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RADIATION FIELDS

by Piotr T. Chruściel & Olivier Lengard

Abstract. — We study the “hyperboloidal Cauchy problem” for linear and semi-
linear wave equations on Minkowski space-time, with initial data in weighted Sobolev
spaces allowing singular behavior at the boundary, or with polyhomogeneous initial
data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which
includes scalar fields with a λφp nonlinearity, as well as wave maps, with initial data
given on a hyperboloid; several of the results proved apply to general space-times ad-
mitting conformal completions at null infinity, as well to a large class of equations
with a similar non-linearity structure. We prove existence of solutions with controlled
asymptotic behavior, and asymptotic expansions for solutions when the initial data
have such expansions. In particular we prove that polyhomogeneous initial data (sat-
isfying compatibility conditions) lead to solutions which are polyhomogeneous at the
conformal boundary I+ of the Minkowski space-time.
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2 CHRUŚCIEL (P.T.) & LENGARD (O.)

Résumé (Champs rayonnants). — Nous étudions le « problème de Cauchy hyper-
bolöıdal » pour des équations d’ondes linéaires et semi-linéaires sur l’espace-temps de
Minkowski, avec des données initiales, singulières au bord, dans des espaces de So-
bolev à poids, où polyhomogènes. Plus précisement, nous considérons une classe de
systèmes symétriques hyperboliques non-linéaires, compatibles avec l’équation d’onde
scalaire λφp, ainsi qu’avec des applications d’onde, avec données initiales prescrites
sur un hyperboloide. Plusieurs de nos résultats restent valables pour une classe gé-
nérale d’espace-temps avec complétions conformes à l’infini isotrope, ainsi que pour
une large classe d’équations avec une certaine structure des termes non-linéaires. Nous
démontrons l’existence de solutions avec comportement asymptotique contrôlé, ainsi
que des développements asymptotiques si les données initiales en possèdent. En parti-
culier nous démontrons, sous une condition de compatibilité, que les données initiales
polyhomogènes conduisent à des solutions polyhomogènes près du bord conforme I+

de l’espace-temps de Minkowski.
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1. Introduction

Bondi et al. [6] together with Sachs [34] and Penrose [33], building upon
the pioneering work of Trautman [36, 37], have proposed in the sixties a set
of boundary conditions appropriate for the gravitational field in the radiation
regime. A somewhat simplified way of introducing the Bondi-Penrose (BP)
conditions is to assume existence of “asymptotically Minkowskian coordinates”
(xµ) = (t, x, y, z) in which the space-time metric g takes the form

(1.1) gµν − ηµν =

1

hµν (t− r, θ, ϕ)

r
+

2

hµν (t− r, θ, ϕ)

r2
+ · · · ,

where ηµν is the Minkowski metric diag(−1, 1, 1, 1), u stands for t−r, with r, θ, ϕ
being the standard spherical coordinates on R

3. The expansion above has to
hold at, say, fixed u, with r tending to infinity. Existence of classes of solutions
of the vacuum Einstein equations satisfying the asymptotic conditions (1.1)
follows from the work in [20] together with [3,4,18,19]. As of today it remains
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an open problem how general, within the class of radiating solutions of vacuum
Einstein equations, are those solutions which display the behavior (1.1). Indeed,
the results in [1–4, 17], [17] suggest strongly(1) that a more appropriate setup
for such gravitational fields is that of polyhomogeneous asymptotic expansions:

(1.2) gµν − ηµν ∈ Aphg.

In the context of expansions in terms of a radial coordinate r tending to infinity,
the space of polyhomogeneous functions is defined as the set of smooth functions
which have an asymptotic expansion of the form

(1.3) f ∼
∞∑

i=0

Ni∑

j=0

fij(u, θ, ϕ)
lnj r

rni

,

for some sequences ni, Ni, with ni ↗ ∞. Here the symbol ∼ stands for
“being asymptotic to”: if the right-hand-side is truncated at some finite i, the
remainder term falls off appropriately faster. Further, the functions fij are
supposed to be smooth, and the asymptotic expansions should be preserved
under differentiation.(2)

The suggestion, that the expansions (1.2) are better suited for describing the
gravitational field in the radiation regime than (1.1), arises from the fact that
generic – in a well defined sense – initial data constructed in [1–4,17], are poly-
homogeneous. This leads naturally to the question, whether polyhomogeneity
of initial data is preserved under evolution dictated by wave equations.

In this paper we answer in the affirmative this question for semi-linear wave
equations, and for the wave map equation, on Minkowski space-time. We de-
velop a functional framework appropriate for the analysis of such questions.
We prove local in time existence of solutions for classes of equations that in-
clude the semi-linear wave equations and the wave map equation on Minkowski
space-time, with conormal and with polyhomogeneous initial data. We show
that polyhomogeneity is preserved under evolution when appropriate (neces-
sary) corner conditions are satisfied by the initial data. We note that the initial
data considered here are more singular than allowed in the existing related re-
sults [7,28,31]. We are planning to analyse the corresponding problems for the
vacuum Einstein equation in a forthcoming publication, see also [30].

(1) Cf. [29] and references therein for some further related results.
(2) The choice of the sequences ni, Ni is not arbitrary, and is dictated by the equations at
hand. For example, the analysis of 3+1 dimensional Einstein equations in [17] suggests that
consistent expansions can be obtained with ni = i. On the other hand, Theorem 5.7 below
gives actually ni = 1

2
i for wave-maps on 2 + 1 dimensional Minkowski space-time. We note

that the 2 + 1 dimensional wave map equation is related to the vacuum Einstein equations
with cylindrical symmetry (cf., e.g., [5, 14, 15]).
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Our main results are the existence and polyhomogeneity of solutions with
appropriate polyhomogeneous initial data for the nonlinear scalar wave equa-
tion, and for the wave map equation. We achieve this in a few steps. First,
we prove local existence of solutions of these equations in weighted Sobolev
spaces, cf. Theorems 4.1 and 5.1. The next step is to obtain estimates on the
time derivatives, cf. Theorems 4.4, 5.4 and 5.6. Those estimates are uniform
in time in a neighborhood of the initial data surface if the initial data satisfy
compatibility conditions. Somewhat surprisingly, we show that all initial data
in weighted Sobolev spaces, not necessarily satisfying the compatibility con-
ditions, evolve in such a way that the compatibility conditions will hold on
all later time slices; see Corollary 4.5 and Theorems 5.4 and 5.6. Finally, in
Theorems 4.10 and 5.7 we prove polyhomogeneity of the solutions with poly-
homogeneous initial data; this requires a hierarchy of compatibility conditions.
We hope to be able to show in a near future that polyhomogeneity of solutions
can be established, for polyhomogeneous initial data, with a finite number of
compatibility conditions.

The restriction to Minkowski space-time in Theorem 5.7 is not necessary,
and is only made for simplicity of presentation of the results; the same remark
applies to Theorem 4.1. Similarly the choice of the initial data hypersurface as
the standard unit hyperboloid is not necessary.

This work is organised as follows: First, the reader is referred to Appendix A
for definitions, notations, and the functional spaces involved; we also develop
calculus in those spaces there. In Section 2 we briefly recall Penrose’s confor-
mal completions, as they provide the link between the asymptotic behavior of
fields and the local analysis carried on in this work. In Section 3 we consider
linear equations. There the key elements of our analysis are: a) Proposition 3.1
and its variations, which give a priori estimates in weighted Sobolev spaces;
b) the mechanism for proving polyhomogeneity, provided in the proof of The-
orem 3.4. The transition from the linear weighted Sobolev estimates to their
nonlinear counterparts is done in Sections 4 and 5. This has already been out-
lined above, and requires a considerable amount of work. In Appendix B we
prove several auxiliary results on ODE’s, some of which are fairly straightfor-
ward; as those results are used in the body of the paper in various, sometimes
involved, iterative arguments, it seemed convenient to have precise statements
at hand.

Some of the results proved here have been announced in [16].

2. Conformal completions

The aim of this section is to set-up the framework necessary for our consider-
ations; the results here are well known to relativists, but perhaps less so to the
PDE community. In any case they are needed to establish notation. Consider,
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thus, an n+ 1 dimensional space-time (M, g) and let

(2.1) g̃ = Ω2
g.

Let �h denote the wave operator associated with a Lorentzian metric h,

�hf =
1√

| dethρσ|
∂µ

(√
| dethαβ |hµν∂νf

)
.

We recall that the scalar curvatureR = R(g) of g is related to the corresponding

scalar curvature R̃ = R̃(g̃) of g̃ by the formula

(2.2) R̃Ω2 = R− 2n
{ 1

Ω
�gΩ +

n− 3

2

|∇Ω|2
g

Ω2

}
.

It then follows from (2.2) that we have the identity

(2.3) �eg (Ω−(n−1)/2f) = Ω−(n+3)/2
(
�g f +

n− 1

4n
(R̃Ω2 −R)f

)
.

It has been observed by Penrose [33] that the Minkowski space-time (M, η)
can be conformally completed to a space-time with boundary (M̃, η̃), η̃ = Ω2η
on M, by adding to M two null hypersurfaces, usually denoted by I+ and I−,
which can be thought of as end points (I+) and initial points (I−) of inex-
tendible null geodesics [32,33,38]. We will only be interested in “the future null
infinity” I+; an explicit construction (of a subset of I+) which is convenient
for our purposes proceeds as follows: for (x0)2 <

∑
i(x

i)2 we define

(2.4) yµ =
xµ

xαxα
·

In the coordinate system {yµ} the Minkowski metric η ≡ −(dx0)2 + (dx1)2 +
(dx2)2 + (dx3)2 = ηαβ dxαdxβ takes the form

η =
1

Ω2
ηαβ dyαdyβ , Ω = ηαβ y

αyβ .(2.5)

We note that under (2.4) the exterior of the light cone Cx
µ

0 ≡ {ηαβxαxβ = 0}
emanating from the origin of the xµ-coordinates is mapped to the exterior of

the light cone Cy
µ

0 = {ηαβ yαyβ = 0} emanating from the origin of the yµ-

coordinates. The conformal completion is obtained by adding Cy
µ

0 to M,

M̃ = M∪
(
Cy

µ

0 \ {0}
)
,

with the obvious differential structure arising from the coordinate system yµ.
We shall use:

• the symbol I to denote Cy
µ

0 \ {0}, and

• I+ to denote Cy
µ

0 \ {0} ∩ {y0 > 0}.
As already mentioned, I so defined is actually a subset of the usual I, but

this will be irrelevant for our purposes.
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We note that (2.4) is singular at the light cone Cx
µ

0 . This is again irrelevant
from our point of view because we are only interested in the behavior of the
solutions near I+, and finite speed of propagation allows us, for that purpose,
to disregard what happens near Cx

µ

0 .
The above procedure can be adapted for several metrics of interest, such

as the Schwarzschild, Kerr, or Robinson-Trautman metrics, to similarly yield
conformal completions of space-time by the addition of null hypersurfaces I+.
This observation was at the origin of Penrose’s proposal to describe systems
which are asymptotically flat in lightlike directions through the use of conformal
completions.

It is noteworthy that the conformal technique allows one to reduce global-
in-time existence problems to local ones; this has been exploited by various
authors [8–13] for wave equations on a fixed background space-time. Further,
Friedrich [22, 23, 26] has used this approach to obtain a global existence re-
sult for Einstein equations to the future of a “hyperboloidal” Cauchy surface,
with “small” smoothly conformally compactifiable initial data, cf. also [21,24],
and [25].

On a more modest level, the identity (2.3) can be used as a starting point
for the analysis of the asymptotic behavior of solutions of the scalar wave
equation near I+, as it reduces the problem to a study of solutions near a null
hypersurface. This is the approach used in this paper. There are associated
identities for fields of any spin [33], which provide a convenient framework for
similar questions for those fields.

3. A class of linear symmetric hyperbolic systems

In this section we define a class of linear symmetric hyperbolic first order
systems on a set of the form Mx0 × I, where Mx0 is defined at the beginning
of Appendix A, and where I is an interval corresponding to the time variable,
which will be denoted by τ , and we derive our key energy inequality in weighted
Sobolev spaces. (We note that in some of our further applications the vector
∂/∂τ will be lightlike, and not timelike as is usually the case. It should be
pointed out that in our conventions the time variable is the last coordinate,
allowing x to be the first variable, consistently with the conventions of the
preceding sections.)

We start by introducing some notation for the sets within the “space-time”
Mx0 × I, which will be relevant in what follows:

t ≥ 0, 2(x2 + t) < x1 ≤ x0, Σx2,x1,t =
{
τ = t, x2 < x < x1 − 2t

}
,(3.1a)

T > 0, 2(x2 + T ) < x1 ≤ x0, Ωx2,x1,T =
⋃

0<τ<T Σx2,x1,τ ,(3.1b)

0 ≤ 2t < x1 ≤ x0, Σx1,t =
{
τ = t, 0 < x < x1 − 2t

}
,(3.1c)

0 < 2T < x1, Ωx1,T =
⋃

0<t<T Σx1,t.(3.1d)
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There(3) is a natural identification between Σx2,x1,t andMx2,x1−2t, as defined at
the beginning of Appendix A, similarly between Σx1,t and Mx1−2t, and we shall
freely make use of such identifications throughout. We shall write ‖f(t)‖Hα

k
for

‖f |Σx2,x1,t‖Hα
k (Σx2,x1,t), or for ‖f |Σx1,t‖Hα

k (Σx1,t), etc.; the distinction should be
clear from the context.

We shall be interested in symmetric hyperbolic first order systems which in
local coordinates take the form

(3.2)
[
Aµ(zν)∂µ +A(z)

]
f = F,

where zν = (yi, τ), with the following properties:

C1) f and F are sections of a bundle which is a direct sum of two N1 and N2

dimensional Riemannian bundles; we will write

(3.3) f =
(
ϕ
ψ

)
, F =

(
a
b

)
.

In local coordinates ϕ and a are thus R
N1 valued, while ψ and b are R

N2 valued.
The respective scalar products will be denoted by 〈. , .〉

1
and 〈. , .〉

2
. We shall

use the generic symbol ∇ to denote(4) a covariant derivative compatible with
those scalar products, e.g., if X is a vector field on Ωx0,T , then

(3.4) X
(
〈φ, ψ〉1

)
= 〈∇Xφ, ψ〉1 + 〈φ,∇Xψ〉1 ,

similarly for 〈. , .〉
2
. The derivative ∇ will also be assumed to be compatible

with every other structure at hand whenever useful in the context, e.g. a
Riemannian metric on M , etc.

C2) The left hand side of (3.2) can be written as

(3.5)

(
Eµ−∇µϕ +Lψ

−L†ϕ +Eµ+∇µψ

)
+

(B11 B12

B21 B22

)( ϕ
ψ

)
,

(3)The motivation for the factors of 2, and the general form of the sets considered, arises as

follows: The set ∂M × I should be thought of as a smooth null hypersurface in space-time;
e.g., in Minkowski space-time with Minkowskian coordinates yµ, it can be the intersection
of the half-space {y0 ≥ 1

2
} with the light cone emanating from the origin yµ = 0. Then τ

is the Minkowski time, perhaps shifted by a constant, say τ = y0 − 1
2
. The coordinate x is

a coordinate which vanishes on ∂M × I, in the current example e.g., x =
p

P

(yi)2 − y0.
Finally, in such a Minkowskian setup, the hypersurfaces x = x1 −2τ , which determine one of
the boundaries of the Σ’s and Ω’s defined in (3.1), correspond to the converging light cones

y0 +
p

P

(yi)2 = Const. The restrictions 2(x2 + t) < x1 ≤ x0 (in the definition of Σx2,x1,t)
and 2(x2 + T ) < x1 (in the definition of Ωx2,x1,T ) are not necessary, and are only made
for simplicity of discussion.
(4) In some situations (3.4) might fail to hold, and some undifferentiated supplementary
terms will occur at the right-hand-side of (3.4). We note that our results will not be affected
by the occurrence of such terms, provided those terms satisfy bounds as in (3.17).
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where L is a first order differential operator. Here L† denotes the formal adjoint
of L, in the sense that if Ω = M , or Mx1 , or Mx2,x1 , and if ϕ, ψ are in C1(Ω),
then

(3.6)

∫

Ω

〈ϕ,Lψ〉
1
dµ =

∫

Ω

〈L†ϕ, ψ〉
2
dµ,

where dµ is a measure on M which will, we hope, be obvious from the context.
By density Equation (3.6) will still hold with Ω = Mx2,x1 for all α, β ∈ R, all

ϕ ∈ Hα
1 (Mx2,x1) and all ψ ∈ Hβ

1 (Mx2,x1), at least for x1 > 0. Equation (3.6)
forces L not to contain any τ - or x-derivatives, where the letter x denotes a
coordinate as defined in Section A, thus

(3.7) L = `A(x, v, τ)∂A + `(x, v, τ).

It follows that the principal part of the system (3.5) is of the form

(3.8)

(
Eµ−∂µ `A∂A

(`A)t∂A Eµ+∂µ

)
,

where At denotes the transpose of a matrix A. Equation (3.8) explicitly shows
that (3.5) is symmetric hyperbolic when the Eµ±’s are symmetric with Eτ±
positive definite; the notions of “symmetric hyperbolic” and “symmetrizable
hyperbolic” are identified throughout this work.

The hypotheses above will be assumed throughout this section.

3.1. Estimates on the space derivatives of the solutions, α < −1/2

Let us pass now to the description of the hypotheses needed to derive
weighted energy estimates for space derivatives of f . To obtain such estimates,
we shall require the existence of a constant C1 such that the (matrix-valued)
coefficients `A and ` satisfy, in the relevant range of τ ’s,

(3.9)
∥∥`(τ)

∥∥
G0

k(Mx1−2τ )
+

∑

A

∥∥`A(τ)
∥∥
G0

k(Mx1−2τ )
≤ C1.

Similarly writing

(3.10) L† = `†A(x, v, τ)∂A + `†(x, v, τ),

we require

(3.11)
∥∥`†(τ)

∥∥
G0

k(Mx1−2τ )
+

∑

A

∥∥`†A(τ)
∥∥
G0

k(Mx1−2τ )
≤ C1.

C3) The matrices Eµ± are symmetric and satisfy

(3.12) Eµ±nµ ≥ ε Id, Eµ+∂µx ≤ −ε Id, |Eµ−∂µx| ≤ C1x,

for some ε > 0. Here nµ denotes the field of future directed (i.e., b(dτ, n) > 0)
b-unit normals to the surfaces {τ = Const}, where b is an auxiliary Riemannian
metric h on M . (Later on we will mainly be interested in the case of Eµ+s
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of the form Eµ± = eµ± ⊗ Id, for some vector fields eµ±.) For simplicity we shall
also assume

(3.13) ∂iE
τ
± = 0;

this is by no means necessary, but is sufficient for the purposes of this paper.
We will further assume(5) that the Eµ−’s satisfy a bound of the form:

∥∥EA−(τ)
∥∥
G0

k(Mx1−2τ )
+

∥∥Ex−(τ)
∥∥
G1

k(Mx1−2τ )
(3.14)

+
∥∥∇µE

µ
−(τ)

∥∥
L∞(Mx1−2τ )

≤ C1.

As far as the Eµ+’s are concerned, we allow singular behavior which should,
however, be somewhat less singular than 1/x; to control that, we require ex-
istence of a function ζ : R

+ → R
+, satisfying limx→0 ζ(x) = 0, such that

for 0 < x ≤ x1 − 2τ we have

(3.15)
∥∥EA+(τ)

∥∥
G−1

k (Mx)
+

∥∥Ex+(τ)
∥∥
G0

k(Mx)
+

∥∥x∇µE
µ
+(τ)

∥∥
L∞(Mx)

≤ ζ(x).

When the operators Eµ±∇µ are written out explicitly as

(3.16) Eµ±∇µ = Eµ±∂µ +B±,

we require that for 0 < x < x1 − 2τ ,

(3.17)
∥∥B−(τ)

∥∥
G0

k(Mx1−2τ )
≤ C1,

∥∥B+(τ)
∥∥
G−1

k (Mx)
≤ ζ(x).

C4) The matrices Bab, where a, b = 1, 2, satisfy the bounds

(3.18)





∥∥B12(τ)
∥∥
G

−1/2
k (Mx1−2τ )

+
∥∥B21(τ)

∥∥
G

−1/2
k (Mx1−2τ )

+
∥∥B11(τ)

∥∥
G0

k(Mx1−2τ )
≤ C1,∥∥B22(τ)

∥∥
G−1

k (Mx)
≤ ζ(x),

this last equation holding again for 0 < x < x1 − 2τ .

Our final hypothesis concerns the “acausal” nature of the boundary
of Ωx2,x1,T :

C5) ∂Ωx2,x1,T is “non-timelike”, in the sense that for any covector nµ,
which is positive on outwards-pointing vectors and vanishes on vectors tan-
gent to ∂Ωx2,x1,T we have, on ∂Ωx2,x1,T ∩ {τ > 0},
(3.19) Eµ±nµ ≥ 0.

(We note that (3.12) already guarantees that (3.19) holds on ∂Ωx2,x1,T ∩
{τ = T or x = 0}.)

(5) We use a convention in which the covariant derivatives ∇µE
µ
± include terms associated

with the vector density character of Xµ defined by (3.21); in particular this should be taken
into account when verifying that the estimates (3.14)–(3.15) hold.
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The essential point of the above hypotheses is that the boundary {x = 0}
is characteristic for Equation (3.2), with the dimension of the relevant kernel
being constant over the boundary.(6) Weighted estimates, in the spirit of Propo-
sition 3.1 below, near such characteristic boundaries hold for general symmetric
hyperbolic systems, this will be discussed elsewhere.

Weighted energy inequalities in Hα
k spaces with arbitrary values of k may

be proved under various hypotheses on the coefficients which appear in (3.2).
We note one such result for systems satisfying C1–C5, which lies in line with
our remaining investigations. The restriction α ≤ − 1

2 seems to be inherent to

the problem at hand. We consider first the case α < − 1
2 ; the case α = − 1

2 is
handled by the same methods, under somewhat more restrictive conditions on
the coefficients, in Section 3.2.

Proposition 3.1. — Suppose that α < − 1
2 , k > 1

2n+1, k ∈ N, and set either
• f(t) = f Σx1,t

, 0 < x1 ≤ x0, 0 ≤ t ≤ tmax ≡ 1
2x1, or

• f(t) = f Σx2,x1,t
, 0 < 2x2 < x1 ≤ x0, 0 ≤ t < tmax ≡ x1 − 2x2.

Under the hypotheses C1–C5, there exists a constant C2 depending upon x1,
C1, n, N , k and α, as well as upon the “error function” ζ and the boundary
manifold ∂M , such that for all f satisfying (3.2) for which f(0) ∈ H loc

k and for
all 0 < t ≤ tmax we have

∥∥f(t)
∥∥2

Hα
k (Mx1−2t)

≤ C2eC2t
{∥∥f(0)

∥∥2

Hα
k (Mx1 )

(3.20)

+

∫ t

0

eC2(t−s)
(∥∥a(s)

∥∥2

Hα
k (Mx1−2s)

+
∥∥b(s)

∥∥2

H
α−1/2
k (Mx1−2s)

)
ds

}
,

with an identical estimate with Mx1−∗ replaced by Mx2,x1−∗.

Remark. — The condition k > 1
2n+1 is needed to obtain C1-weighted control

of the solution; there are no restrictions on k if we have at our disposal an
a priori C1 weighted bound for f , and if the coefficients in the equation are
suitably regular. In such a case, for k ≤ 1

2n + 1, the inequality (3.20) should

be modified by adding a term ‖f(s)‖2
Bα

1 (Mx1−2s) under the integral appearing

in (3.20).

Proof. — We start by proving (3.20) on sets Mx2,x1−t; in that case we are
mainly interested to obtain uniform control for small values of x2, with even-
tually x2 tending to zero; without the uniformity in x2 the estimate would of
course be standard. Keeping this in mind, let Xµ be the “energy-momentum
vector density”,

(3.21) Xµ =
∑

0≤|β|≤k

x−2α−1+2β1
{
〈Dβϕ,Eµ−Dβϕ〉

1
+ 〈Dβψ,Eµ+Dβψ〉

2

}
.

(6) We are grateful to H. Friedrich for useful discussions concerning this point.
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Suppose, first, that f(0) ∈ H loc
k+1; standard results [35, vol. III] show that f(t)

is an element of H loc
k+1, and we then have5

(3.22) ∇µX
µ = N1 +D1 +D2 + E1 + E2 + E3,

where

(3.23)





N1 =
∑

0≤|β|≤k

(2β1 − 2α− 1)x−2α−2+2β1
〈
Dβψ, (Eµ+∂µx)Dβψ

〉
2 ,

D1 = 2
∑

0≤|β|≤k

x−2α−1+2β1
〈
Dβϕ,Eµ−∇µDβϕ

〉
1
,

D2 = 2
∑

0≤|β|≤k

x−2α−1+2β1
〈
Dβψ,Eµ+∇µDβψ

〉
2
,

E1 =
∑

0≤|β|≤k

(2β1 − 2α− 1)x−2α−1+2β1

〈
Dβϕ,

(Eµ−∂µx)

x
Dβϕ

〉
1 ,

E2 =
∑

0≤|β|≤k

x−2α−1+2β1
〈
Dβϕ, (∇µE

µ
−)Dβϕ

〉
1
,

E3 =
∑

0≤|β|≤k

x−2α−1+2β1
〈
Dβψ, (∇µE

µ
+)Dβψ

〉
2
.

Since 2α+ 1 < 0, from (3.12) one finds that

(3.24)

∫

Σx2,x1,s

N1dxdν ≤ −|2α+ 1|ε · ‖ψ‖2

H
α+1/2
k

which is strictly negative except if ψ is identically zero, and can be used to
control some of the error terms which occur at the right hand side of (3.22).
(Here we have used the form (A.4) of ‖ψ‖2

H
α+1/2
k

.) For example, to control E3

we take any x3 satisfying 2x2 ≤ x3 ≤ x1 − 2s (we will make a more precise
choice of x3 later), and we write

∫

Σx2,x1,s

E3dxdν = E3,1 + E3,2,(3.25)

E3,1 ≡
∫

Σx2,x1,s
T
{x≥x3}

E3dxdν, E3,2 ≡
∫

Σx2,x1,s
T
{x≤x3}

E3dxdν.

By (3.15), E3,2 can be estimated as follows:

|E3,2| ≤
∑

0≤β≤k

∫

Σx2,x1,s∩{x≤x3}

ζ(x)x−2α−2+2β1 |Dβψ|2dxdν ≤ (2α+ 1)ε

10
‖ψ‖2

H
α+1/2
k

,

if x3 is chosen small enough. Once this choice has been done, we can clearly
estimate E3,1 as

E3,1 ≤ C‖ψ‖2
Hα

k
,
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12 CHRUŚCIEL (P.T.) & LENGARD (O.)

with some constant which is determined by x3. The integrals of the error
terms E1 and E2 are estimated in the obvious way, cf. (3.12) and (3.14):

∫

Σx2,x1,s

(E1 + E2)dxdν ≤ C
∥∥ϕ(s)

∥∥2

Hα
k

.

To control the terms D1 and D2 we use the evolution equations (3.5):

Eµ−∇µDβϕ = Dβ(Eµ−∇µϕ) + [Eµ−∇µ,Dβ ]ϕ(3.26)

= −Dβ(Lψ +B11ϕ+B12ψ − a) + [Eµ−∇µ,Dβ ]ϕ

= −LDβψ + Dβa+ Eβ4 ,

Eβ4 = −[Dβ, L]ψ + [Eµ−∇µ,Dβ ]ϕ−Dβ(B11ϕ+B12ψ),

Eµ+∇µDβψ = L†Dβϕ+ Dβb+ Eβ5 ,(3.27)

Eβ5 = [Dβ , L†]ϕ+ [Eµ+∇µ,Dβ ]ψ −Dβ(B21ϕ+B22ψ).

Integrating D1 +D2 over Σx2,x1,s, one finds that the terms containing LDβψ
and −L†Dβϕ in (3.26) and (3.27) cancel out; the terms containing Dβa and Dβb
are estimated as (here the somewhat arbitrarily chosen factor 10 can be replaced
by any other larger number if desired)

2
∑

0≤|β|≤k

∫

Σx2,x1,s

x−2α−1+2β1
(
〈Dβϕ,Dβa〉1 + 〈Dβψ,Dβb〉2

)
dxdν

≤ ‖ϕ‖2
Hα

k
+ ‖a‖2

Hα
k

+
(2α+ 1)ε

10
‖ψ‖2

H
α+1/2
k

+
10

(2α+ 1)ε
‖b‖2

H
α−1/2
k

.

The terms containing the commutators [Dβ , L]ψ and [Dβ , L†]ϕ, can be es-
timated(7) using the weighted commutator inequality (A.35), while the B11,
B12, etc., terms can be estimated using (A.34), by an expression of the form

(3.28) CC1

(
‖ψ‖2

Hα
k

+ ‖ϕ‖2
Hα

k
+

(2α+ 1)ε

10
‖ψ‖2

H
α+1/2
k

)
.

To estimate the commutator terms arising from Eµ±, we calculate, e.g.

xk[Eµ±∂µ, ∂
k
x ]χ =

k∑

i=1

( i
k

)
xi(∂ixE

µ
±)xk−i∂k−ix ∂µχ = E6 + E7,

E6 =

k∑

i=1, µ6=x

( i
k

)
xi(∂ixE

µ
±)xk−i∂k−ix ∂µχ.

(7) This step requires weighted L∞ control of φ and ψ, and weighted W 1,∞ control of the
coefficients in the equation. The hypothesis k > 1

2
n+1 is not needed if such a priori bounds

are known.
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The terms arising from E6 are estimated in a straightforward way as in (3.28)
using (A.36). The dangerous term E7 can be written as

E7 ≡
k∑

i=1

( i
k

)
xi(∂ixE

x
±)xk−i∂k−i+1

x χ

=

k∑

i=1

( i
k

)
xi−1(∂i−1

x ∂xE
x
±)xk−i+1∂k−i+1

x χ,

and can thus again be estimated as in (3.28) provided that ∂xE
x
− ∈ G0

k−1, that

∂xE
x
+ ∈ G−1

k−1, and that (3.15) holds. Other terms in the Eµ± commutators are
handled in a similar way. Summarising, we have derived

∣∣∣
∫

Σx2,x1,s

∇µX
µdnµ

∣∣∣

≤ CC1

(
‖a(s)‖2

Hα
k

+ ‖b(s)‖2

H
α−1/2
k

+ ‖ψ(s)‖2
Hα

k
+ ‖ϕ(s)‖2

Hα
k

)
,

where dnµ stands for dxdν, or for any measure uniformly equivalent to dxdν.
Stokes theorem, ∫

Ωx2,x1,t

∇µX
µdnµdτ =

∫

∂Ωx1,x2,t

XµdSµ,

and our hypotheses on the geometry of the problem lead to

∥∥f(t)
∥∥2

Hα
k

≤ C
(∥∥f(0)

∥∥2

Hα
k

+ C1

∫ t

0

(
‖a(s)‖2

Hα
k

+ ‖b(s)‖2

H
α−1/2
k

+ ‖f(s)‖2
Hα

k

)
ds

)
.

Gronwall’s lemma establishes (3.20) on the family of hypersurfaces Σx2,x1,t

for f(t) ∈ H loc
k+1. If f(t) ∈ H loc

k , we approximate f(0) by a sequence of func-

tions fn(0), with fn(0) ∈ H loc
k+1 converging to f(0) in Hα

k (Σx2,x1,t), and we
solve Equation (3.2) with initial data fn(0). The inequality (3.20) applied to
the functions fn(t) − fm(t) shows that fn(t) is Cauchy in Hα

k ; passing to the
limit n → ∞ the desired result for f ’s such that f(0) ∈ Hα

k (Σx2,x1,t) easily
follows.

Since all the constants above are x2 independent, an elementary argument
using the monotone convergence theorem shows that (3.20) for the Σx1,t’s fol-
lows from the one for the Σx2,x1,t’s by passing to the limit x2 → 0.

3.2. Estimates on the space derivatives of the solutions, α = −1/2

When α = − 1
2 we do not have the β1 = 0 negative terms in N1 at our

disposal in Equation (3.23), so that we cannot allow coefficients as singular as
in the previous section. To handle that case we keep all the structure and reg-
ularity conditions already made, with the following supplementary restrictions:
Equation (3.15) is replaced by

(3.29)
∥∥EA+(τ)

∥∥
G0

k(Mx)
+

∥∥Ex+(τ)
∥∥
G1

k(Mx)
+

∥∥∇µE
µ
+(τ)

∥∥
L∞(Mx)

≤ C1.
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14 CHRUŚCIEL (P.T.) & LENGARD (O.)

Instead of (3.17) we require that

(3.30)
∥∥B±(τ)

∥∥
G0

k(Mx1−2τ )
≤ C1,

while condition (3.18) becomes
∥∥Bab(τ)

∥∥
G0

k(Mx1−2τ )
≤ C1.(3.31)

We then obtain:

Proposition 3.2. — Suppose that k > 1
2n+ 1, k ∈ N, and set either

• f(t) = f Σx1,t
, 0 < x1 ≤ x0, 0 ≤ t ≤ tmax ≡ 1

2x1, or

• f(t) = f Σx2,x1,t
, 0 < 2x2 < x1 ≤ x0, 0 ≤ t < tmax ≡ x1 − 2x2.

Under the hypotheses C1–C5 together with (3.29)–(3.31) there exists a con-
stant C2 depending upon x1, C1, n, N , k and the boundary manifold ∂M , such
that for all f satisfying f(0) ∈ H loc

k and for all 0 < t ≤ tmax we have
∥∥f(t)

∥∥2

H
−1/2
k (Mx1−2t)

≤ C2eC2t
{
‖f(0)‖2

H
−1/2
k (Mx1)

(3.32)

+

∫ t

0

eC2(t−s)
(
‖a(s)‖2

H
−1/2
k (Mx1−2s)

+ ‖b(s)‖2

H
−1/2
k (Mx1−2s)

)
ds

}
,

with an identical estimate with Mx1−∗ replaced by Mx2,x1−∗.

Proof. — The proof is essentially identical, but simpler, to that of Proposi-
tion 3.1. We simply note that the key inequality (3.29) is replaced by

∣∣∣
∫

Σx2,x1,s

∇µX
µdnµ

∣∣∣ ≤ CC1

(
‖a(s)‖2

H
−1/2
k

(3.33)

+‖b(s)‖2

H
−1/2
k

+ ‖ψ(s)‖2

H
−1/2
k

+ ‖ϕ(s)‖2

H
−1/2
k

)
.

3.3. Estimates on the time derivatives of the solutions. — The hy-
potheses assumed in the previous section ensure that we can algebraically solve
Equation (3.2) for ∂τf , and then recursively obtain formulae for ∂iτf . Under
the hypotheses of Proposition 3.1, it is then straightforward to obtain estimates
on the norms ∥∥(

(x∂τ )
if

)
(τ)

∥∥
Hα

k−i(Σx1−2τ )
, 0 ≤ i ≤ k,

provided suitable weighted conditions are imposed on the τ derivatives of the
coefficients of Equation (3.2). However, we would like to obtain derivative
estimates without the x factors, uniformly in τ . Clearly a necessary condition
for the existence of such estimates is that

(3.34)
∥∥(∂iτf)(0)

∥∥
Hα

k−i(Σx1 )
<∞, 0 ≤ i ≤ k.

It turns out that (3.34) does not need to hold for arbitrary initial data
f(0) ∈ Hα

k , and the requirement that it does lead to the j-th order compati-
bility conditions : by definition, these are the conditions on f(0) which ensure
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that Equation (3.34) holds for 0 ≤ i ≤ j. Since, for sufficiently differentiable
solutions of Equation (3.2), all the derivatives ∂iτf(0) can be explicitly written
as an i-th order differential operator acting on f(0), the compatibility condi-
tions are conditions on the behavior of the initial data f(0) near the “corner”
x = 0; we shall therefore sometimes refer to them as corner conditions. We
note that there can be corner conditions in weighted Sobolev spaces, or in
weighted Hölder spaces; in this section we will be mainly interested in the
latter, defined by Equation (3.39) below.

The following example is instructive in this context: For 0 ≤ t < y let g be
a solution of the 1 + 1 dimensional wave equation

(3.35)
( ∂2

∂t2
− ∂2

∂y2

)
g = 0,

with initial condition

g
t=0

= 2Cyα+1,
∂g

∂t t=0
= 2(α+ 1)yα,

for some constants C,α ∈ R. From Equation (3.35) we can obtain a system of
the form (3.5) by introducing τ = t, x = y − t, ϕ = (g, (∂τ − 2∂x)g), ψ = ∂τg,
and setting L = 0, Eµ−∂µ = ∂τ ⊗ id, Eµ+∂µ = (∂τ − 2∂x), so that we have

∂τ

( g
(∂τ − 2∂x)g

)
−

( ψ
0

)
=

( 0
0

)
, (∂τ − 2∂x)ψ = 0.

The solution is

g = (C + 1)(y + t)α+1 + (C − 1)(y − t)α+1

= (C + 1)(2τ + x)α+1 + (C − 1)xα+1.

It follows that for each 0 ≤ τ ≤ 1, k ∈ N, and β < min{0, α + 1}, we have

g(τ, .) ∈ Hβ
k ((0, 10]), consistently with Proposition 3.1. Somewhat surprisingly,

for τ > 0 and for all i ∈ N the functions ∂iτg(τ, .) are smooth in x up to x = 0.
However, the L∞ bound for ∂iτg(τ, .) blows up as τ tends to zero except in
the case

(3.36) C = −1.

Condition (3.36) is precisely the corner condition needed for ∂τg(0, .) to be
better behaved than ∂xg(0, .) at x = 0. In the example under consideration the
fulfillment of the first order corner condition guarantees already that all the τ
derivatives of g will be well behaved, but we do not expect this to be true
in general.

Let us pass to a derivation of the desired estimates. We shall use a method
which works directly in weighted Hölder spaces, avoiding the use of weighted
Sobolev spaces; the price one pays is the need to consider systems somewhat less
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16 CHRUŚCIEL (P.T.) & LENGARD (O.)

general than (3.5), but still general enough for our purposes. More precisely,
in this section we restrict our attention to systems of the form

∂τϕ+B11ϕ+B12ψ = L11ϕ+ L12ψ + a,(3.37a)

e+ψ +B21ϕ+B22ψ = L21ϕ+ L22ψ + b,(3.37b)

with

e+ψ ≡ (∂τ − 2∂x)ψ.

We assume that the Lab’s (where a, b = 1, 2) are first order differential operators
of the form

(3.38) Lab = LAab∂A + xLτab∂τ + xLxab∂x,

with bounded coefficients Lµab; no symmetry hypotheses are made. Clearly the
intersection of systems of equations satisfying (3.37) with those of the form (3.5)
is non-empty. (As we will see in Sections 4 and 5 below, non-linear wave
equations on Minkowski space-time can be written in the form (3.37).) In
particular Proposition 3.1 provides a large class of solutions of (3.37) such that
for ` < k − 1

2n,

(ϕ, ψ)(τ) ∈ Hα
k (Mx1−2τ ) ⊂ Cα` (Mx1−2τ ).

We shall therefore assume that a solution f = (ϕ, ψ) satisfying f(τ) ∈
Cα` (Mx1−2τ ) is given, and study its τ -differentiability properties. For the pur-
poses of the proof below it is convenient to introduce auxiliary spaces Cα`|p(Ω)

defined, for p ≤ `, as the space of functions f in C`(Ω) such that the norm

‖f‖Cα
`|p

(Ω) ≡ sup
Ω

∑

0≤i+j+k+|γ|≤`
0≤k≤p

x−α
∣∣(x∂x)i(x∂τ )jDγ

v∂
k
τ f

∣∣

is finite. Obviously, Cα`|` = Cα` . Similarly one defines Cα,β`|p (Ω) using the norm

‖f‖Cα,β
`|p

(Ω) ≡ sup
Ω

∑

0≤i+j+k+|γ|≤`
0≤k≤p

(
1 + | lnx|

)−β
x−α ·

∣∣(x∂x)i(x∂τ )jDγ
v∂

k
τ f

∣∣.

Clearly Cα`|p(Ω) = Cα,0`|p (Ω). We shall write Cα,β` for Cα,β`|` .

Proposition 3.3. — Let α ≤ 0, ` ∈ N, write Ω for Ωx1,T (with Ωx1,T as

in (3.1d)), and suppose that Lµab, Bab ∈ C0
` (Ω), a ∈ Cα`−1(Ω), b ∈ Cα−1

`−1 (Ω).
Consider f ≡ (ϕ, ψ), a solution of (3.37) satisfying

∀τ ∈ [0, T ], f(τ) ∈ Cα` (Mx1−2τ ).

Then:

1) For all ε > 0 we have

(ϕ, ψ) ∈ Cα,βb`/2c

(
Ω ∩ {x+ 2τ > ε}

)
.
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This implies, for any τ > 0 the compatibility conditions of order p = b 1
2`c (the

integer part of 1
2 `) are satisfied by (ϕ(τ), ψ(τ)):

(3.39) ∀ i, 1 ≤ i ≤ p, ∂iτϕ(τ), ∂iτψ(τ) ∈ Cα,β`−i(Mx1),

Here β = b 1
2`c if α = 0, and β = 0 otherwise.

2) If there exists 1 ≤ p ≤ 1
2`, p ∈ N, such that Equation (3.39) holds with

β = 0 at τ = 0, then

(3.40) (ϕ, ψ) ∈ Cα,β`−p|p(Ω) ⊂ Cα,βp (Ω),

with β = p if α = 0, and β = 0 otherwise.

Remark. — The method of proof here gives a number of well-controlled time
derivatives smaller by a factor 2 than the number of space ones. This is, how-
ever, irrelevant, when ` = ∞, which is the main point of interest in this work.
We note that energy estimates as in the proof of Theorem 4.4 below provide an
alternative, more complicated way of establishing a stronger statement, with
more controlled time derivatives for large `’s. In the linear case considered
here the function F occurring there vanishes, so that all the complications aris-
ing from the non-linearities disappear, and somewhat stronger results can be
obtained using the methods there.

Proof. — By rearranging terms and redefining the Lab’s, the Bab’s, and the
source functions a and b we may without loss of generality assume that

Lτab ≡ 0.

One can rewrite Equations (3.37) as x∂τ (ϕ, ψ) = a partial differential oper-
ator linear in x∂x and ∂v; by iteration this immediately yields (ϕ, ψ) ∈ Cα`|0.
Equation (3.37a) shows then that ∂τϕ ∈ Cα`−1|0, hence ϕ ∈ Cα`|1. On the other

hand, Equation (3.37b) gives e+(ψ) ∈ Cα`−1|0 + Cα−1
`−1 , hence ∂τe+(ψ) ∈ Cα−1

`−2|0.

Integrating Equation (3.37b) one finds

(3.41) ψ(x, vA, τ) = ψ(x+ 2τ, vA, 0) +

∫ τ+ 1
2x

1
2x

e+(ψ)
(
2v, vA, τ − v + 1

2x
)
dv.

(We note that for each ε > 0 the first term above is uniformly C` on the set
Ω ∩ {x+ 2τ ≥ ε} ∩ {x ≤ x0}.) Differentiating Equation (3.41) one obtains

∂τψ(x, vA, τ) = ∂τψ(x + 2τ, vA, 0) +

∫ τ+ 1
2x

1
2x

∂τe+
(
ψ)(2v, vA, τ − v + 1

2x
)
dv;

since α ≤ 0 and ∂τe+(ψ) ∈ Cα−1
`−2|0, straightforward estimations show that

∂τψ ∈ Cα`−2|0, hence ψ ∈ Cα`−1|1 if α 6= 0, while ψ ∈ C0,1
`−1|1 when α = 0.
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Let βr = 0 if α 6= 0 and βr = r when α = 0, and suppose that ϕ ∈ Cα,βr

`+1−r|r

and ψ ∈ Cα,βr

`−r|r for some 1 ≤ r ≤ 1
2 (` − 1); we have already shown this to hold

for r = 1. Equation (3.37a) gives

∂τϕ ∈ Cα,βr

`−r−1|r =⇒ ϕ ∈ Cα,βr

`−r|r+1.

It then follows from Equation (3.37b) that

e+(ψ) ∈ Cα,βr

`−r−1|r =⇒ ∂r+1
τ e+(ψ) ∈ Cα−1,βr

`−2r−2|0.

Differentiating r + 1 times Equation (3.41) with respect to τ we obtain

∂r+1
τ ψ(x, vA, τ) = ∂r+1

τ ψ(x+ 2τ, vA, 0)

+

∫ τ+ 1
2x

1
2x

∂r+1
τ e+(ψ)

(
2v, vA, τ − v + 1

2x
)
dv,

which gives ∂r+1
τ ψ ∈ Cα,βr

`−2r−2|0, hence ψ ∈ Cα,βr

`−r−1|r+1, and the induction is

completed.

3.4. Polyhomogeneous solutions. — We now wish to show that solutions
with polyhomogeneous initial data will be polyhomogeneous. Let Ωx0,T be de-
fined by Equation (3.1d); we shall denote by Aδ

k(Ωx0,T ) the space of functions f
defined on Ωx0,T which can be written in the form

k∑

i=0

Ni∑

j=0

xiδ lnj xfij + fkδ+ε,

for some ε > 0, some functions fij ∈ C∞(Ωx0,T ), and some sequence (Ni) of
non-negative integers. We also require that fkδ+ε ∈ Ckδ+ε∞ (Ωx0,T ). We set

Aδ
∞ :=

⋂

k∈N

Aδ
k.

The following properties are useful in what follows:
• If 0 < x1 < x0 − 1

2T , then a function f ∈ C∞(Ωx0,T ) is in Aδ
k(Ωx0T ) if

and only if for any coordinate patch O of ∂M we have f ∈ Aδ
k(Ux1), where

Ux1 = ]0, x1[×O× [0, T ], and if f ∈ C∞(Ωint), where Ωint = Ωx0,T ∩ {x ≥ x1}.
• For all ε > 0 we have Cβ+pδ+ε

∞ ⊂ xβAδ
p; in particular Cε∞ ⊂ Aδ

0;

• It does not hold that Aδ
k ⊂ C0

∞, however, for all ε > 0 we have Aδ
k ⊂ C−ε

∞ .

More precisely, if f ∈ Aδ
k, then there exists p ∈ N such that (1 + | lnx|2)−p/2f

belongs to C0
∞.

• As before we assume that 1/δ ∈ N, which implies xAδ
k ⊂ Aδ

k+1/δ ⊂ Aδ
k+1.

• Aδ
k is stable under multiplication: if f, g ∈ Aδ

k, then fg ∈ Aδ
k.
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• Aδ
k is stable under differentiation with respect to τ and to v, as well as

under x∂x: if f ∈ Aδ
k, then ∂τf,Xi · f (i ≥ 2), x∂xf ∈ Aδ

k, with the vector
fields Xi defined in Appendix A, cf. Equation (A.7).

In this section we will consider systems of the form

∂τϕ+B11ϕ+B12ψ = L11ϕ+ L12ψ + a,(3.42a)

∂xψ +B21ϕ+B22ψ = L21ϕ+ L22ψ + b,(3.42b)

with the Lij ’s, i, j = 1, 2 of the form

Lij = LAij∂A + Lτij∂τ + xLxij∂x,(3.43)

Lµ11 ∈ xδAδ
k−1 and Lµ21, L

µ
12, L

µ
22 ∈ Aδ

k.(3.44)

No symmetry hypotheses are made on the matrices Lµij . Conditions (3.42a)–

(3.44) are easily seen to be compatible with those made elsewhere in this paper,
cf., e.g., the proof of Corollary 3.5 below. The reader is warned, however, that
the operators Lij here do not coincide with those in (3.37): to bring (3.37) into
the form (3.42) one needs to multiply Equation (3.37b) by − 1

2 , transfer the
operator ∂τ from the left- to the right-hand-side of (3.37), and appropriately
redefine the L2j’s.

We start with the following result, which assumes that the solutions have
both space and time derivatives controlled, in the sense of weighted Sobolev
spaces; recall that this hypothesis can be justified for equations satisfying more-
over the hypotheses of the previous sections:

Theorem 3.4. — Let β, β′ ∈ R, k ∈ N ∪ {∞}, and let (ϕ, ψ) be a solution

of (3.42) in Cβ′

∞(Ωx0,T ). Suppose that (3.44) holds, and that

B11 ∈
(
Aδ
k ∩ L∞

)
(Ωx0,T ), B12, B22, B21 ∈ Aδ

k(Ωx0,T ),(3.45a)

a, b ∈ xβAδ
k(Ωx0,T ), ϕ(0) ∈ xβAδ

k(Mx0).(3.45b)

Then

ϕ ∈ (xβAδ
k + Aδ

k)(Ωx0,T ), ψ ∈ (xβ+1Aδ
k + xAδ

k)(Ωx0,T ) + C∞(Ωx0,T ).

If one further assumes Lµ12, B12, a, ϕ(0) ∈ L∞(Ωx0,T ), then it also holds that

ϕ ∈ (xβAδ
k + Aδ

k ∩ L∞)(Ωx0,T ).

Proof. — It is convenient to decompose B11 in the obvious way as

B11 = B0
11 +Bδ11,

with Bδ11 ∈ xδAδ
k−1 and B0

11 ∈ C∞. We rewrite (3.42) as

∂τϕ+B0
11ϕ = c1,(3.46a)

∂xψ = c2,(3.46b)
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where

c1 := L11ϕ+ L12ψ + a−B12ψ −Bδ11ϕ,(3.47a)

c2 := L21ϕ+ L22ψ + b−B21ϕ−B22ψ,(3.47b)

In what follows we let ε > 0 be a positive constant, which can be made as
small as desired, and which may change from line to line. We note that c2 is
in Cβ′−ε

∞ +xβAδ
k, and integration in x of (3.46b), together with Propositions B.3

and B.6, gives ψ = ψ0 + ψβ′+1−ε + ψphg, where

ψ0(.) =

{
limx→0 ψ(x, .) if β′ + 1 − ε > 0,

0 otherwise,

with ψ0 ∈ C∞(Ωx0,T ), ψβ′+1−ε ∈ Cβ′+1−ε
∞ (Ωx0,T ), ψphg ∈ xβ+1Aδ

k(Ωx0,T ), hence

ψ ∈ C∞ + Cβ′+1−ε
∞ + xβ+1Aδ

k.

Since L11ϕ ∈ Cβ′+δ−ε
∞ (we have ∂xϕ ∈ Cβ′−1

∞ and xLx11 ∈ xAδ
k ∩ Cδ0 ⊂ Cδ∞;

similarly for the other derivatives), we find that

c1 ∈ Aδ
k + xβAδ

k + Cβ′+δ−ε
∞ .

We can then apply Proposition B.4 to (3.46a) to conclude that

(3.48) ϕ ∈ Aδ
k + xβAδ

k + Cβ′+pδ−ε
∞ ,

with p = 1. Coming back to c2 we find now that c2 ∈ Aδ
k + xβAδ

k + Cβ′+pδ−ε
∞ ,

and by Proposition B.6 we obtain

(3.49) ψ ∈ C∞ + xAδ
k + xβ+1Aδ

k + Cβ′+pδ+1−ε
∞ ,

still with p = 1. To conclude, we proceed by induction; let β′ + pδ ≤ β + k
and suppose that Equations (3.48)–(3.49) hold; it follows that c1 belong to

Aδ
k+x

βAδ
k+Cβ

′+(p+1)δ−ε
∞ . Applying Proposition B.4 to (3.46a) gives (3.48) with

p replaced by p + 1. It follows that c2 ∈ Aδ
k + xβAδ

k + Cβ
′+(p+1)δ−ε

∞ ; Proposi-
tion B.6 applied to (3.46b) gives (3.49) with p replaced by p+ 1, and the result
is established.

As a straightforward consequence of Theorem 3.4 we obtain:

Corollary 3.5. — Let β′ ∈ R, let (ϕ, ψ) ∈ Cβ′

∞(Ωx0,T ) be a solution of the
system (3.5), and suppose that

Bij , E
µ
±, B±, `, `

†, `A, (`A)† ∈ Aδ
k(Ωx0,T ),(3.50a)

Eτ− and Ex+ are invertible, with (Eτ−)−1, (Ex+)−1 ∈ Aδ
k(Ωx0,T ),(3.50b)

(Eτ−)−1Ex− ∈ x
(
Aδ
k ∩ Cδ0

)
(Ωx0,T ), (Eτ−)−1EA− ∈ xδAδ

k−1(Ωx0,T ),(3.50c)

(Eτ−)−1(B11 +B−) ∈ L∞(Ωx0,T ).(3.50d)
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If a, b ∈ xβAδ
k(Ωx0,T ) and ϕ(0) ∈ xβAδ

k(Mx0), with β ∈ R, then

ϕ ∈ (xβAδ
k + Aδ

k)(Ωx0,T ), ψ ∈ (xβ+1Aδ
k + xAδ

k)(Ωx0,T ) + C∞(Ωx0,T ).

In particular, if k = ∞ then the solution is polyhomogeneous.

Proof. — We write Equation (3.5) as

(3.51)





∂τϕ+ (Eτ−)−1
{
(B11 +B−)ϕ + `ψ

}

= (Eτ−)−1(Ei−∂iϕ− `A∂Aψ + a),

∂xψ − (Ex+)−1
{
`†ϕ− (B22 +B+)ψ

}

= (Eτ−)−1
(
(`A)†∂Aϕ+ Eτ+∂τψ + EA+∂Aψ + b

)
,

which is of the form (3.42), and we note that the hypotheses made on the
coefficients of Equation (3.51) imply those of Theorem 3.4.

An unsatisfactory feature of results such as Theorem 3.4 is that uniform
estimates both on space and time derivatives of the solutions are assumed.
Recall that uniform control of time derivatives can be obtained only if cor-
ner conditions are satisfied, and the hypotheses of Theorem 3.4 require an
infinite number of those to be fulfilled. The same techniques can be used to
obtain various expansions of solutions when a finite number of time derivatives
are controlled only, but the statements turn to be out somewhat less elegant.
We give an example of such results when δ = 1:

Theorem 3.6. — Let β ∈ R, k ∈ N ∪ {∞}, and let (ϕ, ψ) be a solution

of (3.42) in Cβ` (Ωx0,T ) for some ` ≥ 1. If Equations (3.44)–(3.50) hold
with δ = 1, then for any λ < 1 we have

(3.52)





ϕ ∈
(
xβA1

k + A1
k +

⋂

`−2j−2≥0

Cβ+j+λ
`−2j−2

)
(Ωx0,T ),

ψ ∈
(
xβ+1A1

k + xA1
k +

⋂

`−2j−1≥0

Cβ+j+1+λ
`−2j−1

)
(Ωx0,T ) + C∞(Ωx0,T ).

If one further assumes Lµ12, B12, a, ϕ(0) ∈ L∞(Ωx0,T ), then it also holds that

ϕ ∈
(
xβA1

k + A1
k ∩ L∞ +

⋂

`−2j−2≥0

Cβ+j+λ
`−2j−2

)
(Ωx0,T ).

Proof. — The result is obtained through a repetition of the proof of Theo-
rem 3.4, keeping track of the differentiability of the remainder terms.

We are ready now to prove polyhomogeneity of solutions of the Cauchy
problem for Equation (3.5). We consider only the simplest case of equations
satisfying the conditions (3.53) below, considerably more general statements
can be proved using similar methods. The differentiability hypotheses below
are clearly satisfied by equations with smooth bounded coefficients; however,
they also allow for a wide class of equations with polyhomogeneous coefficients.
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We restrict ourselves to the case in which the corner conditions are satisfied to
arbitrary order; if not, one obtains expansions as in (3.52), with a remainder
in which a finite number only of time derivative are controlled; such results
can be proved by identical arguments, compare the proof of Theorem 3.6. We
hope to be able to show in a near future that the corner conditions are not
needed, in which case one should obtain polyhomogeneous expansions in which
uniformity is lost when the corner τ = x = 0 is approached; this will be
discussed elsewhere.

Theorem 3.7. — Consider a solution (ϕ, ψ) ∈ C∞ ×C∞ of the system (3.5),
suppose that in addition to (3.12), (3.13), (3.19), and (3.50a) we have

B11, B−, E
µ
±, `, `

† ∈ L∞(Ωx0,T ),(3.53a)

Eµ− x=0 = ∂τ ⊗ id, Eµ+ x=0 = (∂τ − 2∂x) ⊗ id,(3.53b)

Ex± − Ex± x=0, E
τ
± − Eτ± x=0 ∈ x1+δAδ

∞(Ωx0,T ),(3.53c)

EA− ∈ xAδ
∞(Ωx0,T ).(3.53d)

If a, b ∈ xβAδ
k(Ωx0,T ) and ϕ(0) ∈ xβAδ

k(Mx0), with β ∈ R, and if the initial
data satisfy corner conditions to arbitrary order, in the sense that

(3.54) ∀i ∈ N, ∂iτϕ(0), ∂iτψ(0) ∈ Cλ∞(Mx0),

for some (i-independent) λ ∈ R, then

ϕ ∈ (xβAδ
k + Aδ

k)(Ωx0,T ), ψ ∈ (xβ+1Aδ
k + xAδ

k)(Ωx0,T ) + C∞(Ωx0,T ).

In particular, if k = ∞ then the solution is polyhomogeneous.

Remark. — The class of initial data satisfying corner conditions to arbitrary
order is rather large; for example, if an initial data set (ϕ(0), ψ(0)) satisfies
them, and if f, g are arbitrary functions smooth up to boundary on the initial
data hypersurface, then (ϕ(0) + f, ψ(0) + g) will also satisfy those conditions.
More generally, large classes of such initial data can be constructed using a
polyhomogeneous generalisation of the Borel summation lemma.

Proof. — The hypothesis (3.54) with i = 0 and Proposition 3.1 show that for
all τ ∈ [0, T ] we have ϕ(τ), ψ(τ) ∈ Cλ∞(Mx0/2). Proposition 3.3 shows then that
the hypotheses of Corollary 3.5 are satisfied, and the result follows.

4. The semi-linear scalar wave equation

Let f be a solution of the semi-linear wave equation

(4.1) �g f = H(xµ, f),

here �g is the d’Alembertian associated with g. Set

(4.2) f̃ = Ω−(n−1)/2f ;
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Letting g̃ = Ω2
g as in (2.1), from (2.3) we obtain

(4.3) �g̃ f̃ =
n− 1

4n

(
R̃− R

Ω2

)
f̃ + Ω−(n+3)/2H(xµ,Ω(n−1)/2f̃ ).

Let g = η be the Minkowski metric; under the conformal transformation (2.4)
one obtains from (2.5) that g̃ is again the Minkowski metric, and (4.3) becomes

(4.4) �ηf̃ = Ω−(n+3)/2H(xµ,Ω(n−1)/2f̃ ).

We shall assume that the initial data for f are given on a hypersurface Σ ⊂ M,
which, in a neighborhood O of I+ is given by the equation

(4.5) Σ ∩ O =
{
y0 = 1

2

}
.

This corresponds to a hyperboloid in M given by the equation x0+1 =
√

1+~x2.

It is convenient to introduce the following coordinate system (x, v, τ) in a M̃-
neighborhood of I+:

(4.6) τ = y0 − 1
2 ≥ 0, x =

(∑
(yi)2

) 1
2 − y0 ≥ 0, yi =

( ∑
(yi)2

) 1
2

ni(v),

ni(v) ∈ Sn−1, with v = (vA) denoting spherical coordinates on Sn−1. Equa-
tion (2.5) gives

(4.7) Ω = x(2τ + x+ 1) ≈ x.

If we let h denote the unit round metric on Sn−1, we then have

η = 2dxdτ + dx2 +
(
x+ τ + 1

2

)2
h,(4.8)

�ηf̃ =
1

(x+ τ + 1
2 )n−1

√
deth

∂µ
(
(x+ τ + 1

2 )n−1
√

dethηµν∂ν f̃
)

(4.9)

=
{
− ∂τ (∂τ − 2∂x) +

n− 1

x+ τ + 1
2

∂x +
4h

(x+ τ + 1
2 )2

}
f̃ ,

where 4h is the Laplace-Beltrami operator of the metric h. We set

e− = ∂τ , e+ = ∂τ − 2∂x, eA =
1

(x+ τ + 1
2 )
hA,(4.10)

φ− = e−(f̃ ), φ+ = e+(f̃ ),(4.11)

φA = ψA =
1

(x+ τ + 1
2 )
hA(f̃ ),(4.12)

where hA denotes an h-orthonormal frame on Sn−1. We use the symbol D to
denote the covariant derivative operator associated to the metric h. (The use-

fulness of introducing two different objects for hA(f̃ )/(x+ τ + 1
2 ) will become
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clear shortly.) Equation (4.4) implies the following set of equations:

{ e−(φ+) −DeAψA − n− 1

2(x+ τ + 1
2 )
φ+ = − n− 1

2(x+ τ + 1
2 )
φ− + a+,

−eA(φ+) + e+(ψA) − 1

(x+ τ + 1
2 )
ψA = bA,

(4.13)

{ e−(φA) − eA(φ−) +
1

(x + τ + 1
2 )
φA = aA,

−DeAφA + e+(φ−) +
n− 1

2(x+ τ + 1
2 )
φ− =

n− 1

2(x+ τ + 1
2 )
φ+ + b−,

(4.14)

e−(f̃ ) = φ−,(4.15)

e+(f̃ ) = φ+,(4.16)

with aA = bA = 0 and

a+ ≡ b− ≡ G ≡ H(xµ,Ω(n−1)/2f̃ ).(4.17)

4.1. Existence of solutions, space derivatives estimates. — We note
that the partial differential operator standing on the left-hand-side of (4.13)
is symmetric hyperbolic; the same holds true for (4.14), or for the joint sys-
tem (4.13)–(4.16). Now, part of our technique consists in deriving weighted
energy estimates for symmetric hyperbolic systems having the structure above,
cf. Section 3. Each such system comes with his own estimates, so that for
the systems (4.13) and (4.14) we can obtain estimates with different weights.
This allows us to handle a reasonably wide range of non-linearities, giving ex-
istence and blow-up control for initial data in weighted Sobolev spaces (with
conormal-type blow-up at I+):

Theorem 4.1. — Consider Equation (4.1) on R
n,1 with initial data given on

a hyperboloid S ⊃ Σx0,0 in Minkowski space-time, and satisfying

f̃ Σx0,0
≡ Ω−(n−1)/2f Σx0,0

∈ Hα
k+1(Σx0,0),(4.18)

∂x(Ω
−(n−1)/2f) Σx0,0

∈ Cα0 (Σx0,0) ∩Hα−1/2
k (Σx0,0),(4.19)

∂τ (Ω
−(n−1)/2f) Σx0,0

∈ Hα
k (Σx0,0),(4.20)

with some k > 1
2n + 1, −1 < α < − 1

2 . Suppose further that H has a uniform
zero of order ` at f = 0, in the sense of (A.30), with

(4.21) ` ≥





4 if n = 2,
3 if n = 3,
2 if n ≥ 4.

Then:
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1) There exists 0 < τ+ ≤ T (< 1
2x0), depending only upon x0 and a bound

on the norms of the initial data in the spaces appearing in Equations (4.18)–
(4.20), and a solution f of Equation (4.1), defined on a set containing Ωx0,τ+,
satisfying the given initial conditions, and satisfying

‖f̃‖L∞(Ωx0,τ+
) <∞.

2) Further, if τ∗ is such that f exists on Ωx0,τ∗ and if ‖f̃‖L∞(Ωx0,τ∗ ) <∞,
then for 0 ≤ τ < τ∗ we have

f̃ Σx0,τ
∈ L∞(Σx0,τ ) ∩Hα

k+1(Σx0,τ ),

∂τ f̃ Σx0,τ
∈ Hα

k (Σx0,τ ), ∂xf̃ Σx0,τ
∈ Hα− 1

2

k (Σx0,τ ) ∩ Cα0 (Σx0,τ ),

with a τ-independent bound on all the norms.

Remarks
1) Integration in x of condition (4.19) implies that f̃ ∈ L∞(Σx0,0).

2) Some further information can be found in Theorem 4.3 below.

3) If the inequality in (4.21) is not an equality for n = 2, 3 (no further restric-
tions for n ≥ 4), then a proof similar, but simpler, basing on Proposition 3.2
instead of 3.1, leads to the same result with α = − 1

2 .

Proof. — As before, we write ‖f(τ)‖Hα
k

for ‖f Σx0,τ
‖Hα

k (Σx0,τ ), etc. Recall

that the standard theory of hyperbolic systems (cf., e.g., [35, chap. 16, vol. III])
shows that for any 0 < x1 ≤ x0 there exists T (x1) > 0, satisfying 2x1 + T ≤ x0,

and a solution f̃ of (4.4), defined on Ωx1,x0,T , with initial data on Σx1,x0 ob-
tained from those on Σx0 by restriction. The idea of the proof is to derive
x1-independent, weighted a priori estimates for the solution. These estimates
will guarantee that the existence time T (x1) does not shrink to zero as x1

goes to zero; they will also guarantee that the weighted Sobolev regularity is
preserved by evolution. We start with the following:

Lemma 4.2. — Under the hypotheses of Theorem 4.1, consider on Ωx1,x0,T the
system (4.12)–(4.16), set

Eα(t) =
∥∥f̃(t)

∥∥2

Hα
k

+
∥∥φ−(t)

∥∥2

Hα
k

(4.22)

+‖φ+(t)‖2

H
α−1/2
k

+
∑

A

∥∥φA(t)
∥∥2

Hα
k

.

Then there exists a x1-independent constant C such that

Eα(t) ≤ C
{
Eα(0)eCt +

∫ t

0

eC(t−s)S(s)ds
}
,(4.23)
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where

S(s) ≡
∑

A

∥∥aA(s)
∥∥2

Hα
k

+
∥∥a+(s)

∥∥2

H
α−1/2
k

(4.24)

+
∥∥b−(s)

∥∥2

H
α−1/2
k

+
∑

A

∥∥bA(s)
∥∥2

Hα−1
k

.

Proof. — We wish, first, to apply Proposition 3.1 to the system consisting of

Equation (4.14) together with e−(f̃ ) = φ−; in order to do this we set

ϕ =
(
f̃
φA

)
, ψ = φ−.

We choose Eµ±∂µ = e± ⊗ Id, we set

(4.25) Lψ =
( 0
−eA(ψ)

)
,

and we define

Ẽα(t) =
∥∥f̃(t)

∥∥2

Hα
k

+
∥∥e−(f̃ )(t)

∥∥2

Hα
k

+
∑

A

∥∥eA(f̃ )(t)
∥∥2

Hα
k

.

The hypotheses C1–C5 of Proposition 3.1 are readily verified, and for
any α < − 1

2 the inequality (3.20) gives

Ẽα(t) ≤ C
{
Ẽα(0)eCt +

∫ t

0

eC(t−s)
( ∑

A

∥∥aA(s)
∥∥2

Hα(4.26)

+
∥∥φ+(s)

∥∥2

Hα−1/2 +
∥∥b−(s)

∥∥2

Hα−1/2

)
ds

}
.

Next, we apply Proposition 3.1 directly to (4.13): setting

Êα′(t) =
∥∥e+(f̃ )(t)

∥∥2

Hα′

k

+
∑

A

∥∥eA(f̃ )(t)
∥∥2

Hα′

k

,

for any α′ < − 1
2 it follows from (3.20) that

Êα′(t) ≤ C
{
Êα′(0)eCt +

∫ t

0

eC(t−s)
(
‖a+(s)‖2

Hα′(4.27)

+
∥∥φ−(s)

∥∥2

Hα′−1/2 +
∑

A

∥∥bA(s)
∥∥2

Hα′−1/2

)
ds

}
.

We set

E(t) = Ẽα(t) + Êα−1/2(t).

It follows from (4.26) and (4.27) with α′ = α− 1
2 that we have

(4.28) E(t) ≤ C
(
E(0)eCt +

∫ t

0

eC(t−s)
(
E(s) + S(s)

)
ds

)
,
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with S(s) as in (4.24). Equation (4.23) with Eα replaced(8) by E follows now
from Gronwall’s Lemma. Since Eα is equivalent to E, our claims follow.

Returning to the proof of Theorem 4.1, Lemma 4.2 applied to (4.13)–(4.15)
gives (recall that G was defined in (4.17))

(4.29) Eα(t) ≤ C
(
Eα(0)eCt +

∫ t

0

eC(t−s)
∥∥G(s)

∥∥2

H
α−1/2
k

ds
)
.

By hypothesis the function H appearing in (4.1) has a uniform zero of or-
der ` ≥ 2, in the sense of (A.30); we wish to use (A.31) to control the term

containing G(s) in (4.29). This requires an L∞ bound on f̃ , which will be
obtained next. As k > 1

2n+ 1, the Sobolev embedding (A.24) gives

(4.30)
∥∥e−(f̃ )(s)

∥∥2

Cα
1

+
∥∥e+(f̃ )(s)

∥∥2

C
α−1/2
1

+
∥∥eA(f̃ )(s)

∥∥2

Cα
1
≤ CEα(s).

Now the conditions (4.21) on n and ` give

|G(τ)| ≤ C‖f̃(τ)‖`L∞x`(n−1)/2−(n+3)/2 ≤ C‖f̃(τ)‖`L∞x−1/2,

so that (recall that α < − 1
2 )

(4.31)
∥∥G(τ)

∥∥
Cα
0
≤ C

∥∥f̃(τ)
∥∥`
L∞ .

From (4.13) we have

(4.32) ∂τφ+ − n− 1

2(x+ τ + 1
2 )
φ+ = DeAψA − n− 1

2(x+ τ + 1
2 )
φ− −G,

and (4.31) together with Proposition B.1 yield
∥∥φ+(t)

∥∥
Cα
0

≤ CeCt
∥∥φ+(0)

∥∥
Cα
0

(4.33)

+ C

∫ t

0

eC(t−s)
(
‖DeAψA(s)‖Cα

0
+ ‖φ−(s)‖Cα

0
+ ‖G(s)‖Cα

0

)
ds

≤ CeCt
∥∥φ+(0)

∥∥
Cα
0

+

∫ t

0

eC(t−s)C
(
Eα(s), ‖f̃(s)‖L∞

)
ds,

for some continuous function C(Eα( . ), ‖f( . )‖L∞). Integration over [x, x0−2τ ]

of ∂xf̃ = 1
2 (φ− − φ+) gives

∣∣f̃(τ, x)
∣∣ ≤

∣∣f̃(τ, x0 − 2τ)
∣∣ + 1

2

∥∥(φ− − φ+)(τ)
∥∥
Cα
0

∫ x0−2τ

x

sαds.

For any 0 ≤ τ ≤ τ∗ <
1
2x0 the f(τ, x0 − 2τ) term is estimated by a multiple

of the initial energy in a standard way, which leads to the estimate (recall

(8) The constant C in Equation (4.23) does not necessarily coincide with that in (4.28).
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that α > −1)
∥∥f̃(τ)

∥∥
L∞ ≤ CEα(τ) + CeCτ‖φ+(0)‖Cα

0
(4.34)

+

∫ τ

0

eC(τ−s)C
(
Eα(s),

∥∥f̃(s)
∥∥
L∞

)
ds.

Next, ‖G(s)
∥∥
H

α−1/2
k

≤ C‖H(s, . , x(n−1)/2f̃ )‖Hα−1/2+(n+3)/2 , and our hypothesis

that H has a uniform zero of order ` together with (A.31) gives
∥∥G(s)

∥∥
H

α−1/2
k

≤ C
(
‖f̃(s)‖L∞

)
‖f̃‖

H
α+(n+2)/2−`(n−1)/2
k

.

In view of (4.34) this can be estimated by a function of Eα(s) and of ‖f̃(s)‖L∞ ,
∥∥G(s)

∥∥2

H
α−1/2
k

≤ C
(
‖f̃(s)‖L∞

)∥∥f̃(s)
∥∥2

Hα
k

≤ C
(
‖f̃(s)‖L∞

)
Eα(s),(4.35)

provided that

(4.36) ` ≥ n+ 2

n− 1

(which coincides again with (4.21)). If (4.36) holds, from (4.29) and (4.34) we
obtain

∥∥f̃(τ)
∥∥
L∞ + Eα(τ) ≤ CeCτ

(
Eα(0) +

∥∥∂xf̃(0)
∥∥
Cα
0

+
∥∥∂τ f̃(0)

∥∥
Hα

k

)
(4.37)

+

∫ τ

0

Φ
(
τ, s, ‖f̃(s)‖L∞ , Eα(s)

)
ds,

for some constant C, and for a function Φ which is bounded on bounded sets.
It then easily follows that there exists a time τ+ and a constant M , depending
only upon x0 and a bound on the norms of the initial data in the spaces

appearing in Equations (4.18)–(4.20), such that ‖f̃(τ)‖L∞ and Eα(τ) remain
bounded byM for 0 ≤ τ ≤ τ+. Since all the objects above were x1-independent,
so is τ+. By the usual continuation criterion (cf., e.g., [35, Prop. 1.5, chap. 16,
vol. III](9)) the solution exists on Ωx1,x0,τ+ for all x1; it thus follows that the
maximally extended solution of the initial value problem considered here exists
on a set which includes Ωx0,τ+ .

To establish point 2), suppose that a global a priori L∞ bound on f̃ is
known. Then (4.29) and (4.35) give a linear integral inequality on Eα, and
Gronwall’s Lemma gives a global bound on Eα. Arguments of the last part
of the proof of point 1) yield the result.

For the purpose of estimating time derivatives of the solutions we will need
a generalisation of Theorem 4.1, which covers the equations contained by time-
differentiating Equations (4.13)–(4.16). There are lots of ways to relax those

(9) In that reference symmetric hyperbolic systems on a torus are considered; however simple
domain of dependence considerations show that the results there apply to the setup here.
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hypotheses; for simplicity we shall only make those generalisations which are
strictly necessary for the arguments in the next section to go through. First, the
fact that f is scalar valued plays no role in our considerations above; henceforth
we assume that f has values in R

N for some N ≥ 1. Next, the definitions (4.10)
of e± and eA will be kept. We will consider systems of the form

P
( ϕ
ψ

)
+

(B11 B12

B21 B22

)( ϕ
ψ

)
=

( a
b

)
+G,(4.38a)

ϕ =
(
φ+

φA

)
, ψ =

(
φ−
ψA

)
(4.38b)

together with

φA =
1

(x + τ + 1
2 )
hA(f̃ ) +BA,φf̃ ,(4.39a)

ψA =
1

(x+ τ + 1
2 )
hA(f̃ ) +BA,ψf̃ ,(4.39b)

e−(f̃ ) = B0φ− +B1f̃ ,(4.39c)

e+(f̃ ) = φ+,(4.39d)

for some matrix valued functions BA,φ, BA,ψ, B0, B1, with B0 invertible. Here

(4.40) P =
(

e− `ADA

(`A)tDA e+

)

is the (geometric) principal part of Equations (4.13)–(4.14). The nonlinear

term G = G(xµ, f̃ ) will be labeled as

(4.41) G = (Ge+(φ−), Ge+(ψA), Ge−(φA), Ge+(φ−)),

with the order of the components following that of Equations (4.13)–(4.14).
The Bab’s will be labeled as Bφ−,φ+ , Bφ−,φA , etc.; for example, in this notation,
the second of Equations (4.14) takes the form

e+(φ−) = DeAφA −Bφ−,φ−φ− −Bφ−,φ+φ+(4.42)

−Bφ−,φAφA −Bφ−,ψAψA + b− +Ge+(φ−),

with actually Bφ−,φA = Bφ−,ψA = 0.

Some effort will be needed to prove the information of point 3) of the theorem
that follows; this is needed to be able to iteratively apply that theorem in the
next section:

Theorem 4.3. — Consider the system (4.38)–(4.39) with
∥∥a(τ)

∥∥
Hα

k

+
∥∥b(τ)

∥∥
Hα

k

+ sup
a,b=1,2

∥∥Bab(τ)
∥∥
C0

k

+ sup
A=1,2
λ=φ,ψ

∥∥BA,λ(τ)
∥∥
C0

k

(4.43)

+
∥∥B0(τ)

∥∥
C0

k

+
∥∥B−1

0 (τ)
∥∥
L∞ +

∥∥B1(τ)
∥∥
C0

k

≤ C̃,
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for some constant C̃, and suppose that

(4.44) G(xµ, f̃ ) = Ω−(n+3)/2H(xµ,Ω(n−1)/2f̃ ),

with Ge−(φA) = 0, with H having a uniform zero of order ` in the sense
of (A.30), with ` satisfying (4.21). If the initial data satisfy (4.18)–(4.20) with
some k > 1

2n+ 1 and −1 < α < − 1
2 , then:

1) The conclusions of point 1) of Theorem 4.1 hold with a time τ+ depending

only upon the constant C̃ in (4.43) and a bound on the norms of the initial data
in the spaces appearing in Equations (4.18)–(4.20).

2) The conclusions of point 2) of Theorem 4.1 hold.

3) Under the hypotheses of point 2) of Theorem 4.1 we also have

(4.45)
∥∥(x + 2τ)∂τ f̃

∥∥
L∞(Ωx0,τ∗ )

<∞.

Remarks
1) The condition Ge−(φA) = 0 can be weakened to

(4.46) Ge−(φA)(x
µ, f̃ ) = Ω−(n+2)/2He−(φA)(x

µ,Ω(n−1)/2f̃ ),

for some function He−(φA) with a uniform zero of order `. Similarly it suffices
to assume that

(4.47) Ge+(ψA)(x
µ, f̃ ) = Ω−(n+4)/2He+(ψA)(x

µ,Ω(n−1)/2f̃ ),

for some function He+(ψA) with a uniform zero of order `.

2) If the inequality in (4.21) is not an equality for n = 2, 3 (no further
restrictions for n ≥ 4), then the result remains true with α = − 1

2 , see Remark 3)
after Theorem 4.1.

Proof. — Let us start by remarking that, because ψA = φA, in equations
such as (4.42) we can replace Bφ−,φA by Bφ−,φA +Bφ−,ψA obtaining a system
in which Bφ−,ψA = 0. Proceeding similarly with the other equations we may
thus without loss of generality assume that

(4.48) B∗,ψA = 0.

The proof of points 1) and 2) is then identical to that of Theorem 4.1, with the
following minor changes: Equation (4.32) is replaced by the equation

e−(φ+) +Bφ+,φ+φ+(4.49)

= DeAφA − Bφ+−,φ−φ− −Bφ+,φAφA + a+ +Ge−(φ+)

to which Proposition B.1 still applies, recovering (4.33). Further, the equation

∂xf̃ = 1
2 (φ− − φ+) has to be replaced by

∂xf̃ +
B1

2
f̃ =

B0φ− − φ+

2
,

and the desired conclusion is obtained by Proposition B.3. The remaining
arguments do not require any modifications.
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To prove point 3), from (4.42) we obtain

e+
[
(x+ 2τ)φ−

]
= (x + 2τ)

(
DeAφA −Bφ−,φ−φ−(4.50)

−Bφ−,φAφA −Bφ−,φ+φ+ + b− +Ge+(φ−)

)
.

From Equations (4.31), (4.33), and (4.39c) together with φ−, φA ∈ Hα
k ⊂ Cα0 ,

DeAφA ∈ Hα
k−1 ⊂ Cα0 , we obtain

e+
[
(x+ 2τ)φ−

]
≤ Ĉx−α,

for some constant Ĉ depending only upon the initial data and ‖f̃‖L∞(Ωx0,τ∗ ).

Integrating as in the identity (3.41) we arrive at
∣∣B−1

0

{
(x + 2τ)(∂τ f̃ −B1f̃ )(x, v, τ)

}∣∣

≤
∣∣B−1

0

{
(x+ 2τ)∂τ f̃(x+ 2τ, v, 0)

}∣∣ + C
(
‖f̃‖L∞(Ωx0,τ∗ ) + Ĉ

)

≤ C
(
‖∂τ f̃‖C−1

0
+ ‖f̃(0)‖L∞(Ωx0,τ∗ ) + Ĉ

)
,

and Equation (4.45) follows.

4.2. Estimates on the time derivatives of the solutions. — So far we
have established existence of solutions with initial data in weighted Sobolev
spaces, as well as weighted estimates on the space-derivatives of the solutions.
The next step in proving polyhomogeneity is to establish estimates on time-
derivatives. Similarly to the linear case, the question of corner conditions arises.
In order to handle that, we introduce an index m, which corresponds to the
number — perhaps zero — of corner conditions which are satisfied by the
initial data. Next, the definition (A.30) of a uniform zero of order l has to be
strengthened by adding conditions on time-derivatives: we shall require that
for all M ∈ R, for all 0 ≤ i ≤ min(k, l) and for all 0 ≤ j ≤ m there exists a

constant Ĉ = Ĉ(M,m, k) such that for all |p| ≤M we have

(4.51)
∥∥∥∂

i+jF (τ, . , p)

∂pi∂τ j

∥∥∥
C0

k+m−i−j

≤ Ĉ|p|`−i.

We start with the following:

Theorem 4.4. — Let N 3 m ≥ 0; consider a solution f : Ωx0,τ∗ → R of (4.1)

satisfying ‖f̃‖L∞(Ωx0,τ∗ ) <∞, and suppose that

0 ≤ i ≤ m+ 1, ∂iτ f̃ Σx0,0
∈ Hα

k+m+1−i(Σx0,0),(4.52)

0 ≤ i ≤ m, ∂x∂
i
τ f̃ Σx0,0

∈ Cα0 (Σx0,0) ∩Hα−1/2
k+m−i(Σx0,0),(4.53)

with some k > 1
2n+ 1 and −1 < α < − 1

2 . Suppose, further, that H is smooth
in f and has a uniform zero of order ` at f = 0, in the sense of (4.51), with `
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as in Equation (4.21). Then for 0 ≤ τ < τ∗ and for 0 ≤ i ≤ m, 0 ≤ j + i <
k +m− 1

2n we have

[
(τ + 2x)∂τ

]j
∂iτ f̃ Σx0,τ

∈ L∞(Σx0,τ ) ∩Hα
k+m+1−i−j(Σx0,τ ),(4.54a)

∂x
[
(τ + 2x)∂τ

]j
∂iτ f̃ Σx0,τ

∈ Hα− 1
2

k+m−i−j(Σx0,τ ) ∩ Cα0 (Σx0,τ ),(4.54b)

and

(4.55) 0 ≤ p < k − 1
2n,

[
(τ + 2x)∂τ

]p
∂m+1
τ f̃ Σx0,τ

∈ Hα
k−p(Σx0,τ ),

with τ-independent bounds on the norms.

Remark. — As before, in dimensions n ≥ 4 the result remains valid
for α = − 1

2 ; in dimensions n = 2, 3 the value − 1
2 for α is allowed if the

inequality in (4.21) is not an equality.

The proof below actually proves the analogous result for systems consid-
ered in Theorem 4.3, provided that obvious time-derivative conditions on the
coefficients are added to (4.43), the simplest possibility being

∥∥∂iτa(τ)
∥∥
Hα

k+m−i

+
∥∥∂iτb(τ)

∥∥
Hα

k+m−i

(4.56)

+ sup
a,b=1,2

‖∂iτBab(τ)‖C0
k+m−i

+ sup
A=1,2
λ=φ,ψ

∥∥∂iτBA,λ(τ)
∥∥
C0

k+m−i

+
∥∥∂iτB0(τ)

∥∥
C0

k+m−i

+
∥∥∂iτB1(τ)

∥∥
C0

k+m−i

≤ C̃,

with 0 ≤ i ≤ m + k; the same remark applies to Corollary 4.5 below. Before
passing to that proof, we note that an important consequence of Theorem 4.4
is that corner conditions will hold at any time τ > 0, regardless of whether or
not they hold at τ = 0:

Corollary 4.5. — Under the conditions of point 2) of Theorem 4.1, for any
0 < τ < τ∗ and for 0 ≤ i < k − 1 − 1

2n we have

∂iτ f̃ Σx0,τ
∈ L∞(Σx0,τ ) ∩Hα

k+1−i(Σx0,τ ), ∂i+1
τ f̃ Σx0,τ

∈ Hα
k−i(Σx0,τ ),

∂x∂
i
τ f̃ Σx0,τ

∈ Hα− 1
2

k−i (Σx0,τ ) ∩ Cα0 (Σx0,τ ).

We shall need the following simple Lemma:

Lemma 4.6. — Let F (xµ, p) be a function which is smooth in p at fixed xµ

and suppose that it has a uniform zero of order ` ≥ 1 in p. Then

1) For all i ∈ N the function ∂iτ (F (xµ, u(xµ)) has a uniform zero of order `,
when viewed as a function of (u, ∂τu, . . . , ∂

i
τu).

2) Let H = ∂pF , then H has a uniform zero of order `− 1.
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Proof. — Let u = (ui); smoothness of F in p allows us to write

(4.57) F (~x, τ, u) = Ai1,...,i`u
i1 · · ·ui` ,

with some coefficients Ai1,...,i` = Ai1,...,i`(~x, τ, u) which are smooth in u, and
totally symmetric in i1, . . . , i`; recall that the summation convention is used
throughout. Point 2) immediately follows from (4.57). From that equation we
also obtain

∂τF (τ, ~x, u) = (∂τAi1,...,i` + ∂uiAi1,...,i`∂τu
i)ui1 · · ·ui`

+ `Ai1,...,i`u
i1 · · ·ui`−1∂τu

i` ,

which proves point 1) for i = 1. The result then follows by straightforward
induction.

We can pass now to the proof of Theorem 4.4:

Proof. — We assume that Equations (4.38)–(4.39) are satisfied; Theorem 4.3
shows that (4.54)–(4.55) hold with i = j = p = 0. Consider the vector-valued
function

(
f̃ , (x+ 2τ)∂τ f̃ , ϕ, (x+ 2τ)∂τϕ, ψ, (x+ 2τ)∂τψ

)
,

so that the new function f̃ in (4.39) is (f̃ , (x + 2τ)∂τ f̃ ), while the new func-
tions ϕ, resp. ψ, in (4.38b) are (ϕ, (x + 2τ)∂τϕ), resp. (ψ, (x + 2τ)∂τψ). We
claim that a set of equations of the form (4.38)–(4.39) holds for those new
functions. Consider, for instance, Equation (4.39c); set

f̂ := (x+ 2τ)∂τ f̃ , φ̂− := (x+ 2τ)∂τφ−,

etc., we have

e−(f̂) = ∂τ
(
(x+ 2τ)(B0φ− +B1f̃ )

)

= B0φ̂− + (2B0 + (x+ 2τ)∂τB0)φ− +B1f̂ + (2B1 + (x+ 2τ)∂τB1)f̃ ,

which is linear in (f̃ , f̂ , φ−, φ̂−). In fact

e−

(
f̃

f̂

)
=

(
B0 0

2B0 + (x+ 2τ)∂τB0 B0

)( φ−
φ̂−

)

+
(

B1 0
2B1 + (x+ 2τ)∂τB1 B1

)(
f̃

f̂

)
,
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and the new matrix B0 is again invertible, as desired. Next,

e−(φ̂+) = ∂τ
(
(x+ 2τ)∂τφ+

)

= ∂τ
(
(x+ 2τ)

(
−DAφA −Bφ+φ−φ−

−Bφ+φAφA −Bφ+φ+φ+ + a+ +Ge−(φ+)

))

= −DAφ̂A −Bφ+φ− φ̂− −Bφ+φA φ̂A −Bφ+φ+ φ̂+

+ linear(ϕ, ψ) + â+ +Ge−(bφ+),

â+ = −2DAφA + ∂τa+ ∈ Hα
k+m−1,

Ge−(bφ+) = ∂τ (Ge−(φ+))(x+ 2τ),

where “linear” denotes terms which are linear in the relevant variables. The
equation for e−(φ̂A) is handled in a similar way. The equations involving
only e+ or ∂A are straightforward, since those operators commute with multi-
plication by (x+ 2τ). By Lemma 4.6 the new non-linearity has again a zero of

order `, when considered as a function of (f̃ , (x+ 2τ)∂τ f̃ ). In order to apply
Theorem 4.3 we need to check that the initial data are in the right spaces.
Clearly (

(x+ 2τ)∂τ f̃
)
(0) = x∂τ f̃(0) ∈ Hα+1

k+m ⊂ Hα
k+m ∩ L∞,

(
∂x((x+ 2τ)∂τ f̃ )

)
(0) =

(
∂τ f̃ + x∂x∂τ f̃

)
(0) ∈ Hα

k+m−1 ⊂ Cα0 ∩Hα−1/2
k+m−1.

Condition (4.20) requires some more work:
(
∂τ

(
(x+ 2τ)∂τ f̃

))
(0) =

(
2∂τ f̃ + x∂2

τ f̃
)
(0)

=
(
2∂τ f̃ + x(2∂x + e+)∂τ f̃

)
(0)

=
(
2∂τ f̃ + 2x∂x∂τ f̃ + xe+(B0φ− +B1f̃ )

)
(0).

The first two terms are obviously in Hα
k+m−1, and so is xe+(B1f̃ ) =

x(∂τ − 2∂x)(B−f̃ ). Equation (4.42) gives
(
xe+(φ−)

)
(0) = x

(
DeAφA − Bφ−,φ−φ− −Bφ−,φ+φ+

−Bφ−,φAφA −Bφ−,ψAψA + b− +Ge+(φ−)

)
(0).

The desired property (xe+(B0φ−))(0) ∈ Hα
k+m−1 follows immediately; the

only non-trivial term is xGe+(φ−), the Hα
k+m+1 norm of which can be esti-

mated by a function of ‖f̃(0)‖L∞ and ‖f̃(0)‖Hα
k+m+1

, cf. Equation (4.35).

Now, (x+ 2τ)∂τ f̃ is uniformly bounded on Ωx0,τ∗ by point 3 of Theorem 4.3, so
that we can apply point 2) of Theorem 4.3 to conclude that Equations (4.54)–
(4.55) hold with j = p = 1 and m = 0; straightforward induction establishes
Theorem 4.4 for the remaining j’s and p’s.

Consider, now, m = 1; the result already established with m = 0 shows that

∂τ f̃(τ) exists and satisfies (4.54) with i = 1 for any τ > 0; similarly (4.55)
holds with m = 1 for any τ > 0. Now, a calculation similar (but simpler) to
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the one done above shows that (f̃ , ∂τ f̃ ) satisfies a system of equations of the
form (4.38)–(4.39) with initial data satisfying the conditions of Theorem 4.3
by hypothesis; the uniform bounds on some interval [0, τ+) follow by point 1)
of that theorem. We therefore have

∥∥(f̃ , ∂τ f̃ )
∥∥
L∞(Ωx0,τ∗ )

<∞.

We can then apply the result already established for m = 0 to the system

of equations satisfied by (f̃ , ∂τ f̃ ) to obtain the conclusion of Theorem 4.4
with m = 1. An induction upon m finishes the proof.

4.3. Polyhomogeneous solutions. — The aim of this section is to establish
polyhomogeneity of solutions of a large class of semi-linear systems of the form

∂τϕ+B11ϕ+B12ψ = L11ϕ+ L12ψ + a+Gϕ,(4.58a)

∂xψ +B21ϕ+B22ψ = L21ϕ+ L22ψ + b+Gψ ,(4.58b)

with a nonlinearity G = (Gϕ, Gψ) of the form

(4.59) G = x−pδH(xµ, xqδψ1, x
qδ+1ψ2, x

qδ+1ϕ).

Here we have decomposed ψ as

(4.60) ψ =
( ψ1

ψ2

)
;

this is motivated by different a priori estimates we have at our disposal for the
appropriately defined components ψ1 and ψ2 of ψ in the applications we have
in mind. Polyhomogeneity of solutions of (4.1) will follow as a special case,
see Theorem 4.10 below. We will need to impose various restrictions on the
function H , in order to do that some terminology will be needed. We shall
say that a function H(xµ, u) is δ-polyhomogeneous in x with a uniform zero of
order ` in u if H is smooth in u ∈ R

N at fixed xµ, if H satisfies (A.30) for
any 0 ≤ i ≤ min{`, k} and any k ∈ N, if

(4.61) ∀i ∈ N, ∂iuH(. , u) ∈ Aδ
∞

at fixed constant u, and if we have the uniform estimate for constant u’s

∀ε > 0, M ≥ 0, i, k ∈ N, ∃C(ε,M, i, k), ∀ |u| ≤M,(4.62)
∥∥∂iuH(. , u)

∥∥
C−ε

k

≤ C(ε,M, i, k).

The qualification “in u” in “uniform zero of order ` in u” will often be omitted.
The small parameter ε has been introduced above to take into account the
possible logarithmic blow-up of functions in Aδ

∞ at x = 0; for the applications to
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the nonlinear scalar wave equation or to the wave map equation on Minkowski
space-time, the alternative simpler requirement would actually suffice:

∀M ≥ 0, i, k ∈ N, ∃C(M, i, k), ∀ |u| ≤M,(4.63) ∥∥∂iuH(. , u)
∥∥
C0

k

≤ C(M, i, k),

again for constant u’s. Clearly functions which are jointly smooth in u and
in xµ satisfy the above conditions; Lemma 4.7 below provides another class of
such functions. The following simple facts about functions in the above class
will be useful:

Lemma 4.7. — Let m1,m2, k ∈ N, m1 ≤ m2, and let P (xµ, u) be a polynomial
in u = (u1, . . . uN) of the form

P (xµ, u) =
∑

m1≤j≤m2

Pi1,...,ij (x
µ)ui1 · · ·uij ,

with coefficients Pi1,...,ij (x
µ) ∈ Aδ

∞. Then:

1) P is δ-polyhomogeneous in x with a uniform zero of order m1.

2) If f ∈ Aδ
k + Cλ∞ for some λ > 0, then for any ε > 0 we have

P (. , xqδf) ∈ xm1qδ(Aδ
k + Cλ−ε∞ ).

The proof of Lemma 4.7 is elementary and will be left to the reader.

Lemma 4.8. — Let k, q ∈ N and let H(xµ, u) be δ-polyhomogeneous with re-
spect to x with a zero of order m in u. If

f ∈
{Aδ

k ∩ L∞ + Cλ∞ if q = 0,

Aδ
k + Cλ∞ otherwise,

for some λ > 0, then for any ε > 0

H(. , xqδf) ∈ xmqδ(Aδ
k + Cλ−ε∞ ).

Proof. — We Taylor-expandH in u to order r, where r is any number satisfying
rqδ > mqδ + λ. We then have

H(xµ, xqδf) = P (xµ, xqδf) +R,

where P is a polynomial and R is a remainder. We note that the coefficients
of the expansion of P can be obtained by differentiating with respect to u and
setting u = 0, and are therefore in Aδ

∞ by (4.61). Further, the usual integral
formula for the remainder in a Taylor expansion together with (4.62) shows
that R has a uniform zero of order r, in the sense of Equation (A.30). The
result follows from Lemma 4.7 and from Lemma A.5.

We are ready now to pass to the proof of the non-linear analogue of Theo-
rem 3.4:
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Theorem 4.9. — Let p ∈ Z, q, 1/δ ∈ N,−1 < β′ ∈ R, k ∈ N ∪ {∞}, and let

(ϕ, ψ) ∈ Cβ′

∞(Ωx0,T ) × Cβ′

∞(Ωx0,T ), ψ1 ∈ L∞(Ωx0,T )

(ψ1 as in Equation (4.60)), be a solution of (4.58) with G of the form (4.59),
where H is δ-polyhomogeneous in x with a uniform zero of order

(4.64) m >
p− δ−1

q
·

Suppose that Equations (3.43)–(3.44) hold, and that

B11 ∈ (Aδ
k ∩ L∞)(Ωx0,T ), B12, B22, B21 ∈ Aδ

k(Ωx0,T ),(4.65a)

a, b ∈ Aδ
k(Ωx0,T ), ϕ(0) ∈ Aδ

k(Mx0).(4.65b)

Then

ϕ ∈ (x(mq−p)δAδ
k + Aδ

k)(Ωx0,T ) = xmin((mp−q)δ,0)Aδ
k(Ωx0,T ),

ψ ∈ xmin{(mq−p)δ+1,1}Aδ
k(Ωx0,T ) + C∞(Ωx0,T ) ⊂ (Aδ

k ∩ L∞)(Ωx0,T ).

If one further assumes Lµ12, B12, a, ϕ(0), Gϕ(. , 0) ∈ L∞(Ωx0,T ), then it also
holds that

ϕ ∈ (x(mq−p)δAδ
k + Aδ

k ∩ L∞)(Ωx0,T ).

Remark. — Obviously the theorem remains true if we replace G by a finite
sum of nonlinearities satisfying the above hypotheses, with different p’s and q’s
for each term of the sum.

Proof. — The result is established by a repetition of the proof of Theorem 3.4,
using Lemma A.5 and Lemma 4.8 to obtain the necessary estimates on the
non-linear terms. We simply note that the condition on the order m of the
non-linearity guarantees, using Lemma A.5, that

∂xψ = c2 ∈ Cλ−ε∞ ,

with λ = min{β′,mqδ − pδ} > −1, hence ψ ∈ L∞ by integration. Decreasing
β′ if necessary we may without loss of generality assume that β′ = λ. When
applying Lemma 4.8 it is convenient to view the function H as a function
of the variable f := (ψ1, xψ2, xϕ) ∈ L∞. The remaining details are left to
the reader.

As a straightforward corollary of Theorem 4.9 one obtains:

Theorem 4.10. — Let δ = 1 in odd space dimensions, and let δ = 1
2 in even

space dimensions. Consider Equation (4.1) on R
n,1, n ≥ 2, with initial data

f̃ {τ=0}, ∂f̃/∂τ {τ=0} ∈ (Aδ
∞ ∩ L∞)(Mx0).

Suppose further that H(xµ, f) is smooth in f at fixed xµ, bounded and δ-
polyhomogeneous in xµ at constant f , and has a zero of order ` at f = 0,
with ` as in (4.21). Then:
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1) There exists τ+ > 0 such that f exists Ωx0,τ+, with

(4.66) ‖f̃‖L∞(Ωx0,τ+
).

2) If the initial data are compatible polyhomogeneous in the sense that there
exists λ < 1 such that

∀i ∈ N, ∂x∂
i
τ f̃(0) ∈ C−λ

∞ (Mx0),

then the solution is polyhomogeneous on each neighborhood Ωx0,τ∗ of I+ on
which f exists and satisfies (4.66) with τ+ replaced by τ∗.

Proof. — Point 1) is Theorem 4.1 specialised to polyhomogeneous initial data.
To prove point 2) we set

ψ =
(
ψ1

ψ2

)
, where ψ1 = f̃ , ψ2 =

(
φ−
φA

)
,(4.67)

ϕ = φ+.(4.68)

Then Equation (4.3) takes the form (4.58) with

G = −Ω−(n+3)/2H(xµ,Ω(n−1)/2f̃) ≡ −Ω−(n+3)/2H(xµ,Ω(n−1)/2ψ1),(4.69)

Gϕ = −G, Gψ1 = 0, Gψ2 =
(−G

0

)
.(4.70)

For n even we take δ = 1
2 , p = n+3, q = n− 1; the condition (4.64) then reads

m > (n+ 1)/(n− 1), which coincides with (4.21). For n odd we take δ = 1,
p = 1

2 (n+ 3), q = 1
2 (n− 1), and (4.21) guarantees again that (4.64) holds.

5. Wave maps

Let (N , h) be a smooth Riemannian manifold, and let f : (M, g) → (N , h)
solve the wave map equation. We will be interested in maps f which have the
property that f approaches a constant map f0 as r tends to infinity along light-
like directions, f0(x) = p0 ∈ N for all x ∈ M. Introducing normal coordinates
around p0 we can write f = (fa), a = 1, . . . , N = dimN , with the functions fa

satisfying the set of equations

(5.1) �g f
a + g

µνΓabc(f)
∂f b

∂xµ
∂f c

∂xν
= 0,

where the Γabc’s are the Christoffel symbols of the metric h. Setting as before

f̃a = Ω−(n−1)/2fa, g̃ = Ω2
g, we then have from (2.3),

�g̃ f̃
a = −Ω−(n−1)/2

g̃
µνΓabc(Ω

(n−1)/2f̃ )
∂(Ω(n−1)/2f̃ b)

∂xµ
∂(Ω(n−1)/2f̃ c)

∂xν
(5.2)

+
n− 1

4n
(R̃−RΩ−2)f̃a.
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In particular if (M, g) is the Minkowski space-time (and if we use the
same conformal transformation as in Section 2) we obtain a system of Equa-
tions (4.13)–(4.17) with aA = bA = 0, with the obvious replacements associated

with f̃ 7→ f̃a, and with G in (4.17) replaced by

Ga := −Γabc(Ω
(n−1)/2f̃ )

{
Ω(n−1)/2(−φb+φc− + φbAφ

c
A)(5.3)

−(n− 1)Ω(n−3)/2f̃ c
[(
xφb+ − (1 + x+ 2τ)φb−

)
− (n− 1)f̃ b

]}
.

5.1. Existence of solutions, space derivatives estimates. — As before,
for even space-dimensions n the occurrence of non-integer powers of Ω above
does not allow the use of the standard conformal method except for special
target manifolds (N , h), cf. [11]. This can be handled in our approach, and
we show:

Theorem 5.1. — Consider Equation (5.1) on R
n,1 with initial data given on

a hyperboloid S ⊃ Σx0,0 in Minkowski space-time, and satisfying

f̃a Σx0,0
≡ Ω−(n−1)/2fa Σx0,0

∈
{

(Hα
k+1 ∩ L∞)(Σx0,0) if n ≥ 3,

(Hα
k+1 ∩ C0

1)(Σx0,0) if n = 2,
(5.4)

∂x(Ω
−(n−1)/2fa) Σx0,0

∈ Hα
k (Σx0,0),(5.5)

∂τ (Ω
−(n−1)/2fa) Σx0,0

∈
{Hα

k (Σx0,0) if n ≥ 3,

(Hα
k ∩ L∞)(Σx0,0) if n = 2.

(5.6)

for some k > 1
2n+ 1, −1 < α ≤ − 1

2 . Then:

1) There exists τ+ > 0 and a solution fa of Equation (5.1), defined on a set
containing Ωx0,τ+, satisfying the given initial conditions, such that

‖f̃a‖C0
1(Ωx0,τ+

) <∞, n = 2,(5.7a)

∥∥xe+(f̃a)
∥∥
L∞(Ωx0,τ+

)
+

r∑

i=1

‖xXif̃
a‖L∞(Ωx0,τ+

)(5.7b)

+ ‖f̃a‖L∞(Ωx0,τ+
) + ‖x∂τ f̃a‖L∞(Ωx0,τ+

) <∞, n ≥ 3.

Here the Xi’s are the vector fields defined in Section A, cf. Equation (A.7).

2) Further, if τ∗ is such that fa exists on Ωx0,τ∗ with (5.7) holding with
τ+ = τ∗, then for all 0 ≤ τ < τ∗ we have uniformly in τ

f̃a Σx0,τ
∈ L∞(Σx0,τ ) ∩Hα

k+1(Σx0,τ ),

∂τ f̃
a

Σx0,τ
∈ Hα

k (Σx0,τ ), ∂xf̃
a

Σx0,τ
∈ Hα

k (Σx0,τ ).

If n = 2 we also have uniform bounds in the following spaces

f̃a Σx0,τ
∈ (C0

1 ∩Hα
k+1)(Σx0,τ ), ∂τ f̃

a
Σx0,τ

∈ (Hα
k ∩ L∞)(Σx0,τ ).
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Remark. — Integration of condition (5.5) implies of course that f̃ belongs
to L∞(Σx0,0).

Proof. — The proof is similar to that of Theorem 4.1, but simpler, because
we do not need to gain a 1

2 in the decay rate, as done in Lemma 4.2. We
write Equation (5.1) in the form (4.12)–(4.16), with aA = bA = 0 and with G
in (4.17) replaced by Ga defined in (5.3). We write Ga as

(5.8) Ga = Aa + Ba + Ca +Da + Ea,

with the order of terms in (5.8) corresponding to that in (5.3). Since we are
working in normal coordinates, Γabc has a uniform zero of order one in the sense
of (A.30) at fa = 0. We want to use Equation (3.20) to get an a priori estimate
for the solutions of (5.1); for this we shall need to estimate the Hα

k norms of
all the terms which occur in (5.8). The simplest such term is Ea:

‖Ea‖Hα
k
≡ (n− 1)2

∥∥Γabc(Ω
(n−1)/2f̃ )(Ω(n−1)/2f̃ c)(Ω(n−1)/2f̃ b)Ω−1−(n−1)/2

∥∥
Hα

k

≈ (n− 1)2
∥∥Γabc(Ω

(n−1)/2f̃ )(Ω(n−1)/2f̃ c)(Ω(n−1)/2f̃ b)
∥∥
H

α+(n+1)/2
k

,

where we have used the fact that Ω/x is a smooth, and therefore bounded,

function. The function Γabc(Ω
(n−1)/2f̃ )(Ω(n−1)/2f̃ c)(Ω(n−1)/2f̃ b) can be viewed

as a smooth function F of x(n−1)/2f̃a with a uniform zero of order three. We
can thus apply (A.31) with ` = 3 to obtain

(5.9)
∥∥E(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞

)
· ‖f̃‖Hα+2−n

k
≤ C

(
‖f̃(s)‖L∞

)
· ‖f̃‖Hα

k
,

since n ≥ 2. We note that in dimensions larger than or equal to three we
have at least one power of x “left unused” above, which will be made use of
in estimating the remaining contributions to Ga. We proceed in a similar way
with the other terms; in space dimension n = 2 we view

Ω(n+1)/2Da ≡ Ω(n+1)/2(n− 1)(1 + x+ 2τ)Ω(n−3)/2Γabc(Ω
(n−1)/2f̃ )f̃ cφb−

as a smooth function F with a uniform zero of order three of (x(n−1)/2f̃a,
x(n−1)/2φa−), which leads to the estimate

(5.10)
∥∥D(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖φ−(s)‖L∞)

)(
‖f̃‖Hα

k
+ ‖φ−(s)‖Hα

k

)
.

On the other hand, in dimension 3 or higher we can view Ω(n+1)/2Da as a

function F with a uniform zero of order 3 of (x(n−1)/2f̃a, x(n−1)/2xφa−), which
implies

(5.11)
∥∥D(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖xφ−(s)‖L∞

)(
‖f̃‖Hα

k
+ ‖xφ−(s)‖Hα

k

)
.

Regardless of dimension we view

Ω(n+1)/2Ca ≡ Ω(n+1)/2(n− 1)xΩ(n−3)/2 Γabc(Ω
(n−1)/2f̃ )f̃ cφb+
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as a smooth function with a uniform zero of order 3 of (x(n−1)/2f̃a, x(n−1)/2xφa+),
obtaining thus

(5.12)
∥∥C(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖xφ+(s)‖L∞

)(
‖f̃‖Hα

k
+ ‖xφ+(s)‖Hα

k

)
.

Viewing Ba as a function of (x(n−1)/2f̃a, x(n−1)/2xφaA), and viewing Aa as a

function of (x(n−1)/2f̃a, x(n−1)/2xφa−, x
(n−1)/2xφa+), one similarly obtains

for n ≥ 3
∥∥A(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖xφ−(s)‖L∞ , ‖xφ+(s)‖L∞

)
(5.13)

×
(
‖f̃‖Hα

k
+ ‖xφ−(s)‖Hα

k
+ ‖xφ+(s)‖Hα

k

)
,

∥∥B(s)
∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖xφA(s)‖L∞

)(
‖f̃‖Hα

k
+ ‖xφA(s)‖Hα

k

)
,(5.14)

while in dimension 2 it holds that
∥∥A(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖φ−(s)‖L∞ , ‖xφ+(s)‖L∞

)
(5.15)

×
(
‖f̃‖Hα

k
+ ‖φ−(s)‖Hα

k
+ ‖xφ+(s)‖Hα

k

)
,

∥∥B(s)
∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖φA(s)‖L∞

)(
‖f̃‖Hα

k
+ ‖φA(s)‖Hα

k

)
.(5.16)

Summarising, in space dimension 2 we have obtained
∥∥G(s)

∥∥
Hα

k

≤ C
(
‖f̃(s)‖L∞ , ‖φ−(s)‖L∞ , ‖φA(s)‖L∞ , ‖xφ+(s)‖L∞

)
(5.17)

×
(
‖f̃‖Hα

k
+ ‖φ−(s)‖Hα

k
+ ‖xφ+(s)‖Hα

k
+ ‖φA(s)‖Hα

k

)

≤ C
(
‖f̃(s)‖L∞ , ‖φ−(s)‖L∞ , ‖φA(s)‖L∞ , ‖xφ+(s)‖L∞

)√
Eα(s),

where

(5.18) Eα(t) =
∥∥f̃(t)

∥∥2

Hα
k

+
∥∥φ−(t)

∥∥2

Hα
k

+
∥∥φ+(t)

∥∥2

Hα
k

+
∑

A

∥∥φA(t)
∥∥2

Hα
k

.

On the other hand in higher dimensions we can write
∥∥G(s)

∥∥
Hα

k

(5.19)

≤ C
(
‖f̃(s)‖L∞ , ‖xφA(s)‖L∞ , ‖xφ−(s)‖L∞ , ‖xφ+(s)‖L∞

)√
Eα(s).

To obtain a closed inequality from Equations (3.20) and (5.17) or (5.19), we
need to control all the L∞ norms occurring there. Since k > 1

2n + 1, from
Equation (5.17) and the weighted Sobolev embeddings we obtain

(5.20)
∥∥G(s)

∥∥
Cα
1

≤ C
(
‖f̃(s)‖L∞ , ‖φ−(s)‖L∞ , ‖φA(s)‖L∞ , Eα(s)

)
,

if n = 2, or – from (5.19) –

(5.21)
∥∥G(s)

∥∥
Cα
1
≤ C

(
‖f̃(s)‖L∞ , Eα(s)

)
,

for n ≥ 3. The identity

(5.22) f̃a(τ, x) = f̃a(τ, x0 − 2τ) − 1

2

∫ x0−2τ

x

(φa− − φa+)(τ, s)ds
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yields
∥∥f̃(s)

∥∥
L∞ ≤ C

(√
Eα(0) + ‖φ−(s)‖Cα

0
+ ‖φ+(s)‖Cα

0

)
(5.23)

≤ C
(√

Eα(0) +
√
Eα(s)

)

for n ≥ 3, while if n = 2 we use the estimate
∥∥f̃(s)

∥∥
L∞ +

∥∥φA(s)
∥∥
L∞ ≤ C

(√
Eα(0) + ‖φ−(s)‖Cα

1
+ ‖φ+(s)‖Cα

1

)
(5.24)

≤ C
(√

Eα(0) +
√
Eα(s)

)
.

In Equations (5.23)–(5.24), for notational simplicity we have estimated

f̃a(τ, x0 − 2τ) and its angular derivatives by a multiple of the initial en-
ergy Eα(0); strictly speaking, this should be some functional of (Eα(0), τ∗)
for τ∗ small enough; then such an estimate holds by standard methods
for 0 ≤ τ ≤ τ∗ < 1

2x0. Further, such an inequality is correct if we already
have a weighted L∞ bound as assumed in point 2) of the theorem. If n ≥ 3
Equations (3.20) for α < − 1

2 or (3.32) if α = − 1
2 , (5.21) and (5.23) give

(5.25) Eα(τ) ≤ CEα(0) +

∫ τ

0

Φ
(
Eα(s)

)
ds,

for some constant C, and for a function Φ which is bounded on bounded sets,
and we conclude as in the proof of Theorem 4.1.

If n = 2, we note the identity

(5.26) φ−(τ, x) = φ−(0, x+ 2τ) +

∫ τ

0

e+(φ−)
(
σ, 2(τ − σ) + x

)
dσ.

From the second of Equations (4.14) we obtain
∣∣e+(φ−)(s, x)

∣∣ ≤ C
(
‖φ−(s)‖Cα

0
+ ‖φA(s)‖Cα

1
+ ‖φ+(s)‖Cα

0
+ ‖G(s)‖Cα

0

)
xα,

so that
∣∣φ−(τ, x)

∣∣ ≤
∥∥φ−(0)

∥∥
L∞ + C

∫ τ

0

(
‖φ−(σ)‖Cα

0
+ ‖φA(σ)‖Cα

1
(5.27)

+‖φ+(σ)‖Cα
0

+ ‖G(σ)‖Cα
0

)(
2(τ − σ) + x

)α
dσ.

It follows that

(5.28)
∥∥φ−(τ)

∥∥
L∞ ≤

∥∥φ−(0)
∥∥
L∞ + C

∫ τ

0

(√
Eα(σ)+ ‖G(σ)‖Cα

0

)
(τ − σ)αdσ.

Let

F (s) ≡
∥∥f̃(s)

∥∥
L∞ +

∥∥φ−(s)
∥∥
L∞ +

∥∥φA(s)
∥∥
L∞ +

√
Eα(s) .(5.29)

It follows from (3.20), (5.24) and (5.28) that we have

(5.30) F (τ) ≤ CF (0) +

∫ τ

0

Φ
(
F (σ)

)(
1 + (τ − σ)α

)
dσ,

where Φ is a function bounded on bounded sets. We have the following:
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Lemma 5.2. — There exists a time τ∗, depending only upon C, F (0), and
the function Φ, such that any positive continuous function F : [0, τ+) → R

satisfying the inequality (5.30) with α > −1 is bounded from above by CF (0)+1
on [0,max(τ+, τ∗)).

Proof. — Let

M = sup
0≤x≤CF (0)+1

|Φ(x)|;

if M = 0 the result is obviously true, so assume that M 6= 0. From Equa-
tion (5.30) we obtain that on any interval [0, τ) on which F ≤ CF (0) + 1 we
have

F (τ) ≤ CF (0) +

∫ τ

0

M
(
1 + (τ − σ)α

)
dσ = CF (0) +M

(
τ +

τα+1

α+ 1

)
.

(Equation (5.30) with τ = 0 shows that CF (0) ≥ F (0), and continuity of F
implies that the set of such intervals is non-empty.) The result is established
by choosing

τ∗ = min
( 1

2M
,
[α+ 1

2M

]1/(α+1))
.

Because the existence time τ∗ in Theorem 5.1 does not depend upon x1,
Theorem 5.1 with n = 2 follows again by an argument identical to the one
given at the end of Theorem 4.1.

As in the case of the nonlinear wave equation (4.1), in order to obtain time
derivative estimates we shall need a more general version of Theorem 5.1. Thus,
we consider systems of the form (4.38)–(4.40) with a rather more general form
of the non-linearity G appearing there. It should be clear from the proof of
Theorem 5.1 that it is convenient to treat the case n = 2 separately, this will
be considered in Section 5.3 below. We thus start with a result which holds
in dimensions n ≥ 3; the same proof gives similar results in dimension n = 2
for equations with a nonlinearity of higher order:

Theorem 5.3. — Let n ≥ 3 and consider the system (4.38)–(4.39) with

∥∥a(τ)
∥∥
Hα

k

+
∥∥b(τ)

∥∥
Hα

k

+ sup
a,b=1,2

∥∥Bab(τ)
∥∥
C0

k

(5.31)

+
∥∥B0(τ)

∥∥
C0

k

+
∥∥B−1

0 (τ)
∥∥
L∞ +

∥∥B1(τ)
∥∥
C0

k

≤ C̃,

for some constant C̃, with the nonlinearity G in Equation (4.38a) of the form

(5.32) G = x−(n+3)/2H(xµ, x(n−1)/2f̃ , x(n−1)/2xφA, x
(n−1)/2xφ+, x

(n−1)/2xφ−),
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with Ge−(φA) = 0 (cf. Equation (4.41)), and with H having a uniform zero of
order ` ≥ 3 in the sense of (A.30). Suppose that the initial data satisfy

f̃a Σx0,0
≡ Ω−(n−1)/2fa Σx0,0

∈ (Hα
k+1 ∩ L∞)(Σx0,0),(5.33)

∂xf̃
a

Σx0,0
∈ Hα

k (Σx0,0),(5.34)

∂τ f̃
a

Σx0,0
∈ Hα

k (Σx0,0),(5.35)

with some k > 1
2n+ 1, −1 < α ≤ − 1

2 , then:

1) There exists τ+ > 0, depending only upon the constant C̃ in (5.31) and
a bound on the norms of the initial data in the spaces appearing in Equa-
tions (5.33)–(5.35), and a solution fa of Equations (4.38)–(4.39), defined on a
set containing Ωx0,τ+, satisfying the given initial conditions, such that

∥∥xe+(f̃a)
∥∥
L∞(Ωx0,τ+

)
+

r∑

i=1

‖xXif̃
a‖L∞(Ωx0,τ+

)(5.36)

+ ‖f̃a‖L∞(Ωx0,τ+
) + ‖x∂τ f̃a‖L∞(Ωx0,τ+

) <∞.

2) Further, if τ∗ is such that fa exists on Ωx0,τ∗ with (5.36) holding with
τ+ = τ∗, then for all 0 ≤ τ < τ∗ we have

f̃a Σx0,τ
∈ L∞(Σx0,τ ) ∩Hα

k+1(Σx0,τ ),(5.37a)

∂τ f̃
a

Σx0,τ
∈ Hα

k (Σx0,τ ),(5.37b)

∂xf̃
a

Σx0,τ
∈ Hα

k (Σx0,τ ),(5.37c)

with uniform bounds in τ ; this implies

‖x∂τφ+‖L∞(Ωx0,τ∗ ) + ‖x∂τφA‖L∞(Ωx0,τ∗ )(5.38)

+
∥∥(x+ 2τ)∂τ f̃

a
∥∥
L∞(Ωx0,τ∗ )

<∞.

If k > 1
2n+ 2 then we also have

∥∥x(x+ 2τ)∂τφ−
∥∥
L∞(Ωx0,τ∗ )

<∞.(5.39)

Proof. — The transition from Theorem 5.1 to Theorem 5.3 is rather similar to
that from Theorem 4.1 to Theorem 4.3. We note that the estimates done in
the course of the proof of Theorem 5.1, with n ≥ 3 there, can be summed up
in the inequality

(5.40)
∥∥x−(n+1)/2H(xµ, x(n−1)/2f̂ )

∥∥
Hα

k

≤ C
(
‖f̂ ‖L∞

)
‖f̂ ‖Hα

k
,

where
f̂ := (f̃ , xφA, xφ+, xφ−).

The minor modifications of the proof of Theorem 5.1 needed to obtain (5.37)

and the estimate (5.38) on (x+2τ)∂τ f̃ are identical to the ones described in the
proof of Theorem 4.3. The estimate on ‖x∂τφ+‖L∞(Ωx0,τ∗ ) is obtained directly
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from Equation (4.49) and from (5.40). The estimate on ‖x∂τφA‖L∞(Ωx0,τ∗ ) is

obtained from the (4.38a)–equivalent of the first of Equations (4.14). Next,
for k > 1

2n+ 2 Equations (4.42) and (5.40) give

(5.41) e+(φ−) ∈ Hα
k−1 ⊂ Cα1 .

Differentiating Equation (5.26) with respect to x gives

(5.42) ∂xφ−(τ, x) = ∂xφ−(0, x+ 2τ) +

∫ τ

0

(
∂xe+(φ−)

)(
σ, 2(τ − σ) + x

)
dσ,

which together with (5.41) implies, by straightforward integration,

(5.43) x(x+ 2τ)
∣∣∂xφ−(τ, x)

∣∣ ≤ C.

This, (5.41), and the identity ∂τφ− = (∂τ − 2∂x + 2∂x)φ− = e+(φ−) + 2∂xφ−
establish (5.39).

5.2. Estimates on the time derivatives of the solutions, n ≥ 3

To control the time derivatives of the solutions, as in Section 4.2 we introduce
an index m which counts the number of corner conditions which are eventually
satisfied by the initial data at the “corner” τ = x = 0. As before we make a
formal statement only for solutions of the wave-map equation (5.1), it should be
clear from the proof that an analogous statement holds for solutions of (4.38)–
(4.39) under appropriate conditions on the coefficients there.

Theorem 5.4. — In dimension n ≥ 3 let N 3 m ≥ 0. Consider a solution
f : Ωx0,τ∗ → R of Equation (5.1) satisfying

∥∥xe+(f̃a)
∥∥
L∞(Ωx0,τ∗ )

+
r∑

i=1

‖xXif̃
a‖L∞(Ωx0,τ∗ )(5.44)

+ ‖f̃a‖L∞(Ωx0,τ∗ ) + ‖x∂τ f̃a‖L∞(Ωx0,τ∗ ) <∞,

and suppose that

0 ≤ i ≤ m+ 1, ∂iτ f̃
a

Σx0,0
∈ Hα

k+m+1−i(Σx0,0),(5.45)

0 ≤ i ≤ m, ∂x∂
i
τ f̃

a
Σx0,0

∈ Hα
k+m−i(Σx0,0),(5.46)

with some k > 1
2n+ 2, −1 < α ≤ − 1

2 . Then for 0 ≤ τ < τ∗ and for 0 ≤ i ≤ m,
we have

0 ≤ j + i < k +m− 1
2n,(5.47a)

[
(τ + 2x)∂τ

]j
∂iτ f̃

a
Σx0,τ

∈ L∞(Σx0,τ ) ∩Hα
k+m+1−i−j(Σx0,τ ),

0 ≤ j + i < k +m− 1
2n− 1(5.47b)

∂x[(τ + 2x)∂τ ]
j∂iτ f̃

a
Σx0,τ

∈ Hα
k+m−i−j(Σx0,τ ),
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and

(5.48) 0 ≤ p < k − 1
2n,

[
(τ + 2x)∂τ

]p
∂m+1
τ f̃a Σx0,τ

∈ Hα
k−p(Σx0,τ ),

with τ-independent bounds on the norms.

Proof. — The proof is an inductive application of Theorem 5.3, as in the proof
of Theorem 4.4, and will be omitted.

5.3. Estimates on the time derivatives, n = 2. — In space-dimension 2
the following equivalent of Theorem 5.3 holds:

Theorem 5.5. — Let n = 2, consider the system (4.38)–(4.39), suppose that

(5.31) holds for some constant C̃, with the nonlinearity G in Equation (4.38a)
of the form

(5.49) G = x−3/2H(xµ, x1/2f̃ , x1/2φA, x
1/2φ−, x

3/2φ+),

with Ge−(φA) = 0 (cf. Equation (4.41)), and with H having a uniform zero of
order ` ≥ 3 in the sense of (A.30). Suppose that the initial data satisfy

f̃a Σx0,0
≡ Ω−1/2fa Σx0,0

∈ (Hα
k+1 ∩ C0

1)(Σx0,0),(5.50)

∂x(Ω
−1/2fa) Σx0,0

∈ Hα
k (Σx0,0),(5.51)

∂τ (Ω
−1/2fa) Σx0,0

∈ (Hα
k ∩ L∞)(Σx0,0).(5.52)

for some k > 2, −1 < α ≤ − 1
2 . Then:

1) There exists τ+ > 0, depending only upon the constant C̃ in (5.31) and
a bound on the norms of the initial data in the spaces appearing in Equa-
tions (5.50)–(5.52), and a solution fa of Equations (4.38)–(4.39), defined on a
set containing Ωx0,τ+, satisfying the given initial conditions, such that

‖f̃a‖C0
1(Ωx0,τ+

) <∞.(5.53)

2) Further, for any τ∗ such that fa exists on Ωx0,τ∗ with (5.36) holding with
τ+ = τ∗, we have for all 0 ≤ τ < τ∗

f̃a Σx0,τ
∈ (C0

1 ∩Hα
k+1)(Σx0,τ ), ∂τ f̃

a
Σx0,τ

∈ (Hα
k ∩ L∞)(Σx0,τ ),

∂xf̃
a

Σx0,τ
∈ Hα

k (Σx0,τ ),

with bounds uniform in τ . This implies

‖x∂τφ+‖L∞(Ωx0,τ∗ ) + ‖∂τ f̃a‖L∞(Ωx0,τ∗ ) <∞.(5.54)

If k > 4 then we also have
∥∥(x+ 2τ)∂τφA

∥∥
L∞(Ωx0,τ∗ )

<∞.(5.55)
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If k > 4 and if ∂2
τ f̃ Σx0,τ

∈ H−1
k−1 then it further holds that

∥∥(x+ 2τ)∂τφ−
∥∥
L∞(Ωx0,τ∗ )

<∞.(5.56)

Proof. — The proof of point 1) is essentially the same as that of Theorem 5.1,
with the modifications discussed in the proof of Theorem 4.3. We note that
the key estimates (5.17) and (5.20) hold in exactly the same form here, simi-

larly for Equations (5.29)–(5.30). The estimate on ∂τ f̃ in (5.54) follows from
the definition of the norm in (5.53). The estimate on ‖x∂τφ+‖L∞(Ωx0,τ∗ ) is

obtained directly from Equation (4.49) and from (5.17). To obtain (5.55) one
needs to prove a bound on ∂Aφ−. This is obtained by differentiating (5.26)
with respect to vA and using the already known uniform bound for G in Hα

k ,
so that ∂AG ∈ Hα

k−1 ⊂ Cα0 . Finally,

e+
(
(x + 2τ)∂τφ−

)
= (x+ 2τ)∂τ

(
e+(φ−)

)
,

and integrating as in (5.26) one finds

(x + 2τ)∂τφ−(τ, x) = (x+ 2τ)∂τφ−(0, x+ 2τ)(5.57)

+

∫ τ

0

{
(2(τ − σ) + x)∂τ

(
e+(φ−)

)
(σ, 2(τ − σ) + x)

}
dσ.

The term at the right-hand-side of the first line of (5.57) is bounded because of

the hypothesis on ∂2
τ f̃ . Expressing e+(φ−) by the right-hand-side of (4.42), one

immediately finds that all the linear terms that arise after differentiation with
respect to τ are in Hα−1

k−1 or better, and therefore give a finite contribution when
integrated upon. The contribution from the non-linearityG can be rewritten as

x−1
{
Hef ∂τ f̃ +HφA∂τφ

A +Hφ−∂τφ− +Hφ+x∂τφ+

}
,

with appropriate functions H∗ which, by Lemma 4.6, all have a uniform zero of
order `− 1 ≥ 2 in their arguments. This easily implies that the coefficients (in-
cluding the x−1 factor) in front of the τ derivatives are in L∞, and since each of
the τ -derivative terms is in Hα−1

k−1 or better, the whole term is in Hα−1
k−1 ⊂ Cα−1

0 .
This is sufficient to lead to a finite contribution in (5.57), and (5.56) follows.

We finally arrive at the two-dimensional equivalent of Theorem 5.4; com-
ments identical to those made in Section 5.2 apply here. The main difference

is that in dimension 2 we need the L∞ bound on ∂τ f̃ to obtain existence,
which leads to the compatibility condition (5.62) on the second τ derivatives

of f̃ when one attempts to iteratively apply Theorem 5.5. The proof is again
identical to that of Theorem 4.4 and will be omitted. Let us just mention that
one easily checks that the conditions spelled out below guarantee that the ini-
tial data for the inductive system of equations are in the right spaces for the
iterative application of Theorem 5.5. Further, Equations (5.54)–(5.56) provide
the a priori bounds which guarantee that the existence time of the solution
will not shrink at each iteration step.
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Theorem 5.6. — In space-dimension 2 let N 3 m ≥ 0. Consider a solution
f : Ωx0,τ∗ → R of Equation (5.1) satisfying

‖f̃a‖C0
1(Ωx0,τ+

) <∞.(5.58)

and suppose that

0 ≤ i ≤ m, ∂iτ f̃
a

Σx0,0
∈ (Hα

k+m+1−i ∩ C0
1)(Σx0,0),(5.59)

0 ≤ i ≤ m, ∂x∂
i
τ f̃

a
Σx0,0

∈ Hα
k+m−i(Σx0,0),(5.60)

∂m+1
τ f̃a Σx0,0

∈ (Hα
k ∩ L∞)(Σx0,0),(5.61)

∂m+2
τ f̃a Σx0,0

∈ H−1
k−1(Σx0,0),(5.62)

with some k > 4, −1 < α ≤ − 1
2 . Then for 0 ≤ τ < τ∗ and for 0 ≤ i ≤ m,

we have

0 ≤ j + i < k +m− 3,(5.63a)
[
(τ + 2x)∂τ

]j
∂iτ f̃

a
Σx0,τ

∈ (Hα
k+m+1−i−j ∩ C0

1)(Σx0,τ ),

0 ≤ j + i < k +m− 3(5.63b)

∂x
[
(τ + 2x)∂τ

]j
∂iτ f̃

a
Σx0,τ

∈ Hα
k+m−i−j(Σx0,τ ),

and

(5.64) 0 ≤ p < k − 3,
[
(τ + 2x)∂τ

]p
∂m+1
τ f̃a Σx0,τ

∈ Hα
k−p(Σx0,τ ),

with τ-independent bounds on the norms.

5.4. Polyhomogeneous solutions. — We are finally ready to prove poly-
homogeneity at I of solutions of the wave map equation:

Theorem 5.7. — Let δ = 1 in odd space dimensions, and let δ = 1
2 in even

space dimensions. Consider Equation (5.1) on R
n,1, n ≥ 2, with initial data

∂iτ f̃
a

{τ=0} ∈ (Aδ
∞ ∩ L∞)(Mx0), i = 0, 1, n = 2,(5.65)

f̃a {τ=0} ∈ (Aδ
∞ ∩ L∞)(Mx0), ∂τ f̃

a
{τ=0} ∈ Aδ

∞(Mx0), n ≥ 3.(5.66)

Then:

1) There exists τ+ > 0 such that fa exists on Ωx0,τ+, with

‖f̃a‖C0
1(Ωx0,τ+

) <∞, n = 2,(5.67a)

‖xe+(f̃a)‖L∞(Ωx0,τ+
) +

r∑

i=1

‖xXif̃
a‖L∞(Ωx0,τ+

)(5.67b)

+‖f̃a‖L∞(Ωx0,τ+
) + ‖x∂τ f̃a‖L∞(Ωx0,τ+

) <∞, n ≥ 3.

2) If the initial data are compatible polyhomogeneous in the sense that

∀i ∈ N, ∂iτ f̃
a(0) ∈ L∞(Mx0),
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then the solution is polyhomogeneous on each neighborhood Ωx0,τ∗ of I+ on
which f exists and satisfies (5.67) with τ+ replaced with τ∗.

Proof. — Existence of solutions follows from Theorem 5.1. Theorems 5.4
and 5.6 give the time-derivative estimates which are necessary in Theorem 4.9.
In order to apply that last theorem, we set

ϕ =
(
φc+
φcA

)
,(5.68)

ψ1 = (f̃ c), ψ2 = (φc−).(5.69)

Equation (5.2) takes then the form (4.58). As in Theorem 4.10, for n ≥ 4
even we take δ = 1

2 , p = n + 3, q = n − 1; while for n ≥ 3 odd we take

δ = 1, p = 1
2 (n + 3), q = 1

2 (n − 1). For n = 2 we set δ = 1
2 , p = 3, q = 1.

The non-linearity here has a uniform zero of order 3, which is compatible with
the hypotheses of Theorem 4.9, and the result follows by that last theorem.

Acknowledgements. — We are grateful to Helmut Friedrich for many useful
comments on a previous version of this paper.

Appendix A

Function spaces, embeddings, inequalities

Throughout this paper the letter C denotes a constant the exact value of
which is irrelevant for the problem at hand, and which may vary from line to
line.

Let M be a smooth manifold such that

M ≡M ∪ ∂M
is a compact manifold with smooth boundary ∂M . Throughout this work the
symbol x stands for a smooth defining function for ∂M , i.e., a smooth function
onM such that {x = 0} = ∂M , with dx nowhere vanishing on ∂M . It follows
that there exists x0 > 0 and a compact neighborhood K of ∂M on which x
can be used as a coordinate, with K being diffeomorphic to [0, x0] × ∂M . For
0 ≤ x1 < x2 ≤ x0 we set

Mx1 =
{
p ∈M | 0 < x(p) < x1

}
,(A.1a)

Mx1,x2 =
{
p ∈M | x1 < x(p) < x2

}
,(A.1b)

∂̃Mx1 =
{
p ∈M | x(p) = x1

}
≈ ∂M.(A.1c)

In what follows the symbol Ω will generally denote one of the sets M,Mx1 ,
or Mx1,x2 . Any subset of Mx0 can be locally coordinatized by coordi-
nates yi = (x, vA), where the vA’s can be thought of as local coordinates
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on ∂M . We cover ∂M by a finite number of coordinate charts Oi so that the
sets Ωi, where

Ωi := (0, x0) ×Oi,

cover Mx0 . We use the usual multi-index notation for partial derivatives: for

β = (β1, . . . , βn) ∈ N
n we set ∂β = ∂β1

1 · · · ∂βn
n . We will write ∂βv for derivatives

of the form ∂β2

2 · · · ∂βn
n , which do not involve the x1 ≡ x variable.

If O is an open set, for k ∈ N ∪∞ we let Ck(O) denote the usual space of
k-times differentiable functions on O; the symbol Ck(O) is used to denote the
set of those functions in Ck(O) the derivatives of which, up to order k, extend
by continuity to O. We emphasise that no uniformity is assumed in Ck(O), so
that functions there could grow without bound when approaching the boundary
of O. Nevertheless, the symbol ‖·‖Ck

will denote the usual supremum norm of f
and its derivatives up to order k. The symbol Ck+λ(O) denotes the space of k-
times continuously differentiable functions on O, with λ-Hölder continuous k-th
derivatives.

For α ∈ R, k ∈ N and λ ∈ (0, 1], we define Cα0 (Ωi) (resp. Cα0+λ(Ωi), Cαk (Ωi),
Cαk+λ(Ωi)) as the spaces of appropriately differentiable functions such that the
respective norms

(A.2)





‖f‖Cα
0 (Ωi) ≡ supp∈Ωi

∣∣x−αf(p)
∣∣,

‖f‖Cα
0+λ(Ωi) ≡ ‖f‖Cα

0 (Ωi)

+ sup
y∈Ωi

sup
y 6=y′∈B(y, 12x(y))∩Ωi

x(y)−α−λ|f(y) − f(y′)|
|y − y′|λ

,

‖f‖Cα
k (Ωi) ≡

∑

0≤|β|≤k

‖xβ1∂βf‖Cα
0 (Ωi),

‖f‖Cα
k+λ(Ωi) ≡ ‖f‖Cα

k−1(Ωi) +
∑

|β|=k

‖xβ1∂βf‖Cα
0+λ(Ωi),

are finite. Let O be an open subset of M , or a submanifold with boundary
in M ; for such sets we define:

(A.3)

{ ‖f‖Cα
k (O) ≡ supi ‖f‖Cα

k (Ωi∩O) + ‖f‖Ck({Mx0/2∩O),

‖f‖Cα
k+λ(O) ≡ supi ‖f‖Cα

k+λ(Ωi∩O) + ‖f‖Ck+λ({Mx0/2∩O).

We note that f ∈ Cα+σ
k+λ (Ω) if and only if x−σf ∈ Cαk+λ(Ω).

We define the spaces Hα
k (Ωi) as the spaces of those functions in H loc

k (Ωi) for
which the norms ‖.‖Hα

k (Ωi) are finite, where

(A.4) ‖f‖2
Hα

k (Ωi)
=

∑

0≤|β|≤k

∫

Ωi

(x−α+β1∂βf)2
dx

x
dν.

tome 133 – 2005 – no 1



RADIATION FIELDS 51

Here dν is a measure on ∂M arising from some smooth Riemannian metric
on ∂M . This is equivalent to

(A.5)
∑

0≤β1+|β|≤k

∫

Ωi

(x−α(x∂x)
β1∂βv f)2

dx

x
dν,

and it will sometimes be convenient to use (A.5) as the definition of ‖f‖2
Hα

k
(Ωi)

.

For O’s such that Ωi ⊂ O the spaces Hα
k (O) are defined as the spaces of those

functions in H loc
k (O) for which the norm squared

(A.6) ‖f‖2
Hα

k (O) =
∑

i

‖f‖2
Hα

k (Ωi)
+ ‖f‖2

Hk(O∩{Mx0/2)

is finite. We note the equivalence of norms,

‖f‖H0(O) ≈ ‖f‖
H

−1/2
0 (O)

,

and that Hα
k (Mx1,x2) = Hk(Mx1,x2) for all α and k whenever x1 > 0, the norms

being equivalent, with the constants involved depending upon x1 and x2, and
degenerating in general when x1 tends to 0.

It is often awkward to work with coordinate charts, in order to avoid that one
can proceed as follows: Choose a fixed smooth complete Riemannian metric b on
M . Let x be any smooth defining function for ∂M , we let X1 be the gradient of
x with respect to the metric b; rescaling b by a smooth function if necessary we
may without loss of generality assume that X1 has length one in the metric b in
a neighborhood of ∂M . As before we cover ∂M by a finite number of coordinate
charts Oi with associated coordinates vA; the vA’s are then propagated to a
neighborhood of ∂M by requiring

X1(v
A) = 0.

This leads to a covering of Mx0 of the kind already used, and one easily checks
that

X1 = ∂x

in the resulting local coordinates. This gives then a globally defined vector ∂x
onMx0 . For i = 2, . . . , r we let Xi be any smooth vector fields on ∂M satisfying
the condition that at any p ∈ ∂M the linear combinations of the Xi exhaust
the tangent space Tp∂M . (If ∂M is a sphere Sn−1, a convenient choice is a

basis of the collection of all Killing vectors of (Sn−1, h̊), where h̊ is the unit
round metric on Sn−1.) Over the domain of a chart (vA) of ∂M , one thus has

∂A =

r∑

i=2

f iA(vB)Xi,(A.7a)

Xi =

n∑

A=2

XA
i (vB)∂A,(A.7b)
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for some locally defined smooth functions f iA, X
A
i ; clearly things can be ar-

ranged so that those functions are bounded, together with all their partial
derivatives. We propagate the Xi’s to Mx0 by requiring [X1, Xi] = 0, equiva-
lently

(A.8) ∂xX
A
i = 0.

It follows that (A.7) still holds with x-independent functions. For any multi-
index β = (β1, β2, . . . , βr) ∈ N

r we set, on Mx0 ,

(A.9) Dβf = Xβ1

1 Xβ2

2 · · ·Xβr
r f = ∂β1

x Xβ2

2 · · ·Xβr
r f.

It follows that we have (here, |β| = β1 + · · · + βr)

‖f‖Cα
k (Mx0) ≈

∑

0≤|β|≤k

‖xβ1Dβf‖Cα
0 (Mx0 ),

‖f‖2
Hα

k (Mx0) ≈
∑

0≤|β|≤k

∫

Mx0

(x−α+β1Dβf)2
dx

x
dν

(where ≈ denotes the fact that the norms are equivalent), etc.

There is a useful way of rewriting ‖.‖Hα
k (Mx0 ) which proceeds as follows: for

f ∈ Hα
k (Mx0), s ∈ (1, 2), and n ∈ N we set

(A.10) fn(s, v) = f(x = x0s/2
n, v),

letting ≈ denote again equivalence of norms one then has, after a change of
variables,

‖f‖2
Hα

k (Mx0) =
∑

n≥1

∑

0≤|β|≤k

∫

[2−nx0,21−nx0]×∂M

∣∣x−α+β1Dβf(x, v)
∣∣2 dx

x
dν(A.11)

≈ x−2α
0

∑

n≥1

∑

0≤|β|≤k

22nα

∫

[1,2]×∂M

∣∣Dβfn(s, v)
∣∣2dsdν

= x−2α
0

∑

n≥1

22nα‖fn‖2
Hk([1,2]×∂M).

More precisely, we write A ≈ B if there exist constants C1, C2 > 0 such that
C1A ≤ B ≤ C2A. In (A.11) the relevant constants depend only upon α and k.

It turns out to be useful to have a formula similar to (A.11) for functions
in Hα

k (Mx2,x1); this can be done for any x1 and x2, but in order to obtain uni-
form control of certain constants it is convenient to require 2x2 ≤ x1. For such
values of x1 and x2 we let n0(x1, x2) ∈ N be such that x1/2

n0+1 ≤ x2 ≤
x1/2

n0. For n ∈ N, n ≥ 1, and for any f : Mx2,x1 → R
N we then define

fn : (1, 2) × ∂M → R
N by

fn(s, v) =





f(x1s/2
n, v) if n ≤ n0,

f(x2s, v) if n = n0 + 1,

0 if n > n0 + 1.

(A.12)
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(This coincides with the definition already given for Mx1 , when this set is
thought of as being an“Mx2,x1 with x2 = 0”, if we set n0 = +∞.) A calculation
as in (A.11) shows that for any 2x2 ≤ x1 ≤ x0, there exist constants C1 and c1,
independent of x0, x1 and x2, such that for all f ∈ Hα

k (Mx2,x1),

c1x
−2α
1

∑

n

{
2nα‖fn‖Hk([1,2]×∂M)

}2
(A.13)

≤ ‖f‖2
Hα

k (Mx2,x1) ≤ C1x
−2α
1

∑

n

{
2nα‖fn‖Hk([1,2]×∂M)

}2
.

Equation (A.11) leads one to introduce(10) spaces Bαk+λ, that arise naturally
from weighted Sobolev embeddings, cf. Equation (A.25) below: we define

‖f‖2
Bα

k+λ(Mx0) = x−2α
0

∑

n≥1

22nα‖fn‖2
Ck+λ([1,2]×∂M),(A.14)

fn as in (A.10), and we set

Bαk+λ(Mx0) =
{
f ∈ Ck+λ(Mx0) ; ‖f‖Bα

k+λ(Mx0) <∞
}
.

Clearly

Bαk+λ(Mx0) ⊂ Cαk+λ(Mx0).

Since the general term fN , as well as sums of the form Σn≥Nfn, of a convergent
series tend to zero as N tends to infinity, for f ∈ Bαk+λ(Mx0) we actually have

(A.15) lim
x1→0

‖f‖Cα
k+λ(Mx1 ) = 0.

We have the trivial inclusion,

α′ > α =⇒ Cα′

k+λ(Mx1) ⊂ Hα
k (Mx1).(A.16)

The fact that the inequality α′ > α in (A.16) is strict has various annoying
consequences, which are best avoided by introducing yet another space – the
space Gαk of functions in Hk

loc(Mx0) for which the norm squared

(A.17) ‖f‖2
Gα

k
(Mx0) = sup

n≥1

{ ∑

0≤β≤k

∫

[2−nx0,2
1−nx0]×∂M

|x−α+β1Dβf(x, v)|2 dx

x
dν

}

is finite. We note that ‖f‖Gα
k (Mx0 ) is equivalent to

(A.18) x−α0 sup
n≥1

{
2nα‖fn‖Hk([1,2]×∂M)

}
,

(10) The symbol B might suggest to the reader that we specifically have Besov spaces in
mind; this is not the case, and we hope that the notation will not lead to confusion.
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with fn(s, v) = f(x0s/2
n, v), as in (A.10). To define the Gαk (Mx2,x1)’s, assum-

ing again that x2 ≤ x1/2, we let In(x1, x2) be defined as

In =





(2−nx1, 2
1−nx1) if n ≤ n0,

(x2, 2x2) if n = n0 + 1,

∅ if n > n0 + 1,

(A.19)

where n0 is as in (A.12). For all f ∈ H loc
k (Mx2,x1) we set

(A.20) ‖f‖2
Gα

k (Mx2,x1) = sup
n

{∑

i

∑

0≤|β|≤k

∫

Ωi∩{In×∂M}

(x−α+β1Dβf)2
dx

x
dν

}

(we identify (a, b) × ∂M and Ma,b). Similarly to (A.13), there exist con-
stants c2 and C2, which do not depend upon x0, x1, and x2, such that for
all 2x2 ≤ x1 ≤ x0,

c2x
−α
1 sup

n
‖fn‖Hk([1,2]×∂M) ≤ ‖f‖Gα

k (Mx2,x1 )(A.21)

≤ C2x
−α
1 sup

n
‖fn‖Hk([1,2]×∂M).

We have the obvious inequality

(A.22) ‖f‖Gα
k (Ω) ≤ ‖f‖Hα

k (Ω),

together with the modified version of (A.16),

α′ ≥ α =⇒ Cα′

k+λ ⊂ Gαk ;(A.23)

in particular the function (x, v) 7→ xα is in Gαk (Mx0).

If Sk denotes a space of functions, where k ∈ N is a differentiability index,
we set S∞ ≡ ⋂

k∈N
Sk, e.g., Gα∞ ≡ ⋂

k∈N
Gαk , etc.

We note the following:

Proposition A.1. — Let Ω = M , or Ω = Mx1 , 0 < x1 ≤ x0, or Ω = Mx2,x1 ,
2x2 < x1 ≤ x0, and let Hα

k = Hα
k (Ω), etc. For k′ ∈ N, λ ∈ [0, 1], 0 ≤ k′ + λ ≤

k − 1
2n 6∈ N or 0 ≤ k′ + λ < k − 1

2n ∈ N we have the continuous embeddings

Hα
k ⊂ Bαk′+λ ⊂ Cαk′+λ, Hα

k ⊂ Gαk ⊂ Cαk′+λ,(A.24)

and there exists an x2-independent constant C such that we have

∀f ∈ Hα
k , ‖f‖Bα

k′+λ
(Ω) ≤ C‖f‖Hα

k (Ω),(A.25)

∀f ∈ Gαk , ‖f‖Cα
k′+λ

(Ω) ≤ C‖f‖Gα
k (Ω).(A.26)

Proof. — (A.25)–(A.26) follow immediately from (A.11) and (A.13), together
with the standard Sobolev embedding; the remaining inclusions in (A.24) are
trivial.
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All other inequalities involving Sobolev spaces have their counterpart in
the weighted setting; we shall in particular need various weighted versions of
the Moser inequalities. The reader should note the different weights for the
members of Equation (A.31) below – this shift of weights in this inequality is
the key to our handling of nonlinear equations.

Proposition A.2. — Let Ω = M , or Ω = Mx1 , 0 < x1 ≤ x0, or Ω = Mx2,x1 ,
2x2 < x1 ≤ x0, and let Hα

k = Hα
k (Ω), etc.

1) There exists a constant C = C(α, α′, β, k, x1) such that, for all

f ∈ Hα′

k ∩ Cα0 and g ∈ Hβ
k ∩ Cα+β−α′

0 , we have

(A.27) ‖fg‖Hα+β
k

≤ C
(
‖f‖Cα

0
‖g‖Hβ

k
+ ‖f‖Hα′

k
‖g‖

Cα+β−α′

0

)
.

Further, for all |γ| ≤ k,
∥∥xγ1Dγ(fg) − (xγ1Dγf)g

∥∥
Hα+β

0
(A.28)

≤ C
{
‖f‖Cα

0
‖g‖Hβ

k
+ ‖f‖Hα′

k−1

(
‖x∂xg‖Cα+β−α′

0

+

r∑

i=2

‖Xig‖Cα+β−α′

0

)}
,

where the vector fields X are defined in Equation (A.7).

2) Let F ∈ Ck(M ×R
N ) be a function such that for all B ∈ R

+ there exists
a constant C1 = C1(B) so that, for all p ∈ R

N , |p| ≤ B, we have
∥∥F (. , p)

∥∥
C0

k(Mx0)
≤ C1.

Then for all α < 0, β ∈ R, and B ∈ R
+ there exists a constant C2(B, k, α, β, x1)

such that for all R
N -valued functions f ∈ Hα−β

k (Ω) with ‖xβf‖L∞(Ω) ≤ B we
have

(A.29)
∥∥F (. , xβf)

∥∥
Hα

k

≤ C2

(
1 + ‖f‖Hα−β

k

)
.

Further, if F has a uniform zero of order ` > 0 at p = 0, in the sense

that for all B ∈ R there exists a constant Ĉ(B) such that for all |p| ≤ B and
0 ≤ i ≤ min(k, `),

(A.30)
∥∥∥∂

iF (. , p)

∂pi

∥∥∥
C0

k−i(Mx0 )
≤ Ĉ(B)|p|`−i,

then for all α ∈ R, β ≥ 0, there exists a constant C3(Ĉ, `, k, α, β,B) such that,

for all f ∈ Hα−`β
k (Ω) with ‖f‖L∞(Ω) ≤ B, we have

(A.31)
∥∥F (. , xβf)

∥∥
Hα

k

≤ C3‖f‖Hα−`β
k

.

Remark. — Hypothesis (A.30) will hold if F is e.g. a polynomial in p with
coefficients of pj vanishing for j < `, and being functions belonging to C0

k

for j ≥ `.
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Proof. — We shall give a detailed proof of (A.29) and (A.31), the inequali-
ties (A.27)–(A.28) follow by an analogous argument using [35, Vol. III, p. 10,
Equ. (3.21)–(3.22)], cf. the calculation of Proposition A.3 below. Let, similarly
to (A.10),

Fn(s, v) = F
((
x =

x0s

2n
, v

)
;
(x0s

2n

)β
f
(
x =

x0s

2n
, v

))
;

from Equation (A.11) we have

(A.32)
∥∥F (. , xβf)

∥∥2

Hα
k (Mx0 )

≈ x2α
0

∑

n≥1

22nα‖Fn‖2
Hk([1,2]×∂M).

We have the obvious bound

sup
[1,2]×∂M

∣∣∣
(x0s

2n

)β
f
(x0s

2n
, v

)∣∣∣ ≤ ‖xβf‖L∞(Mx0 ) ≤M.

Further the partial derivatives of (s, v) 7→ Fn(s, v, p) with respect to s and v
at p ∈ R

N fixed, |p| ≤M , can be bounded by a constant depending only upon

sup
|p|≤M

∥∥F (. , p)
∥∥
C0

k(Mx0)
.

The usual Moser inequalities [35, Vol. III, p. 11, Equ. (3.30)] give

‖Fn‖2
Hk([1,2]×∂M) ≤ C

(
1 + 2−2nβ‖fn‖2

Hk([1,2]×∂M)

)
,

with fn as in (A.10), and with a constant C depending upon k andM . Inserting
this in (A.32) one obtains (recall that α < 0)

∥∥F (. , xβf)
∥∥2

Hα
k (Mx0 )

≤ C
∑

n≥1

22nα
(
1 + 2−2nβ‖fn‖2

Hk([1,2]×∂M)

)
(A.33)

≤ C
(
1 + ‖f‖Hα−β

k (Mx0 )

)
.

This establishes (A.29) for Ω = Mx0, and (A.29) with Ω = M readily follows.
The remaining Ω’s are handled in a similar way.

To establish (A.31), we note the inequality
∣∣∣∂

|γ|+iFn(. , p)

∂yγ∂pi

∣∣∣ ≤ C|p|max(`−i,0),

which follows from (A.30) when |γ|+i ≤ k. Letting y stand for (s, v)∈ [1, 2]×∂M ,
it then follows that for |σ| ≤ k we have

|∂σFn| =
∣∣∣

∑

|γ|+|σ1|+···+|σi|=|σ|

C(σ1, . . . , σi, β)
(x0

2n

)β(|σ1|+···+|σi|)

×∂
|γ|+iFn
∂yγ∂pi

∂σ1(sβfn) · · · ∂σi(sβfn)
∣∣∣

≤ 2−`βnC
∑

|σ1|+···+|σi|≤|σ|

∣∣∂σ1(sβfn)
∣∣ · · ·

∣∣∂σi(sβfn)
∣∣.
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The usual inequalities [35, Vol. III, Chap. 13, Sect. 3] give

‖Fn‖Hk([1,2]×∂M) ≤ C(k,M)2−`βn‖fn‖Hk([1,2]×∂M),

for some constant C(k,M), and one concludes from (A.32), as in (A.33).

We have the following sharper version of (A.27)–(A.28):

Proposition A.3. — Let Ω = M , or Ω = Mx1 , 0 < x1 ≤ x0, or Ω = Mx2,x1 ,
2x2 ≤ x1 ≤ x0, and let Hα

k = Hα
k (Ω), etc. There exists a constant Cs =

Cs(α, β, k) such that, for all f ∈ Hα
k ∩ Bα0 and g ∈ Gβk ∩ Cβ0 we have

(A.34) ‖fg‖Hα+β
k

≤ Cs
(
‖f‖Bα

0
‖g‖Gβ

k
+ ‖f‖Hα

k
‖g‖Cβ

0

)
.

Moreover it also holds that

∀|γ| ≤ k,
∥∥xγ1Dγ(fg) − (xγ1Dγf)g

∥∥
Hα+β

0
(A.35)

≤ C
{
‖f‖Bα

0
‖g‖Gβ

k
+ ‖f‖Hα

k−1

(
‖x∂xg‖Cβ

0
+

r∑

i=2

‖Xig‖Cβ
0

)}
,

where the vector fields X are defined in Equation (A.7).

Remark. — A useful, though less elegant, inequality related to (A.34) is

∀ |γ + σ| ≤ k,(A.36) ∥∥xγ1(Dγf)xσ1 (Dσg)
∥∥
Hα+β

0
≤ Cs

(
‖f‖Bα

0
‖g‖Gβ

k
+ ‖f‖Hα

k
‖g‖Cβ

0

)
.

Proof. — We will prove (A.35), the proof of (A.34) is essentially iden-
tical. When Ω = Mx0 we do the rescaling fn(s, v) = f(x0s/2

n, v),
gn(s, v) = g(x0s/2

n, v), we then have, for all |γ| ≤ k,
∥∥xγ1Dγ(fg) − (xγ1Dγf)g

∥∥2

Hα+β
0

(A.37)

≈ x
−2(α+β)
0

∑

n

22n(α+β)
∥∥Dγ(fngn) − (Dγfn)gn

∥∥2

H0([1,2]×∂M)

≤ Cx
−2(α+β)
0

∑

n

22n(α+β)
(
‖fn‖2

L∞‖gn‖2
Hk

+ ‖fn‖2
Hk−1

‖Dgn‖2
L∞

)

≤ Cx
−2(α+β)
0

{( ∑

n

22nα‖fn‖2
L∞

)
sup
n

(
22nβ‖gn‖2

Hk

)

+
(∑

n

22nα‖fn‖2
Hk−1

)
sup
n

(
22nβ‖Dgn‖2

L∞

)}

≈ C
(
‖f‖2

Bα
0
‖g‖2

Gβ
k

+ ‖f‖2
Hα

k−1
‖g‖2

Cβ
1

)

≤ Cs
(
‖f‖Bα

0
‖g‖Gβ

k
+ ‖f‖Hα

k−1
‖g‖Cβ

1

)2
.

(In the third line above we have used the inequality [35, Vol. III, p. 10,
Equ. (3.22)].) The case Ω = M follows immediately from the above; the case
Ω = Mx2x1 is treated similarly using (A.12)–(A.13) and (A.19)-(A.21).
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Similar results can be proved in weighted Hölder spaces:

Lemma A.4. — Let Ω = M , or Ω = Mx1, 0 < x1 ≤ x0, or Ω = Mx2,x1 ,

2x2 ≤ x1 ≤ x0, and let Cαk = Cαk (Ω). Let f ∈ Cαk ∩ Cβ0 and g ∈ Cγk ∩ Cδ0 with
α+ δ = γ + β = σ. Then we have fg ∈ Cσk and

(A.38) ‖fg‖Cσ
k
≤ Ci

(
‖f‖Cβ

0
‖g‖Cγ

k
+ ‖g‖Cδ

0
‖f‖Cα

k

)
,

Proof. — The proof is very similar to that of Propositions A.2 and A.3.
We use the same conventions as in (A.12), (A.19). We have ‖fg‖Cσ

k
≈

supn 2nσ‖fngn‖Ck(ω), where

(A.39) ω ≡ [1, 2]× ∂M,

similarly for f and g. The interpolation inequality [27, App. A]

‖fngn‖Ck(ω) ≤ C(‖fn‖∞‖gn‖Ck(ω) + ‖gn‖∞‖fn‖Ck(ω))

leads to the conclusion.

We have the following Cβk equivalent of the second part of Proposition A.2,
with a similar proof, based on Lemma A.4:

Lemma A.5. — Let F be a function satisfying the hypotheses of point 2) of
Proposition A.2, with a uniform zero of order ` in p in the sense of Equa-

tion (A.30). Then, for any ε > 0, β ∈ R and f ∈ Cβk ∩L∞ we have F (. , xεf) ∈
Cβ+`ε
k , and there exists a constant C depending upon ‖f‖L∞ such that

(A.40)
∥∥F (. , xεf)

∥∥
Cβ+`ε

k

≤ C
(
‖f‖∞

)
· ‖f‖Cβ

k
.

The space of polyhomogeneous functions Aphg = Aphg(M) is defined as the

set of smooth functions onM which have an asymptotic expansion of the form

(A.41) f ∼
∞∑

i=0

Ni∑

j=0

fijx
ni lnj x,

for some sequences ni, Ni, with ni ↗ ∞. The polyhomogeneous expansions of
the introduction are of this form if r there is replaced by 1/x; this corresponds
to the conformal transformation of Section 2, which brings “null infinity” to
a finite distance. We emphasise that we allow non-integer values of the ni’s;
however, we shall mostly be interested in rational ones, as those arise naturally
in the problem at hand. Here the symbol ∼ stands for “being asymptotic to”:
if the right-hand-side is truncated at some finite i, the remainder term falls
off appropriately faster. Further, the functions fij are supposed to be smooth

onM , and the asymptotic expansions should be preserved under differentiation.
It is easily checked that the space Aphg is independent of the choice of the
function x, within the class of defining functions for ∂M .
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Appendix B

ODE’s in weighted spaces

In our handling of PDE’s we will need ODE estimates to obtain information
about solutions, we thus begin with some a priori estimates in weighted spaces
for ODE’s. While the results are well-known in principle, and easy to prove,
we present them in detail here because their precise form is necessary for our
arguments elsewhere in this work. For a vector w we denote by ‖w‖ or by
|w| the usual Euclidean norm, while for a matrix b the symbol ‖b‖ denotes its
matrix norm.

B.1. Solutions of ∂τ ϕ + bϕ = c in weighted spaces. — Let O be an
open subset of ∂M , which might be the whole of ∂M , or a coordinate patch
of ∂M with coordinates vA, whichever appropriate in the context; we set

(B.1) Ux2,x1 ≡ (x2, x1) ×O × [0, T ],

(B.2) Sx2,x1 ≡ (x2, x1) ×O,

with 0 ≤ x2 < x1. The time variable τ will usually be the last variable, so τ
will run from [0, T ] whenever Ux2,x1 is involved. Strictly speaking, Ux2,x1 should
carry an extra T index, but we have not done that in order not to overburden
notation. To avoid ambiguities we emphasize that the spaces C0

k(Ux2,x1) in the
Proposition below are defined as in the previous section, with the vA variables
there corresponding here to some local coordinates on O together with the time
variable τ ; the time derivative ∂τ should be understood as a one-sided one
at τ = 0 and at τ = T .

Proposition B.1. — Let α ∈ R, b ∈ C0
k(Ux2,x1 ,End(RN )), c ∈ Cαk (Ux2,x1 ,R

N ),
then the unique solution ϕ of the equation

(B.3) ∂τϕ+ bϕ = c,

with initial data ϕ̃ ≡ ϕ τ=0 ∈ Cαk (Sx2,x1 ,R
N ) is in Cαk (Ux2,x1 ,R

N ) with

‖ϕ‖Cα
k (Ux2,x1 )(B.4)

≤ C
(
n,N, k, T, x1, ‖b‖C0

k
(Ux2,x1)

)(
‖ϕ̃‖Cα

k (Sx2,x1) + ‖c‖Cα
k (Ux2,x1 )

)
.
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We also have the estimates
∥∥ϕ(τ)

∥∥
Cα
0 (Sx2,x1)

≤ Ce‖b‖∞τ
{∥∥ϕ(0)

∥∥
Cα
0 (Sx2,x1 )

(B.5)

+

∫ τ

0

e−‖b‖∞s
∥∥c(s)

∥∥
Cα
0 (Sx2,x1)

ds
}
,

‖ϕ(τ)‖Cα
k

(Sx2,x1) ≤ CeC‖b‖∞τ
{∥∥ϕ(0)

∥∥
Cα

k (Sx2,x1)
(B.6)

+

∫ τ

0

e−C|b|∞s
∥∥c(s)

∥∥
Cα

k (Sx2,x1)
ds

+

∫ τ

0

e(1−C)|b|∞s
∥∥b(s)

∥∥
Cα

k (Sx2,x1)

(
‖ϕ(0)‖Cα

0 (Sx2,x1)

+

∫ s

0

e−|b|∞t
∥∥c(t)

∥∥
Cα
0 (Sx2,x1 )

dt
)
ds

}
.

Remarks
1) Analogous results in Bαk spaces can be proved by similar arguments.

2) An a priori estimate in weighted Sobolev spaces for (B.3) follows from
Proposition 3.1 by setting Eµ−∂µ = ∂τ ⊗ id and L ≡ ψ ≡ b ≡ 0 there.

Proof. — Let k ∈ N
∗, and let β = (β1, β2, . . . βn) be a multi-index with |β| ≤ k;

∂βϕ verifies the equation

∂τ∂
βϕ = −∂β(bϕ) + ∂βc.(B.7)

Let ε > 0 and set

e(. , t, ε) =
(
ε+

∑

|β|≤k

x2(β1−α)〈∂βϕ, ∂βϕ〉
)1/2

,

E(t, ε) =
∥∥e(., t, ε)

∥∥
L∞(Sx2,x1 )

.

When k = 0 one easily finds ∂τe ≤ ‖b‖e + x−α|c|, and (B.5) readily follows.
For k > 0 we have

∂τe =
1

e

∑

|β|≤k

x2(β1−α)〈∂τ∂βϕ, ∂βϕ〉

≤ 1

e

∑

|β|≤k

x2(β1−α)|∂β(−bϕ+ c)| · |∂βϕ|

≤ C(k, n)

e

(
‖bϕ‖Cα

k (Sx2,x1 ) + ‖c‖Cα
k (Sx2,x1 )

)
e

≤ C(k, n)
(
‖bϕ‖Cα

k (Sx2,x1) + ‖c‖Cα
k (Sx2,x1)

)
,

where C(k, n) is a constant depending upon k and the space dimension n,

and which arises from the inequality
∑p
i=1 |ai| ≤

√
p
√∑

i |ai|2 for any real
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sequence (ai). The weighted interpolation inequalities, Lemma A.4, imply

‖bϕ‖Cα
k (Sx2,x1 ) ≤ C

(
‖b‖L∞(Sx2,x1)‖ϕ‖Cα

k (Sx2,x1) + ‖b‖C0
k(Sx2,x1)‖ϕ‖Cα

0 (Sx2,x1)

)
,

where C is a constant which depends upon k, N and n. It follows that

∂τe ≤ C
(
‖b‖L∞(Sx2,x1)‖ϕ‖Cα

k (Sx2,x1) + ‖b‖C0
k
(Sx2,x1)‖ϕ‖Cα

0 (Sx2,x1)

+‖c‖Cα
k (Sx2,x1)

)

≤ C
(
‖b‖∞E(ε, t) + ‖b‖C0

k(Sx2,x1)‖ϕ‖Cα
0 (Sx2,x1 ) + ‖c‖Cα

k (Sx2,x1 )

)
,

with perhaps a different constant C. By integration we obtain

e(t) ≤ e(0) + C

∫ t

0

(
‖b‖∞E(s, ε) + ‖b(s)‖C0

k(Sx2,x1)‖ϕ(s)‖Cα
0 (Sx2,x1 )

+‖c(s)‖Cα
k (Sx2,x1)

)
ds,

from which we deduce

E(t, ε) ≤ E(0, ε) + C

∫ t

0

(
‖b‖∞E(s, ε) + ‖b(s)‖C0

k(Sx2,x1)‖ϕ(s)‖Cα
0 (Sx2,x1)

+ ‖c(s)‖Cα
k (Sx2,x1)

)
ds.

Using Gronwall’s Lemma and letting ε→ 0 one obtains

E(t, 0) ≤ eC‖b‖∞tE(0, 0) + C

∫ t

0

eC‖b‖∞(t−s)
(
‖b(s)‖C0

k(Sx2,x1) · ‖ϕ(s)‖Cα
0 (Sx2,x1 )

+ ‖c(s)‖Cα
k (Sx2,x1 )

)
ds.

The estimate (B.5) for ‖ϕ‖Cα
0 (Sx2,x1) inserted in the last inequality leads to

Equation (B.6). The time-derivative estimates follow immediately from the
above and from the equation satisfied by ϕ.

B.2. Solutions of ∂xφ + bφ = c in weighted spaces. — All the results
in this section, as well as in Section B.4 below, remain valid if we replace the
set Ux2,x1 defined in Equation (B.1) with Sx2,x1 defined in (B.2) – the time
dimension does not play a preferred role in the current problem. We start
with the following elementary result; the point is to ensure that the relevant
constants are x2 independent:

Lemma B.2. — Let g ∈ Cαk (Ux2,x1 ,R
N ), 0 ≤ x2 < x1. Then f defined

for α > −1 by

f(x, vA, τ) =

∫ x

x2

g(s, vA, τ)ds

is in Cα+1
k (Ux2,x1 ,R

N ), with

‖f‖Cα+1
k (Ux2,x1) ≤ max

{
1,

1

α+ 1

}
‖g‖Cα

k (Ux2,x1).
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Similarly f2 defined by

f2(x, v, τ) = −
∫ x1

x

g(s, v, τ)ds

satisfies
(
1 + (ln x)2

)−1/2
f2 ∈ C0

k(Ux2,x1) for α = −1,

f2 ∈ Cmin{α+1,0}
k (Ux2,x1) for α < 0 and α 6= −1,

with

‖f2‖Cmin{α+1,0}
k (Ux2,x1 )

≤ max
{
1,

∣∣∣ 1

1 + α

∣∣∣,
∣∣∣ x

α+1
1

1 + α

∣∣∣
}
‖g‖Cα

k (Ux2,x1).

Proof. — We have the trivial relations
∫ x

x2

sαds ≤ 1

α+ 1
xα+1 for α > −1,

∫ x1

x

s−1ds = lnx1 − lnx,

as well as the commutation rules:

∂x

∫ x

a

gdx = g(x), ∂vA

∫ x

a

gdx =

∫ x

a

∂vAgdx, ∂τ

∫ x

a

gdx =

∫ x

a

∂τgdx.

Note that

(B.8) ‖f‖Cα+1
k (Ux2,x1) = ‖∂xf‖Cα

k−1(Ux2,x1 ) +
∑

0≤i+|δ|≤k

‖∂iτ∂δvAf‖Cα+1
0 (Ux2,x1 ),

with ‖∂xf‖Cα
k−1(Ux2,x1) = ‖g‖Cα

k−1(Ux2,x1 ). To estimate ∂iτ∂
δ
vAf one writes

|∂iτ∂δvf | ≤
∫ x

x2

|∂iτ∂δvg|ds ≤
∫ x

x2

‖∂iτ∂δvg‖Cα
0
sαds ≤ 1

α+ 1
xα+1‖∂τ∂δvg‖Cα

0
.

The results for f2 are established in a similar way.

We shall use the following notation

(B.9) Ix2 = {x = x2},
with the range of the other variables being in principle clear from the con-
text; this is the equivalent of the set ∂̃Mx2 of Equation (A.1) when the set-up
described there is assumed.

Proposition B.3. — Let 0 ≤ x2 < x1, suppose that b ∈ C−ε
k (Ux2,x1 ,End(RN )),

0 ≤ ε < 1, c ∈ Cαk (Ux2,x1 ,R
N ), and let φ be a solution in C loc

k (Ux2,x1) of the
equation

(B.10) ∂xφ+ bφ = c.

Then the following hold:
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1) If α < −1 , then φ ∈ Cα+1
k (Ux2,x1) and we have, for α+ 2− ε 6= 0 and for

x2 ≤ x3 ≤ x1 small enough so that C(‖b‖C−ε
0
, x3) < 1,

‖φ‖Cα+1
0 (Ux2,x3)(B.11)

≤ 1

1 − C(‖b‖C−ε
0
, x3)

(
x−α−1

3 ‖φ‖C0(Ix3) +
1

|1 + α| ‖c‖Cα
0 (Ux2,x3 )

)
,

where

(B.12) C(‖b‖C−ε
0
, x3) =

x1−ε
3

|2 + α− ε| ‖b‖C−ε
0 (Ux2,x3 ).

Moreover, if x2 ≤ x3 ≤ x1 is small enough so that CiC(‖b‖C−ε
0
, x3) < 1, where

Ci is the constant in the interpolation inequality (A.38), then

‖φ‖Cα+1
k (Ux2,x3 ) ≤ Cα

(
‖b‖C−ε

0
, Ci, x3, k

){
‖φ(x3)‖Ck(Ix3) + ‖c‖Cα

k (Ux2,x3)(B.13)

+ ‖b‖C−ε
k (Ux2,x3 )(‖φ(x3)‖C0(Ix3) + ‖c‖Cα

0 (Ux2,x3 ))
}
,

with Cα(‖b‖C−ε
0
, Ci, x3) an increasing function in the first and third variable.

2) If α = −1, then (1 + (lnx)2)−1/2φ ∈ C0
k(Ux2,x1).

3) If α > −1, then φx2 ≡ limx→x2 φ is in Ck(Ix2), with

(B.14) φ− φx2 ∈ C1−ε
k (Ux2,x1) + Cα+1

k (Ux2,x1),

φ ∈ Cα+1
k (Ux2,x1) if φx2 = 0, and

(B.15) ‖φ‖L∞(Ux2,x3 ) ≤
1

1 − C′(‖b‖C−ε
0
, x3)

(
‖φ‖L∞(Ix3)+

x1+α
3

1 + α
‖c‖Cα

0 (Ux2,x3)

)

for x2 ≤ x3 ≤ x1 small enough so that

C′
(
‖b‖C−ε

0
, x3

)
:=

x1−ε
3

1 − ε
‖b‖C−ε

0 (Ux2,x3 ) < 1.

Moreover for x3 small enough so that CiC
′(‖b‖C−ε

0
, x3) < 1 we also have

‖φ‖C0
k(Ux2,x3) ≤ C′

α

(
‖b‖C−ε

0
, Ci, x3, k

){
‖φ(x3)‖Ck(Ix3) + ‖c‖Cα

k (Ux2,x3)(B.16)

+ ‖b‖C−ε
k (Ux2,x3)

(
‖φ(x3)‖C0(Ix3) + ‖c‖Cα

0 (Ux2,x3 )

)}
,

with C′
α an increasing function in its first and third argument.

Remarks
1) The inequalities above are standard when x2 > 0 and when the constants

are allowed to depend upon x2, regardless of whether or not x3 can be made
small. As already mentioned, the point here is to make sure that the constants
do not blow up as x2 gets small.

2) Log-weighted estimates are easily derived in case 2); they will, however,
not be needed in what follows.
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Proof. — 1) For simplicity, we will write Cδk for Cδk(Ux3,x2). Let φ be a (lo-
cal) solution of (B.10), corresponding to initial data at {x = x1} in Ck(Ix1).
For a > 0 set

ea(x, v
A, τ) :=

(
a+

∑

|β|≤k

x2β1〈∂βφ | ∂βφ〉
)1/2

,

and e := e0. Let x3 ∈ (x2, x1)∩(0, 1] be such that (x1−ε
3 /|2 + α− ε|)·‖b‖C−ε

0
< 1.

We have for all x2 < x ≤ x3,

−∂xea = − 1

ea

∑
β1x

2β1−1〈∂βφ|∂βφ〉 I(B.17)

− 1

ea

∑

|β|≤k

x2β1〈∂β∂xφ|∂βφ〉 II ,

Since β1 is non-negative we have −∂xea(x, vA, τ) ≤ II ; further

II =
1

ea

∑

|β|≤k

x2β1
〈
∂β(bφ− c) | ∂βφ

〉
(B.18)

≤ 1

ea

∑

|β|≤k

(
|xβ1∂βc| + |xβ1∂β(bφ)|

)
· |xβ1∂βφ|

≤
∑

|β|≤k

|xβ1∂βc| +
∣∣xβ1∂β(bφ)

∣∣.

Clearly

∑
|xβ1∂βc| = xα

∑
|x−α+β1∂βc| ≤ xα‖c‖Cα

k
,

∑

|β|≤k

|xβ1∂β(bφ)| = xα+1−ε
∑

|β|≤k

∣∣x−α−1+ε+β1∂β(bφ)
∣∣ ≤ xα+1−ε‖bφ‖Cα+1−ε

k
,

which gives

−∂xea ≤ xα‖c‖Cα
k

+ xα+1−ε‖bφ‖Cα+1−ε
k

.(B.19)

Consider, first, the case k = 0; in this case (B.19) reads

−∂xea ≤ xα‖c‖Cα
0

+ xα+1−ε‖b‖C−ε
0
‖φ‖Cα+1

0
,
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which, after integrating over [x3, x] and passing to the limit a→ 0, gives (recall
that α < −1)

e(x, vA, τ) ≤ e(x3, v
A, τ) +

(
− xα+1

(1 + α)
+

xα+1
3

(1 + α)

)
‖c‖Cα

0

+
( xα+2−ε

3

(2 + α− ε)
− xα+2−ε

(2 + α− ε)

)
‖b‖C−ε

0
· ‖φ‖Cα+1

0

≤ ‖φ‖C0(Ix3) +
xα+1

|1 + α| ‖c‖C
α
0

+
( xα+2−ε

3

(2 + α− ε)
− xα+2−ε

(2 + α− ε)

)
‖b‖C−ε

0
· ‖φ‖Cα+1

0
.(B.20)

Suppose for the moment that α+ 2 − ε < 0; Equation (B.20) yields

(B.21) e(x, vA, τ) ≤ ‖φ‖C0(Ix3) +
xα+1

|1 + α| ‖c‖Cα
0

+
xα+2−ε

|2 + α− ε|‖b‖C−ε
0
‖φ‖Cα+1

0
,

and since x−1−α ≤ x−1−α
3 ≤ 1 we obtain

x−α−1e(x, vA, τ) ≤ x−1−α
3 ‖φ‖C0(Ix3) +

1

|1 + α| ‖c‖Cα
0

+
x1−ε

3

|2 + α− ε| ‖b‖C−ε
0

· ‖φ‖Cα+1
0

.

On the other hand, if α+ 2 − ε > 0 then

e(x, vA, τ) ≤ ‖φ‖C0(Ix3) +
xα+1

|1 + α| ‖c‖C
α
0

+
xα+2−ε

3

(2 + α− ε)
‖b‖C−ε

0
· ‖φ‖Cα+1

0
,

which gives

x−α−1e(x, vA, τ) ≤ x−1−α
3 ‖φ‖C0(Ix3) +

1

|1 + α| ‖c‖Cα
0

+
x1−ε

3

|2 + α− ε| ‖b‖C−ε
0
‖φ‖Cα+1

0
.

The inequality ‖φ‖Cα+1
0 (Ux2,x3 ) ≤ sup[x2,x3] x

−1−αe shows that in all cases we

have

‖φ‖Cα+1
0 (Ux2,x3 ) ≤

1

1 − C(‖b‖C−ε
0
, x3)

(
x−1−α

3 ‖φ‖C0(Ix3) +
1

|1 + α| ‖c‖C
α
0

)
,

with the constant as in Equation (B.12). Consider, now, any 0 < k ∈ N;
Equation (B.19) and the interpolation inequality (A.38) give

−∂xea ≤ xα‖c‖Cα
k

+ xα+1−εCi
(
‖b‖C−ε

0
· ‖φ‖Cα+1

k
+ ‖b‖C−ε

k
· ‖φ‖Cα+1

0

)
.
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An argument identical to the one before, considering separately the cases
α+ 2 − ε > 0 or < 0, leads to

‖φ‖Cα+1
k

≤ C(k)

1 − CiC(‖b‖C−ε
0
, x3)

(
x−1−α

3 ‖φ‖Ck(Ix3) +
1

|1 + α| ‖c‖Cα
k

)

+
C(k)Ci

1 − CiC(‖b‖C−ε
0
, x3)

· x1−ε
3

|2 + α− ε|‖b‖C−ε
k

· ‖φ‖Cα+1
0

≤ C(k, x3)

1 − CiC(‖b‖C−ε
0
, x3)

(
‖φ‖Ck(Ix3) + ‖c‖Cα

k

+
C(k)Ci

1 − CiC(‖b‖C−ε
0
, x3)

‖b‖C−ε
k

(
x−α−1

3 ‖φ‖C0(Ix3) +
1

|1 + α| ‖c‖C
α
0

))
,

which gives (B.13). We have thus shown that φ ∈ Cα+1
k (Ux2,x3); the property

that φ ∈ Cα+1
k (Ux2,x1) immediately follows.

2) The proof is identical, except for a few obvious modifications in the cal-
culations.

3) To obtain the L∞ estimate, we start from (B.17)–(B.18) with k = 0,
which upon integration and passing to the limit a→ 0 gives

e(x, vA, τ) ≤ e(x3, v
A, τ) +

xα+1
3

1 + α
‖c‖Cα

0
+
x1−ε

3

1 − ε
‖b‖C−ε

0
‖φ‖C0

0
,

from which we deduce

‖φ‖L∞(Ux2,x3) ≤ ‖φ‖L∞(Ix3) +
xα+1

3

α+ 1
‖c‖Cα

0
+
x1−ε

3

1 − ε
‖b‖C−ε

0
‖φ‖L∞(Ux2,x3),

and (B.15) follows. The proof of (B.16) is similar to that of the analogous
statement in point 1. From what has been said it can be seen that φx2 ≡
limx→x2 φ exists and is in Ck(Ix2). It remains to show that φ − φx2 satisfies
(B.14). When b is a multiple of the identity, we can integrate (B.10) to obtain

(B.22) φ(x, .) = φx2(.)e
−

R x
x2
b(s,.)ds

+

∫ x

x2

e
R y

x
b(s,.)dsc(y, .)dy,

from which the result easily follows. The general case can be established by
manipulations similar to the previous ones.

B.3. Polyhomogeneous solutions of ∂τ ϕ + bϕ = c. — We pass now to
an analysis of ODE’s with polyhomogeneous sources. The results here have
an auxiliary character, and several of them are rather elementary; they will be
needed to handle the real problem at hand, with partial differential operators.
Let O be an open subset of ∂M , we set

(B.23) Ux1 = (0, x1] ×O × [0, T ].
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It will be seen in Sections 4 and 5 that(11) integer space-dimensions force us to
consider polyhomogeneous expansions with half-integer power of x; in order
to account for that, we introduce an index

δ =
1

d
,

where d is a non-zero integer, d ∈ N
∗. We will mostly be interested in the

case δ = 1
2 or δ = 1, however other values are also possible in the formalism

here. Results analogous to the ones below hold for the general polyhomogeneous
expansions of Equation (A.41), which can be established by similar methods.
We find it of interest that a consistent framework can be obtained in the setting
considered below:

Proposition B.4. — Let β ∈ R and consider the system

∂τϕ+ bϕ = c,(B.24a)

ϕ {τ=0}(x, v) ≡ ϕ̃(x, v)(B.24b)

= xβ
p∑

i=0

Ni∑

j=0

xiδ lnj xϕ̃ij(x, v) + ϕ̃pδ+β+ε(x, v),

ϕ̃ij ∈ C∞({τ = 0}), ϕ̃pδ+β+ε ∈ Cpδ+β+ε
∞

(
{τ = 0}

)
,(B.24c)

with

b(x, v, τ) =

p∑

i=0

N ′
i∑

j=0

xiδ lnj xbij(x, v, τ) + bpδ+ε(x, v, τ),(B.25a)

bpδ+ε ∈ Cpδ+ε∞ (Ux1), bij ∈ C∞(Ux1),(B.25b)

c(x, v, τ) = xβ
p∑

i=0

N ′′
i∑

j=0

xiδ lnj xcij(x, v, τ) + cpδ+β+ε(x, v, τ),(B.25c)

cpδ+β+ε ∈ Cpδ+β+ε
∞ (Ux1), cij ∈ C∞(Ux1),(B.25d)

where 0 < ε < δ, and (Ni), (N
′
i), (N

′′
i ) are sequences with integer values, and

with

b ∈ L∞(Ux1).

Then the solution ϕ takes the form

(B.26) ϕ(x, v, τ) = xβ
p∑

i=0

Mi∑

j=0

xiδ lnj xϕij(x, v, τ) + ϕpδ+β+ε(x, v, τ),

with ϕij ∈ C∞(Ux1), Mk is an integer sequence and ϕpδ+β+ε ∈ Cpδ+β+ε
∞ (Ux1).

To prove the proposition we shall need the following lemma:

(11) This is due to occurrence of the factor Ω(n−1)/2 in equations such as (4.2).
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Lemma B.5. — Under the hypotheses of Proposition B.4, suppose that in ad-
dition we have

ϕ̃pδ+β+ε = bpδ+ε = cpδ+β+ε = 0.

Then for any ε ∈ (0, δ) we have

(B.27) ϕ = xβ
p∑

i=0

Mi∑

j=0

xiδ lnj xϕij + ϕpδ+β+ε,

with ϕij ∈ C∞(Ux1), ϕpδ+β+ε ∈ Cpδ+β+ε
∞ (Ux1), for some integer-valued se-

quence Mk.

Proof. — Inserting (B.27) in the equation (B.24a) and tracking the coefficients

in front of xiδ lnj x one finds the following set of equations:

M0 = max{N0, N
′′
0 }, Mi+1 = max

{
max
0≤k≤i

Mk +N ′
i−k, N

′′
i+1, Ni+1

}
,

i ∈ [[0, p]], j ∈ [[0,Mi]], ∂τϕij +

i∑

k=0

min{N ′
k,j}∑

`=0

bk`ϕi−kj−` = cij ,

∂τϕpδ+β+ε + bϕpδ+β+ε = −
2p∑

i=p+1

xβ
Mi∑

j=0

xiδ lnj x
{ i∑

k=0

min{N ′
k,j}∑

`=0

bk`ϕi−kj−`

}
.

Here [[a, b]] := [a, b]∩N. This system is easily solved: one begins with i = 0 and
solves the equations for j running from 0 to M0. This can then be repeated for
i = 1, etc., until i = p is reached. This provides the functions ϕij . Finally, one
solves the last equation for the remainder term ϕpδ+β+ε, with initial value zero,
noting that the right hand side of the resulting equation is in Cpδ+β+ε

∞ (Ux1),
and one concludes using Proposition B.1.

Proof of Proposition B.4. — With the notation of the proposition, we set
bphg = b− bpδ+ε, cphg = c− cpδ+β+ε, ϕ̃phg = ϕ̃− ϕ̃pδ+β+ε. We use the Lemma
above to obtain a solution ϕphg of the problem

∂τϕ+ bphgϕ = cphg,(B.28)

ϕ Σ = ϕ̃ = xβ
p∑

i=0

Ni∑

j=0

xiδ lnj xϕ̃ij(x, v).(B.29)

Then we solve

∂τϕ
′ + bϕ′ = cpδ+β+ε − bpδ+εϕphg

with ϕ′
τ=0 = ϕ̃pδ+β+ε. We have ϕ′ ∈ Cpδ+β+ε

∞ (Ux1) according to Proposi-
tion B.1. To conclude we set ϕ = ϕphg + ϕ′ which is of the required form, and
solves (B.24a).
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B.4. Polyhomogeneous solutions of ∂xϕ + bϕ = c

Proposition B.6. — Let ϕ be a solution in C loc
∞ (Ux1) of

(B.30) ∂xϕ+
b

x
ϕ = c,

and suppose that (B.25) holds with some ε ∈]0, δ[, β ∈ R, and with some
integer-valued sequences (N ′

i), (N
′′
i ). If b = o(x) (equivalently, b0j(0, v, τ) = 0),

then

(B.31) ϕ =

p∑

i=0

Mi∑

j=0

xiδ lnj xϕ̂ij + xβ+1

p∑

i=0

Mi∑

j=0

xiδ lnj xϕij + ϕpδ+1+β+ε,

with ϕ̂ij , ϕij ∈ C∞(Ux1) and ϕpδ+1+β+ε ∈ Cpδ+1+β+ε
∞ (Ux1), for some integer

sequence (Mi).

Proof. — Proposition B.3 shows that for β > −1 the limit

ϕ0(.) := lim
x→0

ϕ(x, .)

exists and is a smooth function on O×[0, T ]. When b is a multiple of the identity
matrix the result is obtained by a straightforward analysis of the formula

(B.32) ϕ(x, .) = ϕ0(.)e
−

R x
0
b(s,.)ds +

∫ x

0

e
R y

x
b(s,.)dsc(y, .)dy,

using the estimates of Lemma B.2. For β < −1, and again for b – a multiple
of the identity matrix – we use instead

(B.33) ϕ(x, .) = ϕ
(

1
2x1, .

)
e
−

R x
x1/2

b(s,.)ds
+

∫ x

1
2x1

e
R y

x
b(s,.)dsc(y, .)dy.

In the general case, we first note that it follows from Proposition B.3 that there
exists λ ∈ R such that ψ ∈ Cλ∞. We then write

(B.34) ∂xψ − c = − b

x
ψ ∈ Cλ+δ−1

∞ ;

integrating gives ψ−
∫ x
0
c ∈ Cλ+δ

∞ . Inserting this equation in the right-hand-side
of (B.34) and integrating again one obtains a similar equation with a remainder
term falling-off one power of δ faster. The result is proved by repeating this
procedure a finite number of times.

BIBLIOGRAPHY
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