-M. Kantor ([3]) and by A. Lambert ([11]). Their approach is quite different
from our. Indeed, given s > 1, they find a family & of subanalytic closed
sets depending on s such that ultradistributions of class s decompose on sets
in 5. The family Y is not closed under intersections hence it is not possible
to define a Grothendieck topology and a notion of sheaf starting from it.

In the end, let us recall that ultradistributions and growth conditions of
Gevrey type turned out to be very useful in the functorial study of linear
diffential equations, being strictly linked to the irregularity of equations. Let us
cite, for example, [2] and [19] for some applications of ultradistributions in the
study of systems of linear differential equations. In the present article we do not
use tempered-stratified ultradistributions to study systems of linear differential
equations, postponing this problem to future investigations. Throughout the
paper, we just limit to point out if the sheaves we define give rise to sheaves of
modules over the ring of linear differential operators with analytic coefficients.

The paper is organized as follows. We start Section 1 by recalling the basic
properties of Whitney jets with growth conditions. Then, mimicking [4], we
define the presheaf of tempered ultradistributions and we recall a condition,
due to H. Komatsu, for a continuous function to extend to the whole space
as an ultradistribution. In the end of the section, we prove that tempered
ultradistributions do not glue on finitely many subanalytic open subsets of R2.

In Section 2 we start by recalling some definitions and basic results on sub-
analytic sets and the subanalytic site relative to a real analytic manifold X.
Then, we define the space of stratified Whitney jets with Gevrey growth con-
ditions and we prove that they give rise to a sheaf on the subanalytic site
relative to X. Then, we introduce the space of stratified ultradistributions on
X and we prove that this space is dual to stratified Whitney jets. In the end
of the section, from the gluing property of stratified Whitney jets, we obtain a
decomposition property for stratified ultradistributions.
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392 N. HONDA & G. MORANDO

In Section 3, given a real analytic manifold X, we define tempered-stratified
ultradistributions on a subanalytic open set U C X which is a subspace of
tempered ultradistributions on U. Then, we prove two results. The first states
that, if dim X = 2, tempered-stratified ultradistributions define a sheaf on
the subanalytic site relative to X. The second states that if X \ U satisfies a
regularity condition, then tempered-stratified ultradistributions on U coincide
with tempered ultradistributions on U.

In Appendix A we prove a result of density for stratified Whitney jets in the
space of Whitney jets. Such result is needed in Section 2, we prove it in the
Appendix as the proof is rather long and technical.

Acknowledgements. — During the preparation of this article, the second author
has benefited of a JSPS Summer Program scholarship and of a scholarship
from the Fundacao para a Ciéncia e a Tecnologia at the Centro de Algebra da
Universidade de Lisboa. The second author would like to thank JSPS, FCT
and CAUL for their support.

1. Notations and review on Whitney jets and ultradistributions

In this paper, we assume that a real analytic manifold is countable at infinity.

1.1. Whitney jets with Gevrey conditions. — Let X be a real analytic manifold.
We denote by Mod(Cx) the category of sheaves on X with values in C-vector
spaces, and by ¢° the sheaf of infinitely differentiable functions on X. We
denote by 7 : J¥ — X (k € Z>o) the vector bundle associated with k-th
jets over X. For any non-negative integers ki > ko, the morphism of vector
bundles j*2:F1 : Jk1 — Jk2 is defined by the canonical projection from k;-th
jets to ko-th jets.

Let A be a locally closed subset in X, and J*(A) designates the set of con-
tinuous sections of the vector bundle J* over A. We denote by j% : € (X) —
J¥(X) the canonical jets extension morphism, and for any locally closed spaces
A C B, we designate by jffLB : JE(B) — J*(A) the natural restriction map
from sections over B to those over A. Composing j% and jﬁ, x we have the
canonical morphism

Jh = dhx 0 gk €(X) = JH(A).
The morphism of vector bundles j¥2"¥1 (k; > ky) induces the map
R TR (4) - TR (4),
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STRATIFIED WHITNEY JETS AND TEMPERED ULTRADISTRIBUTIONS 393

and using these maps we define the jets space over A by
J(A) := lim J*(A).
kGZZg
The morphism 5% (resp. jfl,B) induces
jx : € (X) — J(X)
(vesp. jap i J(B) = J(A)) .
We set ja :=jaxojx : €°(X)— J(A).

If X = R™ with a system of coordinates (z1,x2,..., ), then the jets space
J(A) is isomorphic to the set

{{fa}ae(Zzo)n; fa S %O(A)}
where ¢°(A) designates the set of continuous functions on A. The map j4 is
identified with
o*f
Oz®

jA(f):{

} for f € €(X).
A

OLG(Zzo)"
Let A be a locally closed subset in X. We define ./ , € Mod(Cx) by
JaU) = JANT)

for U an open subset of X. If ANU = &, then we consider J(ANU) as the
zero object. The morphism jany,voju : €°(U) — J(ANU) induces the sheaf
homomorphism j4 : €° — 4 ,.

We have that ./ , is a sheaf of rings and modules over Dx: the sheaf of rings
of linear differential operators with analytic coefficients on X.

From now on, the symbol * denotes (s) or {s} for some s > 1. Let us recall
the definition of the sheaf €* of ultra-differentiable functions of class * in X.

First we need the notion of 1-regular sets.

DEFINITION 1.1.1. — We say that A is 1-regular at p € X if there exist a
neighborhood U C X of p, a neighborhood V. C R™ of the origin and an iso-
morphism ¢ : (U,p) — (V,0) satisfying the following condition. There exist
a positive constant k > 0 and a compact neighborhood K C V of the origin
such that for any x1,z2 € Y(ANU) N K there exists a subanalytic curve l in
Y(ANU) joining x1 and zo and satisfying the estimate

1] < Klzr — 22,

where |l| stands for the length of I.
The set A is said to be 1-reqular if it is 1-regular at any point p € X.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



394 N. HONDA & G. MORANDO

For a locally closed subanalytic subset A (see Definition 2.1.1 for a suban-
alytic set), if A is 1-regular then, using the Curve Selection Lemma (see [5]),
one proves that A is also 1-regular. Clearly, the converse does not hold. For
example, let X = R? with coordinates (z,y), A= X \ {z = 0} is not 1-regular
at any point in the set {z = 0}, but A = R? is 1-regular at every point. More-
over a l-regular set is locally connected at every point in X, that is, for any
p € X, there exists a family {V;} of fundamental neighborhoods of p satisfying
V; N A is connected.

Let (z1,z2,...,2,) be a system of coordinates of R™ and V. C R"™ a 1-
regular relatvely compact open subset. Let us recall that, given s > 1 and
h > 0, the space €*"(V) consists of the set of f € ¥°°(V) whose arbitrary
partial derivative extends to a continuous function on V with the following
growth condition. There exists C > 0 such that, for any o € (Z>)",

(1.1) sup | D f(z)| < chlel(jall)®
zeV
where D® := (a%l)al (%)a" for a = (a1,...,an) € (Z>0)™

We denote by @%h the set of functions f € €*"(V) with D f |V\V =0 for
any o € (Z>0)". The spaces €*"(V) and @%h endowed with the norm

D f(2)
117 o= sup

Vb= T HEI(al)
a€(Z>o)"

are Banach spaces.
Given an open set U C R", we set
¢ (U) == lim im@*>"(V) |
e
VeUh>0
¢ U) = lim imE*"(V) .
— —
VEUh>0
Here V' runs through the family of 1-regular relatively compact open subsets
of U.

In [9] (see also [16]), it is proved that, given open sets W, W’ C R™ and a real
analytic isomorphism ® : W — W', the morphism -0 ® : €*(W') — ¢*(W) is
an isomorphism. Hence, for an open subset U in a real analytic mamifold X,
the set of ultra-differentiable functions €*(U) is also well-defined.

Let X be a real analytic manifold. One checks easily that €%} and €(*) are
sheaves on X.

DEFINITION 1.1.2. — For a locally closed subset A in X, the image sheaf
Jja(€*) C 44 is called the sheaf of Whitney jets of class * over A, and we
denote it by W.
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Note that 9’ is a sheaf of rings and a ?x-module. By the existence of
partitions of the unity, the definition of %’ is equivalent to the following. Given
F € 4,(U), then F belongs to W (U) if and only if there exists f € €*(U)
with ja(f) = F.

It follows from the definition that for any F' € W’ (U) there exists an unique
F € W5(U) such that jA,Z(F) = F. Hence the restriction map

Jaz: WalU) = Wi(U)
is an isomorphism.

Let A C R™ be a locally closed set, U C R™ an open set and s > 1. We
introduce two families of semi-norms on 4, (U).

For h > 0and K C ANU, set

Wil = sup LB (P = {fdacanr € Ja)) -
P o

a€(Zxo)™

We define, for A > 0 and K C ANU, another semi-norm || - ||%s7h on g ,(U)
in the following manner. Given F = {fo}aczs0)r € J4(U) and B € (Z>o)"
and z,2' € ANU, we set

SﬁF = {fa-i—ﬁ}a )
To(F; 2, 2') = 3 éfa(x')(x—x')o‘ ,

la|<m

R (F;z,2') = folx) — T (F; x, ') .

Then ||F||;’”{/Sh is defined by

m! ( Ry (So F; x')l)

sup
/
z,x' €K, x#x’ |-'E - |m+1

su
moe (Ja] +m + 1)IshlalFmt

The following characterization of W can be found in [3].
THEOREM 1.1.3. — Let A C R™ be a locally closed set and U C R™ an open

set.

1. A jet F € J,(U) belongs to ‘M/E;)(U) if and only if, for any h > 0 and
any compact set K in U, ||F||ank,s,n < 00 and ||F||ZVMK,s,h < 00 hold.

2. AjetF € 4 ,(U) belongs to ‘Wis}(U) if and only if, for any compact set K
in U, there exists h > 0 such that ||F||ank,s,n < 00 and ||F||ZVOK,s,h < 00.
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396 N. HONDA & G. MORANDO

Let A C X = R"” be a compact set. We set
s,h
W3H(X) = {F € 4(X); [|1Fllasn + ||IFlI 455 < 00} -

Endowing W%"(X) with the norm || - [la,s,n + 1] - ||21V,s,hv it becomes a Banach
space. It follows from Theorem 1.1.3 that

W (X) = lim W5"(X)  and

h>0
WEH(X) = lim W5 (X) .
h>0

It follows that 9%’ (X) can be endowed with a locally convex topology by these
projective or inductive limits. It is easy to see W’ (X) is an FS space (resp. a
DEFS space) if * = (s) (resp. * = {s}) respectively.

1.2. Ultradistributions. — For a complete presentation of the theory of ultra-
distributions, we cite [g].

Let X be a real analytic manifold. Let us recall that, given a sheaf F' on X
and U C X an open set, we denote by T'.(U, F), the set of sections of F on U
with compact support.

Given U C R" open, the locally convex topological vector spaces 2*(U) and
2*"(U) are defined as

7*MU) = lim ZP" = Te(U, 6",
VeU
7)(U) := lim lim 22" ~T.(U,¢) ,
VeU h>0
2¥HU) = lim lim 22" ~T (U, ¢} |
— — TV
VeU h>0
where V runs through the family of 1-regular relatively compact open subsets
of U.

In [9] (see also [16]), it is proved that, given open sets W, W/ C R™ and a real
analytic isomorphism ® : W — W', the morphism - o ® : Z*(W') — 2*(W)
is an isomorphism. Hence we can define 2*(U) for an open set U in a real
analytic manifold.

DEFINITION 1.2.1. — 1. Let X be a real analytic manifold of dimension n.
We denote by V* the sheaf on X of volume elements with coefficients in
€™, thatis V* := €¢* ®w§l)®orx, where wg?) (resp. @) is the sheaf of real

a Z

analytic n-forms (resp. functions) on X, and orx is that of orientations
on X.
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2. Let U be an open subset of X. The space of ultradistributions on U of
class (s) of Beurling type (resp. of class {s} of Roumieu type), or simply
of class (s) (resp. {s}), denoted D6 (U) (resp. D6} (U)), is defined as
the strong dual space of T.(U, 7)) (resp. T.(U, ¥{s})).

In [17], it is proved that 96" is a sheaf on X.

Given a closed set Z C X and F' € Mod(Cx) denote by I'z(F') the subsheaf
of F' of sections supported by Z.

If A is a compact subset of X = R", from results of H. Whitney and J.-
M. Kantor, it follows that the topological dual of %/’ (X) is isomorphic to
Ta(X, Db).

DEFINITION 1.2.2. — The presheaf of tempered ultradistributions of class x on
X, denoted Db%, is defined by

I'(X; 6"
T Txw (X 267
Note that Db’ is not a sheaf on X.

Db (U) : U C X open.

In Proposition 1.2.3 below (originally due to H. Komatsu), we recall a
sufficient condition for a continuous function to extend to R™ as an ultradistri-
bution. For U an open subset of R", we denote by 24°'(U) the dual space of
2%4(U), and by LL (U) the set of locally integrable functions on U.

loc

PROPOSITION 1.2.3. — Let U C R™ be an open set and f € LL (U). Suppose

loc
that there exist positive constants h and C satisfying

h
|f(z)] < Cexp (dlst(:vaU)ll> .

Then we have f € @&;)t(U).
We need some technical results.

LEMMA 1.2.4. — Let U be a relatively compact open subset of R™.

1. Let f € LL _(U). If there exist positive constants | and M such that, for

loc
‘/ fedx
U

any ¢ € 2°YU),
then f extends to an ultradistribution in @&S’I(R"). In particular, f be-
longs to @&g?)t(U).

< Mllellv, s,
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398 N. HONDA & G. MORANDO

2. There exist constants C' > 0 and x > 0 such that, for any I > 0 and for
any ¢ € 2%YU), the inequality

_,ils_—ll
lo(z)| < Cexp | ——————— | ll@llu, s,
ist(z 6U)s— U,s,l

holds for any z € U.

Proof. — (i). By the Hahn-Banach’s extension Theorem the functional fU f
dz extends to Z%!(R").

(if). Set
My Do)
ae(Zso) (Jafsilel”
zeU

and let y be a point in U with |z — y| = dist(x, 0U). Then we have

p(z) *—1! / (1- dtktp((x —y)t+y)dt for any k € N.

As
k

n k
j?w((x )y = (Zm— - y>;’> o(2)
i=1 ’ z=(z—y)t+y

(CL‘ B y)a o
DD e A O |

hold, we obtain

lp(@)| < k(llz — y))* (k)M % < (2nllz — y|)*(k)* "1 M.
|a|=k

Hence we have

s—1
z)| < inf onllz — y))*(k))*" M = ( inf €*k! M
()] ( |z —y|) inf

where we set € = (2nl|m - y|)s T = (2nldist(z, 8U))* 1. We may assume
€ < 1. Then, for an integer jy > 1 satisfying jo < 1 c < Jjo+1, we get

1% :
inf €*k! < €104y! < ( ) Jjo! < et v/ joe 70
Jo

E>1
(L (-2) b (-1)
— e _— [ 12 e JRE—
- \/E AT = P\ %
thanks to the Stirling formula
(€]
= Vorjitie it 0 <9(j) < L.
This completes the proof. O

N‘CD
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Proof of Proposition 1.2.5.. — Since the problem is local, we may assume that
U is relatively compact. Lemma 1.2.4 (ii) implies that there exists C’ > 0 and
k > 0 such that, for any [ > 0 and for any ¢ € 2°!(U),

h — wlo=T

" )llellg . -
dist(x,aU)s_l> U,s,l

F@e@)| < e (

If we take [ > 0 sufficiently small, then the conclusion follows from Lemma
1.2.4 (i). O

1.3. Anexample. — Let [ > 1. Set

Uy = {(z,y) € R% y > 2?1}

U2 =R x R<0 .
Define a function u;(z,y) € L, .(U;) (i = 1,2) by
=)
exp(————) for (z,9) €U N (R x R
oy o o2 Gmaa) for @) €T @ xRoy)

0 for (z,y) € U1 N (R x R<g)
uz(z,y) :=0 for any (z,y) € Uy

By Proposition 1.2.3, u; € @&(2)t(U1). Clearly ugy € @&(2)t(U2). As
u1lu,nu, = U2|u,nu,, there exists u € Llloc(Ul U Us) such that uly, = u;
and uly, = uy, but v ¢ DD (U; U U,). Indeed, let us prove that
u ¢ DD UL, UUY).

Set U := Uy UUy and D := {(z,y) € R% |z| < 1,|y| < 1}. Suppose that
u € Db (U). Then there exist positive constants C and h such that

' /U upda

holds for any ¢ € 2 (U N D). Now applying Lemma A.G to the situa-
tion ¢(t) = t?, s = 2 and K = {0} C R? we obtain a family of functions
{Xe(z,y)}e>o satisfying the conditions 1., 2. and 3. of the lemma. Set

< OB 2,n

D, := {—% <z< —%,OSny”“}

and

Xz +26,y)  exp(—e ?)xe(z + 2¢,y)
V) G explple ) Cn
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400 N. HONDA & G. MORANDO

where C}, > 0 is the positive constant given in Lemma A.6 1. Remark that

|[%ell5 5 5, < 1 holds for any € > 0, and hence, / utpdz| is uniformly bounded.

U
On the other hand, for sufficiently small € > 0, we have

— L exp (—e?
1/)€|D6_ Ch exp( € ) )

and

1 1 —(2l+1
exp (m) > exp (—gmrer ) 2o (v ) ((wy) € D)

for some positive constant k > 0. Therefore we have

/ upedr > / upedr > 1 exp (—6_2 + Iié_(2l+1)) / dz — o0,
U D. Ch D.
which give a contradiction. Hence, we conclude that u ¢ @&(Q)t(Ul U Us).

It follows that tempered distributions do no glue on finite coverings of open
sets with smooth boundaries. In particular, the presheaf @&}t is not a sheaf
on the subanalytic site relative to R? (see Subsection 2.1 for the definition of
subanalytic site).

Among the purpose of this paper there is the attempt to overcome the
difficulty presented in this example. We will define a sheaf on the subanalytic
site of stratified Whitney jets of Gevrey order. Then, we will define stratified
ultradistributions. In the end, by means of stratified ultradistributions, we
will define tempered-stratified ultradistributions and we will prove two results.
The first states that, if X is a real surface, tempered-stratified ultradistribu-
tions define a sheaf on the subanalytic site relative to X. The second states
that the sections of tempered-stratified ultradistributions on open subanalytic
open sets with 1-regular complementary coincides with sections of tempered
ultradistributions.

2. Stratified Whitney jets and stratified ultradistributions

2.1. Review on the subanalytic site. — Let X be a real analytic manifold count-
able at infinity.

DEFINITION 2.1.1. — 1. A set Z C X is said semi-analytic at z € X if
the following condition is satisfied. There exists an open neighborhood
W of x such that ZNW = User Njeg Zs; where I and J are finite sets
and either Z;; = {y € X; fi;(y) > 0} or Z;; = {y € X; fi;(y) = 0}
for some real-valued real analytic functions f;; on W. Further, Z is said
semi-analytic if Z is semi-analytic at any x € X.
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2. A set Z C X is said subanalytic if the following condition is satisfied.
For any x € X, there exist an open neighborhood W of x, a real analytic
manifold Y and a relatively compact semi-analytic set A C X XY such
that m(A) = ZNW, where m: X xY — X is the projection.

Given Z C X, denote by Z (resp. Z, 8Z) the interior (resp. the closure, the
boundary) of Z.

PROPOSITION 2.1.2 (See [1]). — Let Z and V be subanalytic subset of X.
Then ZUV, ZNV, Z, Z and Z \ V' are subanalytic. Moreover the connected
components of Z are subanalytic, the family of connected components of Z is
locally finite and Z is locally connected at any point in Z.

DEFINITION 2.1.3. — 1. A family {As}aca of subanalytic subsets of X is
said a stratification of X if {Aq}aen s locally finite, X = || Ay and
aEA

each Ag is a locally closed subanalytic manifold.

2. Given a locally closed subanalytic set A C X, we say that {As}tach 1S @
stratification of A if A is the disjoint union of the A, and there exists a
stratification {Aq tacaun of X finer than the stratification {A, X \ A}.

3. Let A be a subanalytic subset of X, {As}aca a stratification of A. Then
{As}aea is called a l-regular strafication if each stratum is 1-regular,
connected and relatively compact.

finite family of subsets of

PROPOSITION 2.1.4 (See [10]). — 1. Let Z C X be a locally closed suban-
alytic subset. There exists a 1-reqular stratification of Z.

2. Let U C X be a subanalytic open set. There exists an open covering
{U;}jeq of U such that, for any j € J, U; is a subanalytic 1-regular set
and for any compact K C X there exists a finite set Jx C J such that
Kn( U U;)=KnU.

JE€EJK

For the rest of the subsection we refer to [7].

We denote by Op(X) the family of open subsets of X. For k a commutative
ring, we denote by Mod(kx) the category of sheaves of k-modules on X.

Let us recall the definition of the subanalytic site X, relative to X. An
element U € Op(X) is an open set for X, if it is open, relatively compact
and subanalytic. The family of open sets of Xg, is denoted Op°(Xg,). For
U € Op®(Xsa), a subset S of the family of open subsets of U is said an open
covering of U in X, if S C Op®(Xsa) and there exists a finite subset Sy C S such
that Uyeg,V = U. The set of coverings of U in Xg, is denoted by Covg, (U).

We denote by Mod(kx,,) the category of sheaves of k-modules on the sub-
analytic site. With the aim of defining the category Mod(kx_,), the adjective
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“relatively compact” can be omitted in the definition above. Indeed, in [7, Re-
mark 6.3.6], it is proved that Mod(kx_,) is equivalent to the category of sheaves
on the site whose open sets are the open subanalytic subsets of X and whose
coverings are locally finite and consist of open subanalytic sets.

Let PSh(kx.,) be the category of presheaves of k-modules on Xg,. Denote
by for : Mod(kx,,) — PSh(kx,,) the forgetful functor which associates to a
sheaf F' on X, its underlying presheaf. It is well known that for admits a left
adjoint -* : PSh(kx,,) — Mod(kx,,)-

For F € PSh(kx_,), let us briefly recall the construction of F°.

For U € Op®(Xsa) and S € Covg,(U), let F(S) be defined as the kernel of
the morphism

[[Fw)— ] Funv)
Ues uves
{svtves — {sulvnv — svivnvivves -
If S’ € Covg,(U) is a refinement of S, then there exists a natural morphism
F(S) — F(8").
Now, for U € Op®(Xsa), set
(2.1) FH(U) := lim  F(S).
S€Covsa(U)
It turns out that F¢ ~ F++,
The following Lemma is an immediate consequence of the defintions above.

LEMMA 2.1.5. — Let & C Op(Xsa) be such that for any U € Op(Xs,) there
exists S € Covgo(U), such that S C J. Let F,G € PSh(kx,,) and suppose that

there exists a morphism of presheaves ¢ : F — G such that, for any V € I,
oy : F(V) 5 G(V). Then F® ~ G°.

We denote by
0: X — Xaa,
the natural morphism of sites associated to Op®(Xs,) — Op(X). We refer
to [7] for the definitions of the functors g, : Mod(kx) — Mod(kx_,) and
07! : Mod(kx_,) — Mod(kx) and for Proposition 2.1.6 below.

ProPOSITION 2.1.6. — 1. The functor o~ ' is left adjoint to o,.
2. The functor o=* has a left adjoint denoted by o) : Mod(kx) — Mod(kx,, )-
3. The functors o~ ' and o) are exact, o, is exact on constructible sheaves.
4. The functors o, and o1 are fully faithful.

Through g., we will consider Mod(kx) as a subcategory of Mod(kx_, ).
The functor g is described as follows. If U € Op®(Xs,) and F' € Mod(kx),
then o(F) is the sheaf on X, associated to the presheaf U — F(U).
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2.2. Stratified Whitney jets. — Let A be a locally closed subanalytic subset in
a real analytic manifold X and U C X an open subset. Let us define the sheaf
JW’, of stratified Whitney jets of class * over A.

DEFINITION 2.2.1. — 1. We say that F € 4 ,(U) is a stratified Whitney
jet of class * over A in U if for any compact subanalytic set K in U there
exists a subanalytic stratification {Aq}aeca of A such that ja,nk .a(F) €
Wy, nx(U) holds for any a € A.

2. We denote by JW',(U) the set of stratified Whitney jets of class * over
AinU.

It is easy to verify that JW’ is a sheaf on X.

EXAMPLE 2.2.2. — Later we will prove that, if the set A is l-regular, then
Wy = JW’,. However, in general, W and JW’, are different. For example,
let m > 2, X = R? with coordinates (z,y) and

B={(z,y) €R* y=0,22>0}, Bn={(r,y) R} y=2"2>0}.
Set A = BU B,,. We define the jet F' = {fo} € /,(X) by:

0 (Iay) € Bm
fa(z,y) = 0~ ( 1)
5pa P\ 72 (z,y) € B
{2} {2} ; {2}
Then F € JWL’(X), but F ¢ WY’ (X). As a matter of fact, if F € WY’ (X),
then we can find F = {fa}a € d‘l/l/g}(X) with jaD,D(F) = F where

(2.2) D={(z,y) eR*»0<2,0<y<z™}.

By applying Lemma A.3 to F and D with the 1-regular stratification {D \
oD, B\ {0}, B,, \ {0}, {0}}, we have constants C,l > 0 satisfying

| fo(z,0)| = |f0(x,0)| < Cexp <_asim> (z > 0),

which is impossible.

We can also give the similar example on an open subanalytic set. Set U :=
X\ D (D was given by (2.2)), and define the jet G = {go} € J;(X) by

0 (z,y) e U\ {z >0,y <0}

go(z,y) = 0~ ( })
5a P2 (z,y) € {z >0, y < 0}

Then G € ng‘l/l/}{]?}(X), but G ¢ (I/I/I{JQ}(X). The reason is the same as that for
the first example.
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REMARK 2.2.3. — 1. We cannot expect JW5(X) = JW 4 (X) on the con-
trary to W5(X) = Wi (X). For evample, consider the case X = R? with
coordinates (z,y) and A= X \ {z = 0}.

2. We have the equivalence, for every F € 4 ,(U),

jaonk,A(F) € Wi ax(U) < Jeosa(aank), a(F) € Weios s (auni)(U)
where clos 4 (B) denotes the closure of the set B in A. Hence, in Definition
2.2.1, the condition
“Ja.nk.a(F) € (M/ZQQK(U) for any a € A7
can be replaced with

“ Jelos a (AaﬂK),A(F) € (WzlosA (AanK)(U) for any o € A”.
In particular, if A is a compact subanalytic subset in X, then F €
JW(X) if and only if there exists a stratification {Ay}aca such that
Ja, a(F) € Wz (X).

The sheaf W’ is a subsheaf of JW, and JW’, is a sheaf of rings and
a Dx-module. Further, W and JW’, are €*-modules and soft sheaves. If
{Ay}aca is a stratification of A, then we denote by ‘W? 4.} the subsheaf of
JW’ defined by:
BWiay(U)={F € J,(U); ja, a(F) € W, (U) for any a € A} .
LEMMA 2.2.4. — Let A be a locally closed subanalytic subset in X, and let
{A}L_, be a finite family of locally closed subanalytic subset in X with A =

UA;. We assume that every A; is a closed subset in A, or that every A; is open
in A. Then the sequence of sheaves

(2.3) 0= JWy— & Wy — & JIWha
1<i<k ’ 1<i<j<k R

18 exact.

Proof. — The injectivity of the second morphism of (2.3) is clear.

Under the condition that every A; is closed (or open) in A, the sequence of
sheaves of jets

0
~da= 1§€‘9§ij" - lgiingkJAinAj

is exact. Let U be an open subset and K a compact subanalytic subset in U,
and let F; € J‘M/*A(U) with j4,n4;,4,(Fi) = ja,na;,a, (F}). Then by the above
exact sequence we can find a jet F' € 4 ,(U) with ja, a(F) = F;. To conclude
the proof let us show that F' € JW (U).

As F; € d‘W;Ai(U) there exists a stratification {Aﬁj)}a of A; such that
JA® kA, (F;) € (W*Afj)mK(U)' If we take a stratification {As} of A finer than
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any partition {{Agf)}a, A\ A;} of A, then we have ja,nk,a,(Fi) € Wy ~x(U)
for any stratum A, with A, C A;. Hence, for each A, we conclude
Jawnk,a(F) = ja.nk,a, (Fi) € Wa_ qx(U)

where the index 7 is taken so that A, C A;. O

Remark that, in general, the sequence
* * *
0—>(M/A—> 7] WA.—> @ (WAﬂA-
1<i<k ‘ 1<i<j<k R
is not exact.

The following lemma is fundamental.

LEMMA 2.2.5. — Let X = R™ and A a locally closed subanalytic subset in
X. For any F = {f.} € JWy(X) and any subanalytic curve | C A joining
z,x' € A, we have

nl m—+1
(2.4) B(Fs 2, 2) < LU o )
m: ‘a|:";+1
ye

where || denotes the length of the curve l.

Proof. — We recall the following formula of [18]. Let | C A be a subanalytic
curve, for any xq, 2,3 €[

Ry 15 (SpF; 2, 23)
T (F;a1,32) — T (Fiz1,33) = Y d g| (1 —22)” .
I8l<m '
Noticing that
z
Rm_|ﬁ|(SgF;:L'2,CL'3) = Z Ml(gj)(xg—mg)’y+Rm_|ﬁ|+1(SﬁF;:1:2,1‘3) R
lv|=m—|8|+1
we have
; - ; M —2.)8 — )Y
(T (F; 21, 22) — Ton(Fi 1, 73)| < Y > Al (21— 22)" (22 — z3)
B1<m byl=m—jole1 DT
(SgF;xa,x
+ ‘ —18+1( ﬁ 2 3)( 1_@)5‘.
|Bl<m
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The first term is estimated as follows. Suppose that 1, x2, x3 are in a sequential
order along [, then we have

IIEEDY

|Bl<m |v|[=m—|B|+1

S< Supm+1|fa ><Z| Ty — 23 )k ) > ’ﬂ!lvl(ﬂb’l—9172)’3(952—»’!73)7

veblel= |B-+1=m

fo+~(23)
B!

(21 — 22)" (22 — 3)”

<< sup +1|fa<y>|) Vs = 23 Y (2 — o] 4 fag — )"

Y€l |a|=

( m+1|l|m
< sup  |fa(y)| ) [w2 — 3| .
m+1

yEL |al=

Since [ is compact, we may assume that A is compact. Then, by the definition
of JW’,, there exists a stratification {A,}, of A such that for any 7 we have
Ji aF) € (W*ZT (X). It follows from Theorem 1.1.3 that, for any 7, there
exists a constant C.. such that

IRy 1515+1(SaFs @1, 32)| < Crlay — ao ™ 1PIF2

holds for any 0 < || < m and x; 5 € A,. As the number of strata is finite,
it makes sense to set

C :=maxC;
Remark that the constant C depends on [, m, F' and A and it does not depend

on 1 and 2. Now, the second term is estimated in the following way. If
Z9,x3 € | belong to the closure of a same stratum, then

(SgF; o,z — zo|lP!
‘ —181+1( ,6 2, 3)(501—:1:2)’8'SC ) |x2_x3|mf|ﬁ|+2|w1 |

|
|Bl<m [BI<m f!
gl — x2|lﬁ\
< Clea = wl? 37 foa = g I
|B]<m
1
< Clzg — zsI™ Z Bl
< e"Cll™|zy — z3]?
Now we take points z = xg,z1,...,Zr = x’ sequentially in the curve [ so that

each pair z; and z;,; belong to the closure of a same stratum (0 <i <k —1).
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Then
|fo(z) — T (F; 2, 2'))
< T (F; 20, @0) = Ton (F3 20, 31)| + | T (F 80, 21) = Ty (F5 20, 72)|
+ o+ T (F20, 25—1) — Tin (F; o, k)|

n m4+1|71m k-1
< W ( sup Ifa(y)|> S fi — il
=0

m! yel lal=m+1

k—1
+e"Cll|™ sup |x; —xi+1|2|xi — Tiy1].
0<i<k—1 o

When k tends to co, then the first term in the right hand side converges to

W'”)m( sup Ifa(y)|>

m! y€l,|a|=m+1
and the second term tends to 0.

The conclusion follows. O

COROLLARY 2.2.6. — Let X = R"™ and A a locally closed 1-reqular subanalytic
subset in X. Then for any subanalytic open set V. C X and any compact
subanalytic set K C 'V there exists & > 0 such that, for any h > 0, there exists
Chr > 0 satisfying

||F||Il/gﬂA,s,nh < ChHFHVﬂA,s,h
for any F € W (X).

Proof. — By the definition of 1-regular, there exist a constant M > 0 and a
finite family {V;} of open subsets in X such that K C UV; C V and, for any 4
and z1,x2 € V; N A, there exists a curve [ C ANV joining x; and x5 satisfying
|l| S M|IL‘1 — I2|.

Then, there exists a positive constant § > 0 such that for any z,y € K with
|z — y| < 4, there exists ¢ such that z,y € V;.

First, assume that z1, 22 € K N A satisfy |x; — 22| < §. Then, there exists
a path | C K N A joining z; and x5 such that |I| < M|z; — 22|. Then, Lemma
2.2.5 implies that

(vnli)™ !

R (SpF; x1,29)| < ~————— max  sup|fa(y
[Rn(S3Fs zn,2)| < 2T max  supfa(y)
nM m—+1
< VMV 01t R B — o

Moreover, we can suppose y/nM > 1. Hence, if |z — y| < §, we obtain

w
”FHKOA,S,\/HMh < ||F||VmA,s,h :
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Now, assume that z1,z2 € AN K satisty |1 — 23| > 6. For b’ = (n + 1)h,
we have

m!| R (SpF; 21, 9)| m!(|fp(z1)| + | Tin (S5 1, 22)[)

RABIHMAL(|8] 4+ m 4 1)!5|zy — xo|mT1 = RIBHMFL(|B] 4 m + 1)18|z; — xo|m+?

ml|B + |1 APz — 25|10
<2l|Fllg,n O

lyl<m WIBHMAL(1B] +m + 1)yl |2y — ao|m+1

1 1
< 2||F||
= || ||V’S’hh/|$1—.€62|(n+1)m

m! 1
P (m — [y )y! (m — |v|>!s-1<h|w1 = x2|)m_m

[y|<m
1
<2|F|l+.,— hé)™
2 —0
= = exp(a (1) )| Flly
where o = ﬁ The conclusion follows. O

Let X = R", A C X a compact subanalytic set and F' € JW’(X). Since
A is compact, the number of strata of a stratification of A is finite. Hence for
any h > 0 (resp. some h > 0) we have ||F||4,sn < 00 if *x = (s) (resp. * = {s})
respectively. Set

(2.5) SWyn(X) = {F € JWa(X); [|F| a,5n < 00},

and endow JW, ,(X) with the topology induced by the norm ||-||.4,s,,- Then,
algebraically, we have

SW (X) = lim WS, (X)
h>0

and

JWEH(X) = lim gWH} (X).

h>0

Therefore, (W; (X) can be endowed with a locally convex topology induced
by these projective or inductive limits.

PRrROPOSITION 2.2.7. — Let X = R™ and A a 1-regular compact subanalytic
subset in X. Then

Wy(X) =dWi(X) .
Moreover, these spaces are topologically isomorphic. In particular, JW'y(X) is
an FS space if * = (s), and a DFS space if x = {s}.
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Proof. — In Corollary 2.2.6, choose K as A and V as an open subanalytic
subset containing A. Then we have

WENY onn < ClIF] A5
The result follows. O

PROPOSITION 2.2.8. — Let X be a real analytic manifold and A a locally
closed subanalytic set. If A is 1-reqular at p € X, then (M/Zm = d‘W;p.

Proof. — Note that for any p € X we have
(Wil,p = h_H}WZmU(X)a J‘WZ,;, :hi)ndwimU(X)

pEU peEU

Further, we have
Wianz(X) C SW oy (X).
On the other hand, for any sufficiently small open subanalytic neighborhoods
Uy, DD U; DD Usz of p, Corollary 2.2.6 implies that the restriction map
7] (Wimﬁl (X)—>d (Wj:mﬁg (X) factorizes through Wz (X). Hence the fol-
lowing diagram commutes
ﬁff(W:ZmUl (X) — (ijﬁz (X)
N\ 1
‘J(M/Zmﬁg, (X) .

The conclusion follows. O

COROLLARY 2.2.9. — Let X be a real analytic manifold, A C X a locally
closed subanalytic set and {A.} a 1-regular stratification of A. Then, JWy =

gA;(M/?Aa}'
Proof. — The result comes from the fact that for any stratum A,, we have
JanaldWS) C JWs, = Wi,
O

COROLLARY 2.2.10. — Let X be a real analytic manifold, and let A; and Az
be closed subanalytic subsets, or open subanalytic subsets in X. If Ay N Ay is
1-regular at p € X, then the sequence

(2'6) 0— SAMM/T%UA%P - dw;lm ® (J(W*Az@ - dw;lﬂAzﬁﬂ —0

15 exact.

Proof. — By Lemma 2.2.4, it is sufficient to prove the surjectivity. Since
SWa,na, = Wa,na, holds, the result is clear. O
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The condition “A; N Aj is 1-regular” in Corollary 2.2.10 is too strong. Indeed,
if dimX = 2, and if A; and A, are closed subanalytic subsets, then (2.6) is
always exact, see Theorem 3.1.4. We also note that, in the case of dimX > 2,
we can find an example in which the surjectivity of the third morphism of (2.6)
does not hold.

LEMMA 2.2.11. — Let X be a real analytic manifold and A C X a compact
subanalytic set. Then JWS)(X) (resp. gA’W:[:}(X)) can be endowed with an
FS (resp. a DFS) locally convex topology. Moreover if A is a finite union of
compact subanalytic sets By, ..., By, then the canonical morphism

L dWR(X) = @ JWg (X)
1<i<k
gives a topological isomorphism onto its image.

Proof. — Let {A;} be a l-regular stratification of A satisfying the following
condition. For each stratum A;, there exist an open subset U C X containing
A; and isomorphism ¢; : U — V for some open subset V in R™.
It follows from Lemma 2.2.4 that the following sequence is exact,

0o JWaX)—» & JWz(X)> & Wiz (X)C @& JWi 7, (X).

SWHX) @ JWi ()= @ Wi (X)C 0 dWig(X)
We can consider the sets A; as 1-regular compact subanalytic subsets of R™.
Hence (W*Zi (X) has an FS or a DFS locally convex topology by Proposition
2.2.7, and the morphism

O JWz(X)= & Wi (X)—> & Wiz (X
1Si§kd 2, (X) 2. 7,(X) i A, (X)
is continuous for such topologies. We endow JW’ (X) with the induced topol-
ogy. By the exactness of the above sequence, the topological space JW (X)

is a closed subspace of @® JW5 (X). Therefore JW’(X) is an FS or a DFS
1<i<k :
space.

One can check that another choice of 1-regular stratifications and morphisms
; induces an equivalent topology. Indeed, by considering a 1-regular strati-
fication finer than those, we can reduce the problem to the following claim.
Let A C R™ be a compact 1-regular subanalytic subset and 4; C A(C R")
(i =1,2,...,k) compact 1-regular subanalytic subsets with A = UA;. Then
the canonical morphism

LGWR(X) — @ JW (X)
1<i<k

is a topological isomorphism onto its image.

If + = (s), then these vector spaces have FS topologies and the image of
¢ is closed by Lemma 2.2.4. Hence the claim follows from the open mapping
theorem.
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Now, let us prove the claim for * = {s}. Since a DFS space is bornological, it
suffices to show that for a sequence {z;};en C J‘WI{:}(X) with «(z;) - 0 (j —
00), the sequence {z;} also tends to 0. Since {¢(x;)} is bounded in the DFS
space @ J‘M/;{:i} (X), there exists an h > 0 with v(z;) € & JWX},L (X) for

1<i<k 1<i<k :

any j. Then, as A = UA;, we have the estimate

k
]| a,6n < D 1160 A5,
i=0
and from which the claim follows.
The last assertion in the lemma can be proved in the similar way. O

If X =R", AC X a compact subanalytic set and * = (s), the FS topology
in JWS)(X) is described as follows. Given a sequence {F,,} C J‘M/S) (X), one
has that

nan;an — 0 < ||Fu||la,s,n — 0 for any h > 0.

Note that the convergence in (WS)(X ) is defined in the following way. Given a
sequence {Gp} C WS)(X),

lim G,, = 0 < ||Gy||a,s,» — 0 and ||Gn||2/11/,s,h — 0 for any h > 0.

n—oo

These two topologies coincides if A is 1-regular.

2.3. The sheaf of the stratified Whitney jets on the subanalytic site. — Let X be a
real analytic manifold. The subanalytic presheaf of stratified Whitney jets of
class * is defined by

JWx,, (U) = Wy(X)

where U is a subanalytic open subset of X.

THEOREM 2.3.1. — The presheaf d‘W}1 is a sheaf on Xgn and a 01Dx-
module.

Proof. — It follows from Lemma 2.2.4 and the obvious fact that I'(U, Dx) acts

on JWp (X). O
ProrosiTION 2.3.2. — IfU C X is a 1-regular open subanalytic set, then
dWx, U) = Wy(X) = Wg(X) ~ ———=,
* v v jX,U(X)

where J}g denotes the subsheaf of €* consisting of functions vanishing on U
up to infinite order.

COROLLARY 2.3.3. — For U € Op®(Xsa), set Wx_(U) == Wy(X). Then
Wx.. = MWx,,-
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Proof. — 1t is sufficient to combine Proposition 2.3.2, Lemma 2.1.5 and Propo-
sition 2.1.4. O

2.4. Stratified ultradistributions. — Let X be a real analytic manifold, A a
closed subanalytic subset in X and let 94" denote the sheaf of ultradistri-
butions of class *. For any stratification {A,} of A, let us define stratified
ultradistributions along {A,}.

DEFINITION 2.4.1. — An ultradistribution u € Db™(U) is said to be stratified
along {Ay} in U if u can be written in the form:

u:Zua, uq € Tz (U, Db").

We define the sheaf of stratified ultradistributions of class x along {Ay} as
SDbi 4,y (U) :={u € Db"(U); u is stratified along {A,} in U} .
For a stratification { A/, } finer than {A,}, there exists the canonical morphism
IDb 4,y (U) = Db, (U)
We define the sheaf of stratified ultradistributions of class * along A as

SV (U) = lim SV, ().
stratification
A

a}Of

Since for any stratification {A,} there exists a l-regular stratification finer
than {A,}, we have

dDb4)(U) = lim GDbia 4 (U) -
1-regular stratification
{Aq} of A
There exists the canonical injective sheaf homomorphism

SDbia — Ta(D6") .

This morphism is not surjective in general. The following lemma follows easily
from the definition.

LEMMA 2.4.2. — Let X be a real analytic manifold, and let Ay, ..., A; be
closed subanalytic subsets in X. Then the sheaf homomorphism

EB(J@&FAi] - (J@&E(UAJ
18 surjective.

Remark that, in general, the middle of the sequence
0= Y Db 00y = D0y © S Db = SDhp, 0 — O

is not exact.
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THEOREM 2.4.3. — Let X be a real analytic manifold, and A C X a compact
subanalytic set. Then, algebraically, we have

dDb)(X) = (SW4 Y x (X))

where (JW 3@V x(X))" denotes the topological dual space of JW 3RV x(X)
a a

and Vx designates the sheaf of volume elements in X, i.e., wgy) ®orx.

z

Proof. — The continuous morphism j4 : €*(X) — JW’(X) induces the mor-
phism

35 GWARYx(X)) = (€ QVx(X)) € 8" (X).
For any ¢(z) € €*(X) with supp(¢) N A = &, we have ja(¢(z)) = 0. Hence
imji, C Ta(X,PDb"). Moreover since ja(€¢*(X)) is dense in JW}(X) by
Proposition A.7, the morphism

Ja (J‘W:Z@g(l/x(X))' — La(X, Db7).
is injective.
Let Ay, As, ..., A; be closed subanalytic subsets in X with UA; = A. If we
prove that, for each 1,

3, (SW3, 8V x (X)) = #Dhia (X) |

then
jZ((d‘W*A%‘Vx(X))') = JDbx)(X)

follows from the following commutative diagram

0 0
! !
GB(J‘WL%‘Vx(X))’ — (J‘WZ%‘Vx(X))’ —0
! !
(2.7) oA (X, D6") — Ta(X, D)
T T
T 7
0 0

The first row of (2.7) is exact since

J‘WZ%(Vx(X) - @JWL%‘V)((X)
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is an injective homomorphism of locally topological vector spaces by Lemma
2.2.11. The third row of (2.7) is exact by Lemma 2.4.2. All vertical arrows of
(2.7) are injective.

By these observations, we can reduce the problem to the case X = R"™ and
A C X is a compact subanalytic set. First recall that if B is a compact set in
R™, then it follows from the result of Whitney and Kantor that

i+ (Wp(X)) ~Ts(X, D6%) .
Let {A,} be a l-regular stratification of A. Let us consider the following
commutative diagram

0
!

0— WiHX) — JUWyHX)
il il

W3, (X) = edwWy, (X).
Here the first horizontal arrow is injective and has a dense image by Proposition
A.7. Since each A, is 1-regular, the second horizontal arrow is topologically
isomorphism. The second vertical arrow is a topological isomorphism onto its
image. Then taking the dual of the diagram, we have

0
1

Tu(X, D6") <& (JWi(X)) «—0
T T

-t
IZ

ol (X, D6%) = (W, (X))

Hence we can conclude

(28)  JA(@Wa(X))) =Im (8T (X, D8")) = Dbi,y(X)

for any 1-regular stratification {A,} of A. In particular, we obtain

(2.9) Fa(FWA(X))) = lim Db 4,1 (X) = JDb{)(X).

The conclusion follows. O

COROLLARY 2.4.4. — Let X be a real analytic manifold, A C X a closed
subanalytic set. If {A,} is a 1-regular stratification of A, then we have

‘J@&FA] = d@&?Aa}'
In particular, if A is 1-reqular at p € X, then we have

(9D8n), = (Ta(D8Y),
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Proof. — Set Z(Ag):= U A,. For any p € Ag, since Z(Ap) is a closed
A,NAs#2
neighborhood of p in A, we have

(Db1asy), = (D Dlasnziann),,  (9Pa), = (I Dblanzcan)

Hence we may assume that A is compact. Since @&’{A] cd @&? An}s it 1S
enough to show that

p

(VD) = (dDbiay),
is surjective. By the softness of the sheaf @&? A}

ID 0,y (X) = (JDiay),

is surjective. Hence it is sufficient to show JDby, 1(X) = JDbi4(X). This
follows from the equations (2.8) and (2.9). O

COROLLARY 2.4.5. — Let X be a real analytic manifold, A1, As C X closed
subanalytic sets. If Ay N Ay is I-regular at p € X, then the sequence

(2'10) 0— d@&FAlﬁAZLP - J@&FAlLP S gAj@é"’[kAzLP - gA}@éj[‘i‘hui‘lz]yp —0

is exact.

Proof. — The injectivity is clear, and the surjectivity comes from Lemma 2.4.2.
The exactness of the middle follows from

J@&FAI] ﬁ d@&FAz] C FA10A2(@5*)
and Ta,n4,(Db6") = SDb{a,a,) 8t p. O

Similarly to the exactness of (2.6), the exactness of (2.10) holds if dim X < 2
without the assumption of 1-regularity on A; N As.

If A is a compact subanalytic set, then J @&’{A] (X) is equipped with the
strong dual topology of the locally convex topological vector space W’ (X).
Then JPDb4(X) is a DFS (resp. an FS) space if * = (s) (resp. * = {s}) re-
spectively. Since J Db (X) and Ta(X, Db*) are reflexive, JDb 4 (X) is dense
in FA(X, @&*)

3. Sheaves on subanalytic sites relative to real surfaces

In this section we are going to study in detail the extension properties of
stratified Whitney jets on real surfaces.
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3.1. On the exactnesses of (2.6) and (2.10) in dimension 2. — Throughtout the
subsection X is a real analytic manifold of dimension 2, unless otherwise spec-
ified.

DEFINITION 3.1.1. — Let A C X be a closed subanalytic set. We say that a 1-
reqular stratification {Ay} of A is good if every A, is topologically isomorphic
to DMz Aa g5 topological manifold with the boundary, where D* denotes a
closed unit disc in RF.

By [10], for any stratification {A,} of A, there exists a good 1-regular strat-
ification finer than {A,}.

LEMMA 3.1.2. — Let A C X be a closed subanalytic set, { Ay} a good 1-regular
stratification of A. For any A, with dim A, = 2, the restriction map

(JW}\AQ (X) — J(W*ZQ\AQ (X)

18 surjective.

Proof. — Let A, satisfy dim A, = 2. Set Z := A, \ A, and let {Z5} be
the induced good 1-regular stratification of Z. For any p and € > 0, D.(p)
designates the closed disk with center p and radius €. By the partition of unity,
it is enough to show that for any p € Z, there exists € > 0 such that

JWBE(p)\AQ (X) — J(W*ZmDe(p) (X)
is surjective.

If p € Zg with dim Zg = 1, then Z N D¢(p) is 1-regular for sufficiently small
€ > 0. The result is clear in this case.

Suppose, now, Zg = {p}. Since Z is topologically trivial, there exist only
two strata Z; and Z such that dimZ; = 1 andp € Z; (i = 1,2,). Let € > 0
be such that Z; and Zs cross 0D, (p) transversally and any stratum other than
Z1,Zy and Zg does not intersect with D¢(p).

Since A, is l-regular, the angle between the tangent lines of Z; and Z, at
p in the side of D.(p) \ A, is positive. Hence, if € is sufficiently small, then
there exists ¢ € dD.(p) \ A, such that the segment [ from p to ¢ is contained
in D.(p) \ Ay, and that Z; is not tangent to [ (¢ = 1,2). One checks easily
that D:(p) \ (lUZ;1 U Z3) has three connected components, one of whose is
jla N B(p). Denote by W; and W5 the other two connected components. The
sets W7 and W5 satisfy

1. Wl QWQ =1[ and Wl UWQ = De(p) \Aa,
2. the boundary OW; of W, consists of Z;, | and a part of the circle, in
particular, W; and OW,; are l-regular (i = 1,2).
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Let F € d‘W*ZnDE(p) (X). For sake of simplicity, we assume that F|z, = 0
and F|znop.(p) = 0. Then, we define F; € JWyy,. (X) (i = 1,2) by

Fi(z) F(z)ifze Z; ,
i\r) ‘=

Since OW; is l-regular, we can find a function p;(z) € €*(X) such that
Jow, (¢i) = F;. Noticing

Jw, Pilw, nw, = Jw,P2lw,.nw, =0

the jet
oo € Wi,
) = .7.W1(<P1) zeW,
sz (()02) S W2
belongs to JWp, (4. (X), and G(2)|znp, () = F. =

By the similar arguments as in the proof of Lemma 3.1.2, we can also prove
the following lemma.

LEMMA 3.1.3. — Let A C X be a closed subanalytic set, { A, } a good 1-regular
stratification of A. For any A, with dim A, = 2, we have

J@&E‘ZQ\AQ](X) = JdDb{x\a,7(X) N Iz 4. (X, Db*).

THEOREM 3.1.4. — Let Z1,Z5 C X be closed subanalytic sets. The sequence

(3.1) 0= dWzuz, = Wz €Wy, = dWznz, =0
18 exact.
Proof. — Since it is a local problem, we may assume that X = R? and Z; is

compact. Set Z := Zy U Zy. Let {Z,}aeca be a good 1-regular stratification of
Z1 U Zy finer than the partition {Zy U Zs, Z1, Z2, Z1 N Zs}. Note that A is a
finite set.

We will prove the assertion by induction of the cardinality of A.

By Lemma 2.4.2, it is enough to show the exactness of the sequence

IWz,(X) ® SWz,(X) = JWg,nz,(X) — 0.
Let 8 € A be such that
dim(Z, U Z3) = dim Zg .
Fori=1,2, set

Z;:=Z;\ Zg .
Note that Z! is a closed subanalytic set and
(3.2) ZgC Zi=Z.NZg=0Zg (i=1,2).
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The sequence
‘szi(X) ® (JW*ZQ(X) - J(W*ZinZé(X) = JW (20272, (X) = 0

is exact by the induction hypothesis.

Let F € JW5, ~z,(X). For sake of simplicity, we assume

F|§B =0.
It follows from the above exact sequence that there exist Fy € JW7, (X), Fy €
(J(W}é (X) such that '
Fil(z,nzo0\25s — F2l(zi0zo0\25 = Fl(z:022)\25 -
Suppose Zs C Z;. Then if dim(Z3) = 2, by Lemma 3.1.2 there exists F' €
J(W?leJZz)\Zg (X) such that
Floz, = Filoz, -

Moreover, if dim Zg < 2, then 0Z3 consists of isolated points, hence there exists
F € JW{z,02,)\2,(X) such that Floz, = Filoz,.

Set

F~'1:=F1—F|Z{, F~'2:=F2—F'|Zé.

Remark that

Fl'(zanZ)\ZB - ﬁ2|(Z10Z2)\Z5 = F|(Zan2)\Z5 :

Taking (3.2) and F1|8Z5 = 0 into account, we can extend F} to an element
of JW7 (X) by zero (i.e. the zero extension). Now, if Zg N Z, = @, then
Zy = Zj and the result follows. Otherwise, suppose Zg C Z, then, since
15|,9Z5 = ﬁ1|3ZB =0, we have F2|azﬁ = 0. Hence F} is regarded as an element
in JWy,(X) by the zero extension.

The conclusion follows. O

In general, for open subanalytic subsets U; and Us, the sequence
0— J(W;]1UU2 - KJ(W*UI @ §J(W*UQ - QJ(W;Jng —0

is not exact, indeed the surjectivity does not hold. The lack of surjectivity is
of topological nature and it comes from the fact that R#om(Cy,uu,, Cx) is
not necessarily concentrated in degree 0.

COROLLARY 3.1.5. — Let Zy,Zy C X be closed subanalytic sets. The sequence
0— d@&rZﬂ\IZQ] — gj@&rzl] D J@&E‘Zﬂ — J@&FZ1UZ2] —0
s exact.
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Proof. — Since it is a local problem, we may assume that X = R? and Z; is
compact subanalytic. It suffices to show the exactness of the sequence:

0 = dDbiz,072,(X) = dDbj7,)(X) ® SDb[7,)(X) = SDbz,,2,(X) — 0.

Then the injectivity is clear, and the surjectivity follows from Lemma 2.1.5.
Using Lemma 3.1.3 instead of Lemma 3.1.2, we can prove the exactness of the
middle by the same argument as in the proof of Theorem 3.1.4.

Note that, for the case x = (s), the corollary can be also proved by taking
the dual of (3.1) since all the vector spaces in (3.1) have FS topologies. O

3.2. Stratified and tempered-stratified ultradistributions. — In this subsection, we
assume that X is a real analytic manifold with arbitrary dimension. For U C X
a subanalytic open set, we define the set of tempered-stratified ultradistribu-
tions as

ets S Db (X) Db*(X)
@éx = * = y .
w(0) dDbix\v)(X)  SDbix\v)(X)

THEOREM 3.2.1. — Let U be an open subanalytic subset of X.

1. The ring T(U, Dx) acts on Dbx° (U).
2. Let V be an open subanalytic subset of X. Then we have the following
exact sequence.

DHE (U UV) — DB (U) @ DY (V) — DB (UNV) = 0.

Further, if dimg(X) < 2, then the first morphism of the above sequence
is injective. Hence, in this case, @&}t:a is a sheaf on X, and a 00 Dx
module.

3. If X\ U is I1-regular, then @&}Z(U) coincides with the sections of tem-
pered ultradistributions of class * on U, that is,

Dby (U) = Db3LU) .

Proof. — 1. Let W D U be an open subset in X and P € (W, Dx). We
choose a function ¢ € ¢*(X) with supp ¢ C W and ¢(z) = 1 in a neighborhood
of U. Then ¢P can be considered as a differential operator on X with coeffi-
cients in ¢*(X), and thus, it acts on Db (U). This action does not depend on
a choice of ¢. Indeed, this follows from the fact that, for any v € 96" (X) and
P € €*(X) with suppy N U = @, we have u € JDbx\ 1 (X).
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2. The exactness is an immediate consequence of the following commutative
diagram whose rows and columns are exact.

0 0
l !
SDbix\1)(X) ® SDbix\1v)(X) — dDb[x\ vy (X) — 0
! !
0— D"(X) — Db*(X) ® Db™(X) — Db*(X) — 0
! ! !
D (UUV)— DB (U)@ Db’ (V)  — D (UNV)
! ! !
0 0 0

The assertion for the case dim X < 2 comes from Corollary 3.1.5.
8. follows from Corollary 2.4.4. O

3.3. Higher dimensional case. — Let & be a sheaf on X, and denote by rvy
the restriction map of & for V' C U open subanalytic subsets. Assume that &
satisfies the following conditions.

1. If U € Op(Xsa) has smooth boundary, then G(U) ~ 26 (U). In partic-
ular, G(X) = Db*(X).
2. For any U € Op(Xsa), v == 1u,x : D6"(X) = G(X) — G(U) is surjec-
tive, i.e. ¥ is quasi-injective.
Note that, since & is a sheaf in Xg,, for open subanalytic subsets U and V,
the sequence

0—-gUuV)=gU)egV)—gUunv)

is exact.

If dim X = 2, the sheaf @&;f:a satisfies the the conditions 1. and 2. above.
Let us prove that, if dimX > 2, then such a sheaf & on X, does not exist. For
Z a subanalytic closed subset of X, set

F(Z) =ker(Db™(X) —» G(X\ Z)) C Db"(X) .
Then, for any closed subanalytic sets Z; C Zy C X, there exists an injective
morphism
iZz,Zl : g(Zl) — g(ZQ)
satisfying iz, z, = iz,,2, ©12,,7,. One checks easily that the sequence
Oﬂg(zlﬂZQ)Hg(Zl)@g(Zg)ﬁ9(21UZQ)—>0

is exact.
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Using the fact that iz, z, is injective, and J(Z) Cc (X \ B) =
Lx\p(X, Db"), for any open ball B with Z N B = @, it is easy to see
that

F(Z) CTz(X, Db .
Further, if Z is a smooth manifold we have
T(Z) =Tz(X, Db¥) .

Now let Z;,Zs be two smooth hypersurfaces of X, from the commutative
diagram with exact rows

0— g(Zl n ZQ) — g(Zl) (&) g(ZQ) — g(Zl U Z2)

! 2 !
0— leﬁZQ(Xy @&*) — le(X, @&*) @FZQ(X, @&*) — PZ1UZ2(X7 @&*) R

one obtains that
g(Zl N Zg) = lemz2(X, @b/*) .

If dim(X) > 2, then we can find a pair of smooth hypersurfaces Z; and
Zs such that Z; N Z5 consists of two smooth curves W7 and W, tangentially
intersecting at p. For example, let X = R3 with coordinates (x,vy,z2), Z; =
{z =0} and Z; = {2z + y? — 2™ = 0}. Then, since Z; N Zy = Wy U Wy, we
have the following exact sequence
(3.3)

Tw, (X, D6™) @ Tw, (X, Db*) = T (W1) & T (W)

— g(Wl U Wz) = rwluw2(X, @&*) — 0.
This gives a contradiction. Indeed, the exactness of (3.3) implies that any

ultradistributions supported on W7 U W, is the sum of ultradistributions sup-
ported in Wy or W5. When W; and W5 are tangent at p, this is not true.

Appendix A

Super growth indicators

The aim of the appendix is to show Proposition A.7. To prove the proposi-
tion we need several lemmas and propositions. Their proofs are given only for
the case * = (s) in this paper as those for * = {s} can be done by the similar
technique.

DEFINITION A.1. — We say that a €?-function ¢(t) : R>g — R is a super
growth indicator if tllglo ¢'(t) = oo and ¢"(t) > 0. Further, a function ¢(t) :
R>0 — R is said to be a linear growth indicator if there exist a positive constant
h >0 and a constant C such that o(t) = ht + C.
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Note that a super growth indicator is a convex function.
Let ¢1(t), p2(t) be two super growth indicators, we write ¢; < o if and
only if there exists C' € R such that, for any t € R>o, ¢1(t) < @2(t) + C.

LEMMA A.2. — 1. Let p(z) be a super growth indicator. There ezists
{7k kez-o C R such that, for any k € Zso,

(A1) o(t) > kt+ v -

2. For any {Vk}rez-, C R, there exists a super growth indicator p(t) such

that

(A.2) sup (kt + &) > ¢(t).

E>1
Proof. — Easy. O

Let X be a real analytic manifold and A a closed subanalytic set, and let
A, be a stratum of a stratification {A,} of A.
We set

B(Aa) = M Lé,i Aﬁ .
o B

Clearly B(A,) is a closed subanalytic subset of X.

PRrROPOSITION A.3. — Let X =R"™ and A C X a closed subanalytic set with a
I-regular stratification {Ay}. Assume * = (s) (resp. * = {s}). Then for any
o and any F € JW,(X) with F|z, = 0, there exists a super (resp. linear)
growth indicator ¢, satisfying the following condition. For any h > 0 (resp.
some h > 0), there exists a constant Cy, such that, for any € > 0,

IFl|B(Aq, )5, < Chexp(—pale™?)) ,
where B(Ay, €) = {z € B(A,); dist(z, 4,) < €} and 0 =

s—1°
Proof. — We may assume that A = B(A,), in particular, the number of the
strata is finite. Since the closure of each stratum Ag is 1-regular, connected
and compact, we can find a constant kg such that for any x,y € Ag there exists
a subanalytic curve [ C Ag joining = and y such that

I < Kple —yl.
We set

k = max{kg}.
Let y be a point in some stratum Ag. As A, is compact, there exists z € A,
such that

dist(y, Aa) = ly — |-
As A, C Ag, there exists a curve [ in /_15 joining z and y such that
I < &lz—yl .
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Now, let F' = {fo}a € J‘W(Af)(X) such that F|; = 0. We have that, for
any ¢ € A,,y € Ag, f,(y) = Rn(S,F;y,z). Hence, from Lemma 2.2.5, it
follows that

(Vi)™
= |Rn(S F;y,z)| < ——— max  su
(W) = [Rm (545 y, )| e yerzlfn(y)l
(vnklz —y[)™ !

m!
< 2T akhlz — y) ™ ml T () 20h) P F s e

Hence for any A’ > 0 and h > 0

< (7] +m+ DR By

|f (y)l s m+1 S— h |’Y|
|’Y|'S(W2Sh’)lvl < (@7 akhlz —y)"Tm ) I F s
Since

inf t™Tim!*~t < Cexp (- Bt_”)
meN

for some positive constants B and C, we obtained

Mgé% < C||F]|a,s,n (:,)M exp <—B' (%)U (| — y|)“’>

for a constant B’ > 0.
By Lemma A .2, there exists a super growth indicator ¢ such that

e () )
sup ————exp (B | =] t) > exp(p(t)).
>0 ClIFl4,5h h (vl
Then, one checks easily that, for any h’ > 0, there exists a constant Cj, > 0
such that:

e () )zg
sup ————exp(B' (=) t] > ex t)).
h’>hp>00||F||A,s,h P h ~ Cp p(e(?))
Therefore, we obtain

f ) . h [l 1\° .
e < o2t Pl (55) e (-5 (3) G —ai)

. 1\ o
< inf ClFlLaanesn (-5 (+) (- u)~)

~ 0<h<h/ h

< Cw exp(—o(lz —y[77)).
This entails the result. O
LEMMA A.4. — For any constant C > 1, € > 0 and any super growth indicator

1, there exists a super growth indicator ¢ satisfying the following conditions.

1. o(t) < ¥(t).
2. ¢'(0) > 0 and p(0) = 0.
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3. For any s,t € [1,00), ¢(st) < Cs'Tep(t).

Proof. — Note that the third condition is equivalent to

5\ ¢(t)
ga(s)SC(;) Ts s>t>1.
Set
7=C%>l.

Without loss of generality, we assume that (0) = 0 and ¢'(0) = M, for
some constant M > 1. Let {&x}xez., C [0, 00) satisfy:

1.0=2p <21 <22 < ... andklim T = 00.
— 00
2. P (&) = Mr*.
Given an increasing sequence {z }rez>0 C R with g = 0 and klim T = 00,
— 00

we set

9(@) =) (@i — @)+ (@ —2r) 2 € [op o).
i=0
Let {z}rez>0 be an increasing sequence of real numbers satisfying the fol-
lowing conditions:
1. zg =0 and z; > 2,
2. Tpy1 > max{yczy, Zpe1} for k € N,
3. g(wpy1) > y*1apy for k € N.

Note that such a sequence {z}, always exists as, for fixed k, we have

k1
D V(@i — 3i) + 7 (@ — )

. =0 —~Fk

RS T =7

Clearly, if t < s, then (%)6 > 1 > =2, More precisely, for 0 < t < s with
t € [z1, zi141] and s € [z, xp+1] (I < k), we easily obtain

8\ ¢ zr | k—1—2
(f) 2\l—) =27 .
t Ti41
Moreover, since the function g(¢) is convex with g(0) = 0, the function
is an increasing function of t. Hence, for any t € [z}, z;1+1] (1 < 1), we have

a(t) _ g(a)
t = oz
It follows that, for 0 < t < s, s € [T, Tp+1],

—ima g2 _ L 8\ g(t)
,yk:,y4,ykl2,712§70()i7

9(t)
t

> 472

t
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and
g _k 1.‘ 1 s\ € g(t)
“ iZ:O (Tiv1 —m) + Yk(S—xk)S”ykS<fC(t> t 5

Since 1 (s) is an increasing convex function, we have

k—1
9(s) = D V(@1 — i) +75(s — )
=0
— (& ‘(&
= ZZ:; %(iﬂiﬂ —x;) + w](\/[k) (s — xp)

k-1
< ﬁ (; W (25) (i1 — 5) + ' (2x) (s — xk))

1
< —(s) .
< L)
Hence, the continuous convex increasing function g(s) satisfies:

1
g(st) < ;C’s“’eg(t) for s € [1,00) and t € [0, 00)

and )
t) < —Y(t).
o(t) < S0(0)
Let xp(z) be a non-negative €°(R) function such that
supp(n(@) € {lel <} and [ (o) = 1.
R
For 0 < h <1, set
t 0<t<L1
/ gt — z)xp(z)de t>1.
R
Then we have ¢, € €°°(R) and
9(t) < on(t) < g(t+ h).

wn(t) =

Hence, we obtain
1 1
(A.3) on(st —h) < g(st) < —Cs'Teg(t) < ;C’s”ﬂph(t).

Now, we replace s by (1 + h)s into (A.3). Then we get, for sufficiently small
h >0 and s,t € [1,00),

=2

(1 + h)1+6 Csl+6
Y

en(st) < pn((1+h)st —h) < en(t) < Cstepn(t) .
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Further, it follows from g(t) < 2-4(t) that for sufficiently small h > 0 and
t > 1 we have

en(t) < ¥(t).

The conclusion follows. O

LEMMA A.5. — Let 0 > 0. For any super growth indicator ¢(t), there exist
a holomorphic function p(§) on C\ R<o and a super growth indicator o(t)
satisfying the following conditions.

1. There exists C > 0 such that, for any £ € C\ Ry,

(A.4) IP(&)] < Cexp (#([¢]7))

holds. Moreover p(§) is real valued for & € Rsyp.
2. The inequality

(A.5) exp (o([¢]7)) < |p(8)]
holds for any € € {5 =re? cC;r>0, 9 < min{%, 8%}}

Proof. — 1t is enough to construct an entire function p(§) for o = % that satis-
fies the estimate (A.4) for any £ € C and (A.5) on {re®’ € C; r >0, [9] < T}.
Then, for an arbitrary o > 0, the holomorphic function p(£27) on C\ R<, gives
a required one.

We suppose 0 = % in what follows. Let ¥(t) be a super growth indicator
satisfying the conditions 2. and 3. in Lemma A.4 for some ¢ > 1 and C > 0
which will be determined later on.

For s > 0, we set
g(s) := as'(s).
As
g'(s) = o (' (s) + s¢"(s)) 2 a9’(0) > 0,
we have that g(s) is a strictly increasing function and lim g(s) = oo.

§— 00

Now, let {£x} be a sequence such that
k=g k=12,...
holds for any k € Z~(. Then, since g(s) is strictly increasing, we have

<& <., and klimszoo.

For any ¢ > 0, we set

n(t) := {the number of & such that || < t}
t

N(t) == / N g,

0 A
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Moreover, for any &, < s < ;41 we have

n(s) =n(&) =k =g(&) < g(s7),

hence
N(s) < /0 @dt < /0 @dt
= / s Dop(a7)dt = p(s”) — $(0) = (")
0
Set

p(&) = i>1 (1 + é) .

k
By the Lindel6f Theorem (see proof of Proposition 4.6, page 59 of [8]) we
conclude that p(§) is absolutely convergent in C. The same theorem give the

estimate ~ IN(\)
1 dX .
o8 Sup lp(&)l S/O ES\E
Thus we get
< (A7)
1 dX
o8 Sup Ip(&)| < /0 ES\E
_ [T () < t(N\)
(A.6) —/0 G+ 0?2 d/\—f-/t G+ 0?2 dX

The first term of right hand side of (A.6) satisfies
¢ ¢
t (A7) 1 /
dr < - A)dA < P(t9).
| et < [ vovan< )
We estimate the second term of the right hand side of (A.6) as follows. Let
1) be a super growth indicator satisfying the condition 3. in Lemma A.4 for

C=2andezi—1. Then we have

NG
(X)) [T p(tTN)
/t (t+)\)2d)\_ 1 (1+/\)2d)‘

S Aa(1+e)¢(t0) ( ) 1 )
< _— < 7).
_2/1 e A <2 /1 ) B(E)

log \S;\lf)t Ip(€)| < Cop(t7)

where C, depends only on o. Therefore p(€) satisfies the condition 1. of
Lemma A.5 when t(¢) is a super growth indicator given by Lemma A.4 with

t 1
w(t) and the constants C =2 and e = — — 1.

c, NG
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Now, for k € Z~, set

x

&

Let us prove that, for & — oo, Ix — oco. Indeed, unless Iy — oo, then there
exists M > 0 and an increasing sequence of natural numbers {k,} with [, < M.
Since

ly ==

k k
= 9(&7,) = 087, v'(€7,) = o2V (l)
kP kP

holds, we have

(A.7) Iy, =y (;ﬁfg) .
kp

Since 9’ (t) — oo (t — o0) and lkc,—" — 00 (p — 00), the right hand side of (A.7)
k

tends to co. This contradicts to the fact that the left hand side of (A7) is
bounded.

Now, p(€) can be written in the form:
l
§€) = T (14 2.
If ¢ € D = {|S¢| < K¢}, we have

l
e
k

o

lkg?f A
>1+
V2ks

Since I — oo, for any given L > 0 there exists ko such that I, > /2L (k > ko).
Hence, for £ € D, we get

e (29,

i<, (1 + %)

o

1+

P8 > umes 1+ 281)

o

Ip(&)] =
for some Cp, > 0. It is well known that there exist A, B > 0 such that, for
t>0,

<k (1 + k%) > Aexp(Bt?) .
Therefore we have that for any L > 0

Ip(§)] = ACL exp (BL?[€|7) = exp (BL?[¢]” +10g(ACL)) €€ D.

This implies that there exists a super growth indicator o(t) satisfying

Ip(€)] > expo(l¢]”) €€ D. 0
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LEMMA A.6. — Let s > 1. Assume x = (s) (resp. * = {s}). Then for any
compact set K C R™ and for any super (resp. any linear) growth indicator ¢,
there exists a family of functions {x.(z)}eso C €*(R™) satisfying the following
conditions.

1. For any h > 0 (resp. some h > 0) there exists a constant Cy, such that
|Ixe(@)||rn,s,n < Chexp (¢ (€77)) for any € > 0.

2. supp(xe(z)) C K.
3. Xe(®) >0 and, if v € K¢, xe(x) = 1.

Where K. denotes the set {z € X; dist(z, K) < €} and o0 = 5.

Proof. — Let 1 be a super growth indicator, p(¢) a holomorphic function as
given in Lemma A.5 with the super growth indicator ¥ (t) and o > 0. We set

1
1 x>0 5
fl@)=q{ P
0 rz<0.
One checks easily that f(z) is holomorphic in the sector
S ={z€eC;|arg(z)| < K},
for some k > 0, and that there exists a super growth indicator ¢ such that
|f(2)] < exp(—o(|2[7))

holds for z € S. Hence, using the Cauchy inequality, it is easy to see that
f(z) € € (R), that is, for h > 0 and any compact set K C R we have

I1f (@) k5,0 < 00 .

Set
ge(@) = fla +20)f(~a +2¢) .
Then, for 0 < € < 1, we have

l9e@ 00 < @B, 410 5

and supp(ge(z)) C {|z| < 2¢}. Moreover, there exists M > 0 such that, for any
z >0,

|f ()] = M exp(—(|lz|~7)) -
Hence, we get

9e(z) > Mexp(—2¢(e™7)) ,
for z € [—€,¢€]. Thus

/R 6e(@)dz > 2eM exp(~2(e))
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Now, set

Then g, satisfies

~ 1 —0 —0o
1gellzsn < 11 4y 5 557 XP@U() < My exp(3(e™)

for some constant M}, that depends only on h. Set

Ge(Z1, .y 2n) = e(x1)Fe(22) . . . Ge(Tn).
Then g.(z) satisfies the followings conditions.

1. For any h > 0 there exists M}, > 0 such that
[Ge(z1, .. zn)||Rr s, < My exp(3ny(e7)) for any € > 0.

/n Je(x)dx = 1.

supp(ge(z)) C {z € R™;|z| < 2v/ne}.
Let Xi,. denote the characteristic function of K 3e. If we chose
4

9(0) = o8V 7).

then

8v/n

ﬂ

XE ::g < *XK%

satisfies the required conditions.

O

PROPOSITION A.7. — Let X be a real analytic manifold and A C X a compact
subanalytic set. Then Wy (X) is a dense subset of the locally convex topological

vector space JW 3 (X).

Proof. — Take a 1-regular stratification {A,} of A and fix it. Let A, be a

stratum. Set
Z(A) = |J 4
ANAg#Q
and
Uda) = |J A4s.
AQCAB

Then Z(A,) is compact and it is a closed neighborhood of A, in A. Hence
by the partition of unity, we may assume that X = R"™ and A is a compact

subanalytic set.
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Let Ay (resp. A<k) be the set of indices a € A such that dim(A,) = k (resp.
dim(Ay) < k). For € > 0, let us determine a family of closed sets {We o }aca
in X and a family of positive constants {l¢ o }oca in the following way.

If k£ =0, then for any a € Ay,

1. We,a = Aa )

2. let lc o > 0 be such that € > I, and (Weq,1., N A) C U(Ay). Here

Wea,i.. = {2z € X; dist(z, We o) <leal
Suppose that we already determined W, , and I, o for every o € A<p_;. Set

€h—1 = min I, .
OtEASk,1

First, let {W, o}aca, be such that

A\ U Weg i, | ©Wea C Aa.
ApCAn, BEA<k_1

Note that the set
U We s, i1

AgCAqy, BEA<k_1

is a neighborhood of A, \ A,. Since Wea NWe g = @ for any o # 8 € Ay,
there exists a constant ¢ > 0

1
Ok = = in dist(We o, We g).
ek = min dist(Weo, Weps)
Then, for o € Ag, let [, ., satisfy:
1. leo < min{dcr, €x—1}
2. Wea,i..NA)CUA) B
3. for any 8 € Acp—y with AgN Ay =@, We o 1., N Wep i, , =@ holds.
Note that such an [., always exists. Indeed, W., C A, is a compact set
and U(Ay) is an open subset in A. Hence, there exists I g satisfying Condi-
tion 2. Since Ag N A, = @ implies U(Ag) N A, = I, we have by the induction
hypothesis

We,ﬂ,leyﬁ N We,a = Wepi.sN AN Wga C U(Alg) NA, =0a.

As W, g 1., and W, are closed sets, the condition 3. can be fullfilled.
Let ¢ be a super growth indicator. By Lemma A.6, for any h > 0, there
exist Cj, > 0 and a family {x. 3} C ¥(*)(X) such any for any ¢, 3
(@) Xep(@)=1forzeW, g1 ., ,
(b) supp xe,5(2) C Wepios
(€) lIxesllzron < Cuexp (9(125)) -
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Since %Weﬁéle ;isa neighborhood of A, we have

(A38) (1= xep(@) =0

in a neighborhood of A.

Now, let us prove that, for any indices 41 and B2 with 81 £ B2 and (82 £ [,
we have

(AQ) Xe,B1 (x)Xeyﬁz ((L‘) =0.

Here 81 = B means Ag, C A/gz. Indeed, if dim Ag, = dim Ag, and B; # fe,
then if follows from the condition 1 of I3 and lcg, < % dist(Weg,, Weg,)
(1 =1,2) that we have

supp(Xe,5,) NsUPP(Xe,8,) € Wepi,tc 5, N We sl 5, = -

Therefore we may assume dim Ag, < dim Ag,. Since 8; A B2 implies Ag, N
Ag, = @, the relations

supp(Xe,5;) N SUPP(Xe,8:) C We g e o, N Wepote p, = 9

follow from the condition 3.

Then, from (A.8) and (A.9), we obtain that

#A
1= > (=1)"Xe,81 ()X 2 () - - Xy, ()

=1 B1<B2<--<B;EA
in a neighborhood of A. Here 81 < (3, implies that 81 # (32 and Ag, C Ag,.

Let F € JW(X). Since we have JW (X) = JW?AQ}(X), then, for any «
there exists g,(z) € €®)(X) such that j;_(g9o) = F| 4. Then, by Proposition
A3, there exists a super growth indicator ¥(t) such that, for any h > 0 and
any «, there exists a constant C}, such that, for any [ > 0,

l174(9a) = FllB(au, 1),50 < Chexp(—9(177)) .

Set
#A
ge(w) == > (1) Xe,0 () Xe 8 () - - X, () g3, () € € (X) .
=1 1 <B2<--<B;EA

We are going to show that j4(g.) converges to F' with respect to the topology
of JW’(X) when € — 0. This will complete the proof.
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Let us fix a stratum A,. We have
Ji.(9¢) = Fla,

= JA Z Z jAa ((_l)iXG,ﬂ1 (m)XE,ﬂz (.Z‘) - Xe,Bi (.Z‘)) Flﬁa

i=1 31 <B2<--=B;EA
#A
= Z Z jAa ((_1)1)(6751 (x)X6752 (x) <o Xe,Bi (IL‘)) (.jA(gﬂi) - F)|Aa'
1=1 f1<B2<-<BiEA
Noticing

supp(Xe,8:) VA C Weg, 1. 5.

NAC U(Aﬂi)
and continuity, we get
G, (F1)'Xep1 (@)Xe 62 (2) - - Xey: (7)) = 0
if U(Ap,) N Ay = @. Since U(Ag,) N A, # @ implies A, D Ag,, we obtain
ja, (g ) Fla,
= Z Y A (DX (@)Xepa (@) X (2) (alg5) = Fl 4,
1=1 f1<B2~<<BiXAn

Now, let 31, ..., B; be such that 81 < B2 < --- < 3; 2 A,. As 16”31 > le,ﬂg >
- >l g,, we have that, for any A,

14 (F1)'Xe 8 (@)X, () - - - X, () s, ean < CF P exp (#A0(125)) -
We also have, for any h > 0,
154(98.) = FllB(ag, 1. 5,0 < Chexp(=¢(125))-
Since we have We g, 1., NAC Wep, 1., NU(Ag,) C B(Ag,, le,), we get
supp(Xe,5,) N Aa C We g1, 5. N Aa C B(Ag,, le g,)-
Hence, for any h > 0, we obtained
154, (Z1)"Xes (#)Xe,8: () - - - Xer, () (Gal98,) = F)l 4.l 4n s, ety
< 1, ((“1) X ()X () - X0 (@) a0 oA e
11Ga(8.) = F) 2. scan, 1o orde,es
< GO exp(#AR(L5) — (I 5)-
In the end, if we take a super growth indicator ¢(t) such that

1

@(t)<<2#7A (),
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then we obtain

15, (1) Xe ()X (2) X, (2)) (14(95) = P g, L4, cinron
1
< 00\ Ghexp (—30015)) =0 (e—0)

for any h > 0. O
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