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ABSTRACT. — We study the “hyperboloidal Cauchy problem” for linear and semi-
linear wave equations on Minkowski space-time, with initial data in weighted Sobolev
spaces allowing singular behavior at the boundary, or with polyhomogeneous initial
data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which
includes scalar fields with a A¢P nonlinearity, as well as wave maps, with initial data
given on a hyperboloid; several of the results proved apply to general space-times ad-
mitting conformal completions at null infinity, as well to a large class of equations
with a similar non-linearity structure. We prove existence of solutions with controlled
asymptotic behavior, and asymptotic expansions for solutions when the initial data
have such expansions. In particular we prove that polyhomogeneous initial data (sat-
isfying compatibility conditions) lead to solutions which are polyhomogeneous at the
conformal boundary Zt of the Minkowski space-time.
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2 CHRUSCIEL (P.T.) & LENGARD (O.)

RESUME (Champs rayonnants). —  Nous étudions le « probléme de Cauchy hyper-
boloidal » pour des équations d’ondes linéaires et semi-linéaires sur I’espace-temps de
Minkowski, avec des données initiales, singuliéres au bord, dans des espaces de So-
bolev & poids, ou polyhomogenes. Plus précisement, nous considérons une classe de
systemes symétriques hyperboliques non-linéaires, compatibles avec I’équation d’onde
scalaire A\¢P, ainsi qu’avec des applications d’onde, avec données initiales prescrites
sur un hyperboloide. Plusieurs de nos résultats restent valables pour une classe gé-
nérale d’espace-temps avec complétions conformes a l’infini isotrope, ainsi que pour
une large classe d’équations avec une certaine structure des termes non-linéaires. Nous
démontrons 'existence de solutions avec comportement asymptotique controlé, ainsi
que des développements asymptotiques si les données initiales en possédent. En parti-
culier nous démontrons, sous une condition de compatibilité, que les données initiales
polyhomogeénes conduisent & des solutions polyhomogenes prés du bord conforme Z1
de ’espace-temps de Minkowski.
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1. Introduction

Bondi et al. [6] together with Sachs [34] and Penrose [33], building upon
the pioneering work of Trautman [36,37], have proposed in the sixties a set
of boundary conditions appropriate for the gravitational field in the radiation
regime. A somewhat simplified way of introducing the Bondi-Penrose (BP)
conditions is to assume existence of “asymptotically Minkowskian coordinates”
(z*) = (t,z,y, z) in which the space-time metric g takes the form

hlp,ll (t—r,@,(p) + }fwj (t—T‘,97QP)

r r2

(1.1) Qv — N = +--

where 7, is the Minkowski metric diag(—1,1, 1, 1), u stands for t—r, with r, 6, ¢
being the standard spherical coordinates on R3. The expansion above has to
hold at, say, fixed u, with r tending to infinity. Existence of classes of solutions
of the vacuum Einstein equations satisfying the asymptotic conditions (1.1)
follows from the work in [20] together with [3,4,18,19]. As of today it remains
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RADIATION FIELDS 3

an open problem how general, within the class of radiating solutions of vacuum
Einstein equations, are those solutions which display the behavior (1.1). Indeed,
the results in [1-4,17], [17] suggest strongly(!) that a more appropriate setup
for such gravitational fields is that of polyhomogeneous asymptotic expansions:

(1'2) Guv — Nuv € Aphg-

In the context of expansions in terms of a radial coordinate r tending to infinity,
the space of polyhomogeneous functions is defined as the set of smooth functions
which have an asymptotic expansion of the form

oo N; lj
(13) IEDIPP AL

i=0 j=0

for some sequences n;, N;, with n; / oco. Here the symbol ~ stands for
“being asymptotic to”: if the right-hand-side is truncated at some finite i, the
remainder term falls off appropriately faster. Further, the functions f;; are
supposed to be smooth, and the asymptotic expansions should be preserved
under differentiation.()

The suggestion, that the expansions (1.2) are better suited for describing the
gravitational field in the radiation regime than (1.1), arises from the fact that
generic — in a well defined sense — initial data constructed in [1-4,17], are poly-
homogeneous. This leads naturally to the question, whether polyhomogeneity
of initial data is preserved under evolution dictated by wave equations.

In this paper we answer in the affirmative this question for semi-linear wave
equations, and for the wave map equation, on Minkowski space-time. We de-
velop a functional framework appropriate for the analysis of such questions.
We prove local in time existence of solutions for classes of equations that in-
clude the semi-linear wave equations and the wave map equation on Minkowski
space-time, with conormal and with polyhomogeneous initial data. We show
that polyhomogeneity is preserved under evolution when appropriate (neces-
sary) corner conditions are satisfied by the initial data. We note that the initial
data considered here are more singular than allowed in the existing related re-
sults [7,28,31]. We are planning to analyse the corresponding problems for the
vacuum Einstein equation in a forthcoming publication, see also [30].

(1) Of. [29] and references therein for some further related results.

(2) The choice of the sequences n;, N; is not arbitrary, and is dictated by the equations at
hand. For example, the analysis of 3 4+ 1 dimensional Einstein equations in [17] suggests that
consistent expansions can be obtained with n; = ¢. On the other hand, Theorem 5.7 below
gives actually n; = %7, for wave-maps on 2 + 1 dimensional Minkowski space-time. We note
that the 2 4+ 1 dimensional wave map equation is related to the vacuum Einstein equations

with cylindrical symmetry (cf., e.g., [5,14,15]).
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4 CHRUSCIEL (P.T.) & LENGARD (O.)

Our main results are the existence and polyhomogeneity of solutions with
appropriate polyhomogeneous initial data for the nonlinear scalar wave equa-
tion, and for the wave map equation. We achieve this in a few steps. First,
we prove local existence of solutions of these equations in weighted Sobolev
spaces, ¢f. Theorems 4.1 and 5.1. The next step is to obtain estimates on the
time derivatives, ¢f. Theorems 4.4, 5.4 and 5.6. Those estimates are uniform
in time in a neighborhood of the initial data surface if the initial data satisfy
compatibility conditions. Somewhat surprisingly, we show that all initial data
in weighted Sobolev spaces, not necessarily satisfying the compatibility con-
ditions, evolve in such a way that the compatibility conditions will hold on
all later time slices; see Corollary 4.5 and Theorems 5.4 and 5.6. Finally, in
Theorems 4.10 and 5.7 we prove polyhomogeneity of the solutions with poly-
homogeneous initial data; this requires a hierarchy of compatibility conditions.
We hope to be able to show in a near future that polyhomogeneity of solutions
can be established, for polyhomogeneous initial data, with a finite number of
compatibility conditions.

The restriction to Minkowski space-time in Theorem 5.7 is not necessary,
and is only made for simplicity of presentation of the results; the same remark
applies to Theorem 4.1. Similarly the choice of the initial data hypersurface as
the standard unit hyperboloid is not necessary.

This work is organised as follows: First, the reader is referred to Appendix A
for definitions, notations, and the functional spaces involved; we also develop
calculus in those spaces there. In Section 2 we briefly recall Penrose’s confor-
mal completions, as they provide the link between the asymptotic behavior of
fields and the local analysis carried on in this work. In Section 3 we consider
linear equations. There the key elements of our analysis are: a) Proposition 3.1
and its variations, which give a priori estimates in weighted Sobolev spaces;
b) the mechanism for proving polyhomogeneity, provided in the proof of The-
orem 3.4. The transition from the linear weighted Sobolev estimates to their
nonlinear counterparts is done in Sections 4 and 5. This has already been out-
lined above, and requires a considerable amount of work. In Appendix B we
prove several auxiliary results on ODE’s; some of which are fairly straightfor-
ward; as those results are used in the body of the paper in various, sometimes
involved, iterative arguments, it seemed convenient to have precise statements
at hand.

Some of the results proved here have been announced in [16].

2. Conformal completions

The aim of this section is to set-up the framework necessary for our consider-
ations; the results here are well known to relativists, but perhaps less so to the
PDE community. In any case they are needed to establish notation. Consider,
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RADIATION FIELDS 5

thus, an n + 1 dimensional space-time (M, g) and let
(2.1) g = 0%.

Let O, denote the wave operator associated with a Lorentzian metric h,

1
Onf = —————=09,(1/|det hap| B** D, f).
nf [det 0] u( | det hag| f)

We recall that the scalar curvature R = R(g) of g is related to the corresponding
scalar curvature R = R(g) of g by the formula

~ 1 n—3|VQZ
2 _ _ - g
(2.2) RO*=R Zn{QDgQ+—2 = }
It then follows from (2.2) that we have the identity
—(n— —(n n—1,~
(23) O (Q-(=D/2f) = - (n48)/2 (Dg f+ (RO - R)f).

It has been observed by Penrose [33] that the Minkowski space-time (M, n)
can be conformally completed to a space-time with boundary (M, 7), 77 = Q%
on M, by adding to M two null hypersurfaces, usually denoted by Z+ and 7,
which can be thought of as end points (Z1) and initial points (Z~) of inex-
tendible null geodesics [32,33,38]. We will only be interested in “the future null
infinity” Z7; an explicit construction (of a subset of Z%) which is convenient
for our purposes proceeds as follows: for ()% < 3°.(2%)? we define

M

(2.4) Yt =

¥,

In the coordinate system {y*} the Minkowski metric n = —(dz")? + (dz')? +
(dz?)? 4 (da3)? = nap dz®da? takes the form

1
(2.5) n= gp s dy*dy®, Q=n.sy“y”.

We note that under (2.4) the exterior of the light cone C" = {nasz*z” = 0}
emanating from the origin of the x*-coordinates is mapped to the exterior of
the light cone Cg“ = {Napy®y® = 0} emanating from the origin of the y*-
coordinates. The conformal completion is obtained by adding CJ " to M,

M =Mu (C¥\{0}),

with the obvious differential structure arising from the coordinate system y*.
We shall use: )

e the symbol T to denote CY" \ {0}, and

e 7T to denote Cg“ \ {0} N {y° > 0}.

As already mentioned, Z so defined is actually a subset of the usual Z, but
this will be irrelevant for our purposes.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 CHRUSCIEL (P.T.) & LENGARD (O.)

We note that (2.4) is singular at the light cone C§". This is again irrelevant
from our point of view because we are only interested in the behavior of the
solutions near ZT, and finite speed of propagation allows us, for that purpose,
to disregard what happens near Cg“.

The above procedure can be adapted for several metrics of interest, such
as the Schwarzschild, Kerr, or Robinson-Trautman metrics, to similarly yield
conformal completions of space-time by the addition of null hypersurfaces Z.
This observation was at the origin of Penrose’s proposal to describe systems
which are asymptotically flat in lightlike directions through the use of conformal
completions.

It is noteworthy that the conformal technique allows one to reduce global-
in-time existence problems to local ones; this has been exploited by various
authors [8-13] for wave equations on a fixed background space-time. Further,
Friedrich [22,23,26] has used this approach to obtain a global existence re-
sult for Einstein equations to the future of a “hyperboloidal” Cauchy surface,
with “small” smoothly conformally compactifiable initial data, cf. also [21,24],
and [25].

On a more modest level, the identity (2.3) can be used as a starting point
for the analysis of the asymptotic behavior of solutions of the scalar wave
equation near ZT, as it reduces the problem to a study of solutions near a null
hypersurface. This is the approach used in this paper. There are associated
identities for fields of any spin [33], which provide a convenient framework for
similar questions for those fields.

3. A class of linear symmetric hyperbolic systems

In this section we define a class of linear symmetric hyperbolic first order
systems on a set of the form M, x I, where M,, is defined at the beginning
of Appendix A, and where I is an interval corresponding to the time variable,
which will be denoted by 7, and we derive our key energy inequality in weighted
Sobolev spaces. (We note that in some of our further applications the vector
0/t will be lightlike, and not timelike as is usually the case. It should be
pointed out that in our conventions the time variable is the last coordinate,
allowing x to be the first variable, consistently with the conventions of the
preceding sections.)

We start by introducing some notation for the sets within the “space-time”
My, x I, which will be relevant in what follows:

(3.1a) t>0, 2(x2+1t) <z1 <o, Lgpmt = {’7’ =t, o<z <T1— 2t},
(3.1b) T >0, 2(xz2+T) <z1 <20, Qopor,7 = Uperer Zas,zi,7

(3.1c) 0<2t<x; <o, Zzht:{rzt,0<x<x1—2t},

(3.1d) 0<2T <z1, Qa7 =Ugcrer Dt
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RADIATION FIELDS 7

There® is a natural identification between Yozt and My, o, —2¢, as defined at
the beginning of Appendix A, similarly between X, ; and My, —o, and we shall
freely make use of such identifications throughout. We shall write || f(t)[[# for
1 f1S0p.0r 12 20y oy 000 OF fOr | s, 222 (s,, o), ete.; the distinction should be
clear from the context.

We shall be interested in symmetric hyperbolic first order systems which in
local coordinates take the form

(3.2) [A“(Zu)au + A(z)]f = F,
where 2¥ = (y¢,7), with the following properties:

C1) f and F are sections of a bundle which is a direct sum of two N7 and Ny
dimensional Riemannian bundles; we will write

= () #=(3)

In local coordinates ¢ and a are thus R™* valued, while ¢ and b are R™? valued.
The respective scalar products will be denoted by (.,.), and (.,.),. We shall
use the generic symbol V to denote(®) a covariant derivative compatible with
those scalar products, e.g., if X is a vector field on {2, 7, then

(34) X(<¢7 1p>1) = <VX¢7 d}>1 + <¢7 va>17

similarly for (.,.),. The derivative V will also be assumed to be compatible
with every other structure at hand whenever useful in the context, e.g. a
Riemannian metric on M, etc.

C2) The left hand side of (3.2) can be written as
BNV, +LY Bi1 B2\ (¢
3.5 g ;
(3:5) < —Ltp —l—EiVM/J) + (321 322)(1/))

(3)The motivation for the factors of 2, and the general form of the sets considered, arises as

follows: The set OM x I should be thought of as a smooth null hypersurface in space-time;

e.g., in Minkowski space-time with Minkowskian coordinates y*, it can be the intersection

of the half-space {y° > %} with the light cone emanating from the origin y* = 0. Then 7
1

is the Minkowski time, perhaps shifted by a constant, say 7 = y° — 5. The coordinate z is

a coordinate which vanishes on OM x I, in the current example e.g., = = /> (y%)2 — y°
Finally, in such a Minkowskian setup, the hypersurfaces x = x; — 27, which determine one of
the boundaries of the ¥’s and Q’s defined in (3.1), correspond to the converging light cones
Y 4+ /> (y?)2 = Const. The restrictions 2(x2 +t) < 21 < zg (in the definition of g, 2, ,¢)
and 2(z2 + T) < z1 (in the definition of Qg, 5, 7) are not necessary, and are only made
for simplicity of discussion.

) In some situations (3.4) might fail to hold, and some undifferentiated supplementary
terms will occur at the right-hand-side of (3.4). We note that our results will not be affected
by the occurrence of such terms, provided those terms satisfy bounds as in (3.17).
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8 CHRUSCIEL (P.T.) & LENGARD (O.)

where L is a first order differential operator. Here LT denotes the formal adjoint
of L, in the sense that if Q = M, or My, or My, ,,, and if ¢, 9 are in C; (),
then

(3.6) /Q (s L), dps = /Q (Lo, 0)dp,

where dyu is a measure on M which will, we hope, be obvious from the context.
By density Equation (3.6) will still hold with Q = M,, ., for all o, 8 € R, all
w € HY(My, 5,) and all ¢ € 'Hf(Mm,wl), at least for ;1 > 0. Equation (3.6)
forces L not to contain any 7- or x-derivatives, where the letter x denotes a
coordinate as defined in Section A, thus

(3.7) L= (*x,0,7)0a + L(z,v, 7).

It follows that the principal part of the system (3.5) is of the form
E"9, 140

(3.8) Ao, gia )
(£%) 0 EL 0,

where A? denotes the transpose of a matrix A. Equation (3.8) explicitly shows
that (3.5) is symmetric hyperbolic when the E’s are symmetric with ET
positive definite; the notions of “symmetric hyperbolic” and “symmetrizable
hyperbolic” are identified throughout this work.

The hypotheses above will be assumed throughout this section.

3.1. Estimates on the space derivatives of the solutions, a < —1/2

Let us pass now to the description of the hypotheses needed to derive
weighted energy estimates for space derivatives of f. To obtain such estimates,
we shall require the existence of a constant C7 such that the (matrix-valued)
coefficients £4 and ¢ satisfy, in the relevant range of 7’s,

(3.9) 1 lgoar,, ooy + XA: 14 | goga,, .y < C-
Similarly writing

(3.10) LT = 0z, 0, 7)04 + (1 (z,0,7),

we require

(3.11) 16 gpear,, oy + XA: 14 oo, oy < Cr

C3) The matrices EY are symmetric and satisfy
(3.12) Efn, >eld, EY0,x<—eld, |E"d,z|< Chz,

for some € > 0. Here n,, denotes the field of future directed (i.e., b(dr,n) > 0)
b-unit normals to the surfaces {7 = Const}, where b is an auxiliary Riemannian
metric k on M. (Later on we will mainly be interested in the case of E''s
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RADIATION FIELDS 9

of the form EY = e/ ® Id, for some vector fields e;.) For simplicity we shall
also assume

(3.13) 81E; = 0;

this is by no means necessary, but is sufficient for the purposes of this paper.
We will further assume® that the E*’s satisfy a bound of the form:

(3.14) | B4 HIEZOlgr sy, oy

+||v,.E"

(T) Hgg(Mh*%)

(T)HLOO(M11727) S Cl-

As far as the E!’s are concerned, we allow singular behavior which should,
however, be somewhat less singular than 1/x; to control that, we require ex-
istence of a function ¢ : Rt — RT, satisfying lim, .o ((z) = 0, such that
for 0 < z < 21 — 27 we have

(3.15) HEf(T)Hg;l(Mm) + HEi(T)Hgg(Mz) + HxvﬂEi(T)HLw(Mz) < ((2).
When the operators E{ V,, are written out explicitly as

(3.16) EYV, =FEY0, + By,

we require that for 0 < x < 27 — 27,

(3.17) 1B-Mlgoaes, oy C1 1B+Mlgo1ar,) < <)

C4) The matrices Bgp, where a,b = 1,2, satisfy the bounds

||Bl2(7—)Hg,:1/2(le_2T) + ||B?1(T)Hg,:1/2(Mml_27—)
(3.18) +BuMllgoar,, oy < s
||322(7—)HQ;I(ML) S C(x)7

this last equation holding again for 0 < = < 7 — 27.

Our final hypothesis concerns the “acausal” nature of the boundary
of Qz2,z1,T:

C5) 004, 0,7 is “non-timelike”, in the sense that for any covector n,,
which is positive on outwards-pointing vectors and vanishes on vectors tan-
gent to 00y, 4, we have, on 9y, 4.7 N {7 > 0},

(3.19) Eln, > 0.

(We note that (3.12) already guarantees that (3.19) holds on 9Qy, 4,7 N
{r=Torx=0}.)

(5) We use a convention in which the covariant derivatives V,EY include terms associated
with the vector density character of X*# defined by (3.21); in particular this should be taken
into account when verifying that the estimates (3.14)—(3.15) hold.
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10 CHRUSCIEL (P.T.) & LENGARD (O.)

The essential point of the above hypotheses is that the boundary {z = 0}
is characteristic for Equation (3.2), with the dimension of the relevant kernel
being constant over the boundary.(®) Weighted estimates, in the spirit of Propo-
sition 3.1 below, near such characteristic boundaries hold for general symmetric
hyperbolic systems, this will be discussed elsewhere.

Weighted energy inequalities in H{ spaces with arbitrary values of & may
be proved under various hypotheses on the coefficients which appear in (3.2).
We note one such result for systems satisfying C1-C5, which lies in line with
our remaining investigations. The restriction o < —% seems to be inherent to
the problem at hand. We consider first the case a < —%; the case a = —% is
handled by the same methods, under somewhat more restrictive conditions on

the coefficients, in Section 3.2.

PROPOSITION 3.1. — Suppose that a < —%, k> %n—i— 1, k € N, and set either
e f(t)= fIZml,u 0<x <z, 0<t <tpax = %ml, or
e f(t)= f|zm2w1¢, 0<2rs <1 <20, 0 <t <itpmax =21 — 275
Under the hypotheses C1-Cb, there exists a constant Cy depending upon x1,
Ci, n, N, k and «a, as well as upon the “error function” ( and the boundary
manifold OM , such that for all f satisfying (3.2) for which f(0) € Hi°® and for
all 0 < t < tmax we have

(320073 ar,, oy < Coe L TO g,

¢ s 2 2
[ ol g, oy 1866 g v, )l

with an identical estimate with M, _. replaced by My, 5, —«.

REMARK. — The condition k& > %n—i—l is needed to obtain C-weighted control
of the solution; there are no restrictions on k if we have at our disposal an
a priori C7 weighted bound for f, and if the coefficients in the equation are
suitably regular. In such a case, for k < in + 1, the inequality (3.20) should
be modified by adding a term ||f(s)||%?(Mm1728) under the integral appearing

in (3.20).

Proof. — We start by proving (3.20) on sets My, »,—+; in that case we are
mainly interested to obtain uniform control for small values of zo, with even-
tually zo tending to zero; without the uniformity in x5 the estimate would of
course be standard. Keeping this in mind, let X* be the “energy-momentum
vector density”,

(321)  Xr= > a2 ' TALD EADP) + (DM, YD), ).
0<|B|<k

(6) We are grateful to H. Friedrich for useful discussions concerning this point.
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Suppose, first, that f(0) € H};jfl; standard results [35, vol. III] show that f(t)

is an element of H };ﬁfl, and we then have®

(3.22) VX" =Ni+ D1+ Dy+ E1 + Ey + Es,
where
Ny = Y (261 —2a— 1)z > 220Dy (B 0,2)D ),
0<|BI<k
D=2 Y w I (D £, D0,
0<|BI<k
Dy = 2 Z p20- 1426 <'Dﬁw7EiVMDB¢>27
(3.23) 0<|8I<k o
Bi= Y @b - 20— atoten(poy B0 pas)
0<|BI<k ‘
E, = Z p—2a—1428 <'Dﬁg0, (VNEE)'DﬁsD%,
0<IB|<k
By = Y a2 DAy (V,EY)Dy),.
0<|BI<k
Since 2ac+ 1 < 0, from (3.12) one finds that
(3.24) / Nidedy < —[2a -+ 1fe - [$]2,01/2
= k

To,T],5

which is strictly negative except if 1 is identically zero, and can be used to
control some of the error terms which occur at the right hand side of (3.22).
(Here we have used the form (A.4) of ||1p||§_(a+1/2.) For example, to control Fs
we take any z3 satisfying 2zo < x5 < z7 = 2s (we will make a more precise
choice of x3 later), and we write

(325) / Egdxdl/ = E371 + E372,
z

T2,T,s

E371£/ Esdzdy, Eg,QE/ FEsdxdy.
b)) b))

r,xq,8 m{waS} To,T1,s m{ISIS}

By (3.15), E52 can be estimated as follows:

—oa— 20+ 1)e
PYESS (a2 piyazdy < LEE D e

Ogﬁgk 212,11 ,sﬁ{wﬁw?,}

if x3 is chosen small enough. Once this choice has been done, we can clearly
estimate Fs3 1 as

E3q1 < C||¢||$1g,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 CHRUSCIEL (P.T.) & LENGARD (O.)

with some constant which is determined by z3. The integrals of the error
terms F4 and Eo are estimated in the obvious way, cf. (3.12) and (3.14):

/ (E1+ By)dadv < C|jg(s)| 5,0
. k

To control the terms D; and Ds we use the evolution equations (3.5):
(3.26) E"V,DPp = D*(E"V )+ [E*V,, D"y
= —D*(Lip + Biip + Bty — a) + [E*'V,,, D7)y
= — LDy +D’a+ EY,
E} = —[D%, Ly + [E“ V., D)o — D’ (Biip + Bisd)),
(3.27) E*V,D% = L'DPp + Db + Ef,
E = [D°, LYp + [E4V,,, D°Jp — DP(Barp + Baot)).

Integrating Dq + Dy over ¥, 4, s, one finds that the terms containing LD
and —LTDP¢ in (3.26) and (3.27) cancel out; the terms containing D?a and Db
are estimated as (here the somewhat arbitrarily chosen factor 10 can be replaced
by any other larger number if desired)

2 Z / g2 20 ((DP o DPa), + (DPep, DPb),) dwdr
0<|B|<k  Hezwers
(2a+1)e

< Il + llalyg + ===

10
”’@[JH?_‘;:JA/? + (

———|1b]|%ar e
2(1—}—1)5” ||Hk 1z

The terms containing the commutators [D?, L]y and [DP, Lt]p, can be es-
timated(”) using the weighted commutator inequality (A.35), while the By,
B, etc., terms can be estimated using (A.34), by an expression of the form
(2a+1)e
N e ).

To estimate the commutator terms arising from EY, we calculate, e.g.

(3.28) Ccl(llwllig +lloliFee +

2B 0, 08 x = Z (Ii)xi(aiEi)xk_iaf_iaux = E¢ + Er,
i=1
k ‘
Es= Y ( ;)xi(a;Ei)xk—iaf—ia“X.

i=1, pAz

(") This step requires weighted L% control of ¢ and 1, and weighted W1:°° control of the
coefficients in the equation. The hypothesis k > %n—i— 1 is not needed if such a priori bounds
are known.
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RADIATION FIELDS 13

The terms arising from Eg are estimated in a straightforward way as in (3.28)
using (A.36). The dangerous term E7 can be written as

k .
B =Y (, )a' (@Bt 05y

=1
ko
= Z (;)xifl(8;*18$Ei)xkfi+1a§7i+lxj
=1

and can thus again be estimated as in (3.28) provided that 0, E* € ggfl, that

9,E% € G;''|, and that (3.15) holds. Other terms in the E commutators are
handled in a similar way. Summarising, we have derived

‘/ v, X d"
212,11,3
< CO1([la(s)[Fe + ||b(8)|\31271/2 F 9 (9) e + No(9) g )

where d"pu stands for dzdvy, or for any measure uniformly equivalent to dzdwv.
Stokes theorem,

/ VvV, Xtd"pdr = / Xrds,,
sz,ml,t 69m1,12,t

and our hypotheses on the geometry of the problem lead to

1703 < C(1F O3 + / (la(s) gz + 1B(5) 2 a-v/z + 1 £() ) ds)-

Gronwall’s lemma establishes (3.20) on the family of hypersurfaces X, 5, ¢
for f(t) € H)°c. If f(t) € H)°°, we approximate f(0) by a sequence of func-
tions f,,(0), with f,(0) € H,°¢ converging to f(0) in H(Ee,.2,,t), and we
solve Equation (3.2) with initial data f,(0). The inequality (3.20) applied to
the functions f,(t) — fm(t) shows that f,(¢) is Cauchy in HY; passing to the
limit n — oo the desired result for f’s such that f(0) € HY(Xs,,0,,¢) casily
follows.

Since all the constants above are xo independent, an elementary argument
using the monotone convergence theorem shows that (3.20) for the ¥, +’s fol-

lows from the one for the X, », +’s by passing to the limit x5 — 0. O
3.2. Estimates on the space derivatives of the solutions, a = —1/2
When a = —% we do not have the 1 = 0 negative terms in N; at our

disposal in Equation (3.23), so that we cannot allow coefficients as singular as
in the previous section. To handle that case we keep all the structure and reg-
ularity conditions already made, with the following supplementary restrictions:
Equation (3.15) is replaced by

3290 1B ggan, + 1B Ollgyany + 9B iy, < o

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



14 CHRUSCIEL (P.T.) & LENGARD (O.)

Instead of (3.17) we require that

(3.30) 1B+l gpar,, oy <1
while condition (3.18) becomes
(3.31) 1Bao(lgoar,, oy < Cr-

We then obtain:
PROPOSITION 3.2. — Suppose that k > %n + 1, k € N, and set either
o f(t)=flz,, . 0 <z <o, 0 <t <tmax = 321, OF
e f(t)= fIEle,u 0<2x9 <21 <2, 0<t <tmax =21 — 222
Under the hypotheses C1-C5 together with (3.29)-(3.31) there exists a con-

stant Co depending upon x1, C1, n, N, k and the boundary manifold OM , such
that for all f satisfying f(0) € H}°® and for all 0 < t < tyax we have

2
(3:32) £l 1v2ar, oy < Coe®™ {H FO 22,

t
Co(t—s) 2 2
[ )y, + I, )5}

with an identical estimate with My, _. replaced by My, 7\ —x.

Proof. — The proof is essentially identical, but simpler, to that of Proposi-
tion 3.1. We simply note that the key inequality (3.29) is replaced by

(3.33) } v, XHd"

ng,zl,s

< CCr(las)I, s
) o+ 162, 1rs + Ie($)]2, 1) O

3.3. Estimates on the time derivatives of the solutions. — The hy-
potheses assumed in the previous section ensure that we can algebraically solve
Equation (3.2) for 0, f, and then recursively obtain formulae for 82 f. Under
the hypotheses of Proposition 3.1, it is then straightforward to obtain estimates
on the norms

(@) )y (5, 5y OSi<H,

provided suitable weighted conditions are imposed on the 7 derivatives of the
coefficients of Equation (3.2). However, we would like to obtain derivative
estimates without the z factors, uniformly in 7. Clearly a necessary condition
for the existence of such estimates is that

(3.34) ||(aif)(0)||Hz_i(Eﬂ) <oo, 0<i<k.

It turns out that (3.34) does not need to hold for arbitrary initial data
f(0) € HY, and the requirement that it does lead to the j-th order compati-
bility conditions: by definition, these are the conditions on f(0) which ensure
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RADIATION FIELDS 15

that Equation (3.34) holds for 0 < ¢ < j. Since, for sufficiently differentiable
solutions of Equation (3.2), all the derivatives 92 f(0) can be explicitly written
as an i-th order differential operator acting on f(0), the compatibility condi-
tions are conditions on the behavior of the initial data f(0) near the “corner”
x = 0; we shall therefore sometimes refer to them as corner conditions. We
note that there can be corner conditions in weighted Sobolev spaces, or in
weighted Holder spaces; in this section we will be mainly interested in the
latter, defined by Equation (3.39) below.

The following example is instructive in this context: For 0 <t < y let g be
a solution of the 1 4+ 1 dimensional wave equation

(3.35) (5—; - aa—;)g —0,

with initial condition

=20y +L, =2(a+ 1)y%,

dg
g [t=0 ot | t=0

for some constants C, a € R. From Equation (3.35) we can obtain a system of
the form (3.5) by introducing 7 =t¢, x =y — t, ¢ = (g, (0 — 20:)9), ¥ = O-g,
and setting L = 0, E* 9, = 0, ®id, E!0, = (0; — 20,), so that we have

(5, Hagg) = (1)~ (0). @00

The solution is

9= C+Dy+1)*+(C-1)(y—t)**!
= (C+1)@2r +2)* +(C - 1)zt

It follows that for each 0 < 7 < 1, k € N, and 8 < min{0,« + 1}, we have
g(7,.) € Hf ((0,10]), consistently with Proposition 3.1. Somewhat surprisingly,
for 7 > 0 and for all i € N the functions 9¢g(r,.) are smooth in z up to z = 0.
However, the L> bound for dig(r,.) blowsup as 7 tends to zero except in
the case

(3.36) C=-1

Condition (3.36) is precisely the corner condition needed for 9;¢(0,.) to be
better behaved than 0,¢(0,.) at # = 0. In the example under consideration the
fulfillment of the first order corner condition guarantees already that all the 7
derivatives of g will be well behaved, but we do not expect this to be true
in general.

Let us pass to a derivation of the desired estimates. We shall use a method
which works directly in weighted Holder spaces, avoiding the use of weighted
Sobolev spaces; the price one pays is the need to consider systems somewhat less
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16 CHRUSCIEL (P.T.) & LENGARD (O.)

general than (3.5), but still general enough for our purposes. More precisely,
in this section we restrict our attention to systems of the form

(3.37a) Or¢p + By + B2ty = Lup + Li2y +a,
(3.37b) e + Ba1p + Baop = Loy + Looth + b,
with

ert) = (0r — 20:)0.
We assume that the Ly’s (where a, b = 1, 2) are first order differential operators
of the form

(3.38) Lab = Ly0a + wL30- + 2L%,0,,

with bounded coefficients L' : no symmetry hypotheses are made. Clearly the
intersection of systems of equations satisfying (3.37) with those of the form (3.5)
is non-empty. (As we will see in Sections 4 and 5 below, non-linear wave
equations on Minkowski space-time can be written in the form (3.37).) In
particular Proposition 3.1 provides a large class of solutions of (3.37) such that
for ¢ < k — %n,

(. )(1) € Hy (M, —2r) C C'(Mazy—27).

We shall therefore assume that a solution f = (p,) satisfying f(7) €
C3* (Mg, —2-) is given, and study its 7-differentiability properties. For the pur-
poses of the proof below it is convenient to introduce auxiliary spaces Cﬁp(Q)
defined, for p < ¢, as the space of functions f in Cp(€2) such that the norm

[ £lleg, (@) = sup > 2 |(20,) (20-) DO f|

0<itj+ht|y|<e
0<k<p
is finite. Obviously, 7}, = C*. Similarly one defines CZ‘;E () using the norm
76 e i .
11l = sup > (U Ima)) e [(2,) (20,) DYOE £|.

0<i+jt+k+|v|<e

0<k<p
Clearly C, () = C;17(Q). We shall write C;” for Cfj/”.
PROPOSITION 3.3. — Let a < 0, ¢ € N, write Q for Qq, v (with Qu, 7 as

in (3.1d)), and suppose that L",, By € CY(Q), a € C& ,(Q), b € C2 Q).
Consider f = (¢,1), a solution of (3.37) satisfying

Vr e [0,T], f(r)e€CF( My, —2r).

Then:
1) For all € > 0 we have

(o, ) € CFZ/BQJ (Qn{z+27 >€}).
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RADIATION FIELDS 17

This implies, for any T > 0 the compatibility conditions of order p = L%éj (the
integer part of 3{) are satisfied by (o(7),1(7)):

(3.39) Vi, 1<i<p, Oip(r),di(r) € Cl(My,),

Here 8 = L%ﬂj if a =0, and B = 0 otherwise.

2) If there exists 1 < p < %Z, p € N, such that Equation (3.39) holds with
B =0 atT=0, then
(3.40) (p.9) € Ci23, () C CP(9),

{—plp
with 8 =p if a =0, and B = 0 otherwise.

REMARK. — The method of proof here gives a number of well-controlled time
derivatives smaller by a factor 2 than the number of space ones. This is, how-
ever, irrelevant, when ¢ = oo, which is the main point of interest in this work.
We note that energy estimates as in the proof of Theorem 4.4 below provide an
alternative, more complicated way of establishing a stronger statement, with
more controlled time derivatives for large £’s. In the linear case considered
here the function F' occurring there vanishes, so that all the complications aris-
ing from the non-linearities disappear, and somewhat stronger results can be
obtained using the methods there.

Proof. — By rearranging terms and redefining the Lg;’s, the Bgy’s, and the
source functions a and b we may without loss of generality assume that

L7, =0.
One can rewrite Equations (3.37) as x0;(p,%) = a partial differential oper-
ator linear in zd, and 0,; by iteration this immediately yields (¢,v) € Cé’io.
Equation (3.37a) shows then that 0;¢ € Cj" |y, hence ¢ € Cjj;. On the other
hand, Equation (3.37b) gives 4 () € Cf* ; + €77, hence dre (1) € C ).
Integrating Equation (3.37b) one finds
T+%w

(3.41)  p(z, v, 7) = Y(x + 27, 04,0) + / e+ (¥)(2v, v T — v+ 1z)dv.

1
2$

(We note that for each € > 0 the first term above is uniformly Cy on the set
QNn{z+27 > e} N{x < x}.) Differentiating Equation (3.41) one obtains

‘r+%w
O-(x, v, 1) = Optp(z + 27, 04,0) + / Oreq (1/))(211, v T — v+ %x) dv;

1
5T

since a < 0 and Oreq(¢h) € Cgfglmv straightforward estimations show that
0- € C?—QIO’ hence ¢ € Cé"_m if a # 0, while ¢ € Cgofm when o = 0.
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18 CHRUSCIEL (P.T.) & LENGARD (O.)

Let 8, = 0if a # 0 and 8, = r when o = 0, and suppose that ¢ € C?ﬁim

and ¢ € Cg;ﬁr | for some 1 <7 < (¢ — 1); we have already shown this to hold
for r = 1. Equation (3.37a) gives

drp € C?f.r}iur == ¢€ C?ﬁTrﬂ'

It then follows from Equation (3.37b) that
er(¥) € Clir . = O er(v) €C7
Differentiating r + 1 times Equation (3.41) with respect to 7 we obtain

Otz v, 1) = Oz + 27,07, 0)

T+%z
—|—/ ortle, () (21},1}‘4,7 —v+ %x) dw,

Lo
which gives 971y € C;_’g:,_mo, hence 9 € C;_’ﬁr " 1jr41» and the induction is
completed. O
3.4. Polyhomogeneous solutions. — We now wish to show that solutions

with polyhomogeneous initial data will be polyhomogeneous. Let Q. 7 be de-
fined by Equation (3.1d); we shall denote by A3 (Q, 1) the space of functions f
defined on €, 7 which can be written in the form
E N
Dol afiy + frsre,
i=0 =0

for some € > 0, some functions f;; € Cso(€Qs,,7), and some sequence (N;) of
non-negative integers. We also require that fisi. € CE+¢(Qy, 7). We set

Al = ﬂ Al
keN
The following properties are useful in what follows:

e If0 < w1 < w9 — %T, then a function f € Co(Qg,7) is in Ai(Qon) if
and only if for any coordinate patch O of M we have f € A (U,,), where

Uz, =10,21[x O % [0,T], and if f € Coo(hint), where Qing = Qup v N {z > 21}
e For all € > 0 we have C2 P+ C xﬁAg; in particular C5, C AJ;
o It does not hold that A C C%, however, for all € > 0 we have AJ C C3F.

More precisely, if f € A, then there exists p € N such that (1 + |Inz|?)~P/2f
belongs to C..

o As before we assume that 1/6 € N, which implies z.49 C Azﬂ/é C AL,
o AS is stable under multiplication: if f,g € A9, then fg € Aj.
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o A? is stable under differentiation with respect to 7 and to v, as well as
under xd,: if f € A2, then 0, f, X; - f (i > 2), 20, f € A2, with the vector
fields X; defined in Appendix A, ¢f. Equation (A.7).

In this section we will consider systems of the form

(3.42a) 0-¢ + Bi1e + Biot = Li1o + Li2y) + a,
(3.42Db) 02 + Ba1p + Baap = Loy + Lagy) + b,
with the L;;’s, i, = 1,2 of the form

(3.43) Lij = L{04 + L7;0- + xL};0,
(3.44) LYyeax® Al | and LY, LY, L, € A

No symmetry hypotheses are made on the matrices LZ Conditions (3.42a)—
(3.44) are easily seen to be compatible with those made elsewhere in this paper,
cf., e.g., the proof of Corollary 3.5 below. The reader is warned, however, that
the operators L;; here do not coincide with those in (3.37): to bring (3.37) into
the form (3.42) one needs to multiply Equation (3.37b) by —3, transfer the
operator J, from the left- to the right-hand-side of (3.37), and appropriately
redefine the Ly;’s.

We start with the following result, which assumes that the solutions have
both space and time derivatives controlled, in the sense of weighted Sobolev
spaces; recall that this hypothesis can be justified for equations satisfying more-
over the hypotheses of the previous sections:

THEOREM 3.4. — Let 5,0 € R, k € NU {oo}, and let (¢,v) be a solution
of (3.42) in C8 (o). Suppose that (3.44) holds, and that

(3.45a) By € (AN L>®) (1), DBiz, Baz, Bar € A% (Quy,1),
(3.45Db) a,b € 2P AL (por),  ©(0) € 2P AL (My,).
Then
p € (@A) + A) Qo r), ¥ € (@AY + 1AL Q1) + Coo (Q 1)
If one further assumes LYy, B12,a, p(0) € L (Qy, 1), then it also holds that
@€ (P AL+ AL N L) ( Qo).
Proof. — 1t is convenient to decompose Bj; in the obvious way as
Bii = By, + B,
with B, € 2242 | and BY, € Cs. We rewrite (3.42) as
(3.46a) Orp+ Bl = c1,
(3.46Db) Ozp = ca,
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20 CHRUSCIEL (P.T.) & LENGARD (O.)

where
(3.47a) ¢1 := Lip + Liath + a — Bioy — B,
(3.47D) 2 := La1p+ Loot) +b — Bai1p — Bas,

In what follows we let € > 0 be a positive constant, which can be made as
small as desired, and which may change from line to line. We note that cs is
in CF'~¢ 415 A% and integration in z of (3.46b), together with Propositions B.3
and B.6, gives ¥ = ¥ + g/ 41— + Yphg, Where

lim, g¢(z,.) if B/ +1—¢€>0,
Yo(.) = .
0 otherwise,
with 1o € Coo (g 1), V41— € CLF1( Qg 1), Ypng € 2771 AT (R, 7), hence
)€ Coo +CLTI T 27T A
Since L11p € CZ+9=¢ (we have d,p € CZ~1 and zL¥, € Al NC) c C;
similarly for the other derivatives), we find that
¢ € AD + 2P A +COHoe
We can then apply Proposition B.4 to (3.46a) to conclude that
(3.48) o Al 4 2P AL 4 clAPi—e

with p = 1. Coming back to ¢y we find now that ¢y € AJ + 2P A9 + Clpo—c,
and by Proposition B.6 we obtain

(3.49) W € Coo + x A + 2P T1 AL 4 COHPITI—¢

still with p = 1. To conclude, we proceed by induction; let 5’ + pd < 8+ k
and suppose that Equations (3.48)—(3.49) hold; it follows that ¢; belong to
Az—kmﬂAi—l—CgoHpH)é*E. Applying Proposition B.4 to (3.46a) gives (3.48) with
p replaced by p + 1. It follows that ¢z € A + 2P A9 + O HPHDI=€. pronosi-

tion B.6 applied to (3.46b) gives (3.49) with p replaced by p + 1, and the result
is established. O

As a straightforward consequence of Theorem 3.4 we obtain:

COROLLARY 3.5. — Let #' € R, let (¢,¢) € CE(Quy1) be a solution of the
system (3.5), and suppose that

(3.50a)  Byj, B%, B, 0,00, 04 (N € A% (Quy.1),

(3.50b) ET and ET are invertible, with (BE7)71, (Eﬁ”r)_1 € Ai(on,T),
(3:500) (BT)'E” € 2(ALNCY) (Qugr).  (ET)TEL € 0P AL (Quy 1),
(3.50d) (ET)"'(Bi1+ B-) € L™(Quy 1)
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If a,b € 2PAY (o 1) and (0) € 2P AL (M,,), with 3 € R, then
€ (@A + AL (Quoyr)s ¥ € (@A + 2 A3) (Quo,1) + Coo (R, 1)-
In particular, if k = oo then the solution is polyhomogeneous.
Proof. — We write Equation (3.5) as
Oy + (BET)"Y{(Bi1 + B )so+w}
= (BT) N (ELOip — 407 + a),

Oxp — (BY) ' {To — (B2 + By )¢}
= (ET)"H (M) 0ap + ELO-) + E20at) +b),
which is of the form (3.42), and we note that the hypotheses made on the
coefficients of Equation (3.51) imply those of Theorem 3.4. O

(3.51)

An unsatisfactory feature of results such as Theorem 3.4 is that uniform
estimates both on space and time derivatives of the solutions are assumed.
Recall that uniform control of time derivatives can be obtained only if cor-
ner conditions are satisfied, and the hypotheses of Theorem 3.4 require an
infinite number of those to be fulfilled. The same techniques can be used to
obtain various expansions of solutions when a finite number of time derivatives
are controlled only, but the statements turn to be out somewhat less elegant.
We give an example of such results when § = 1:

THEOREM 3.6. — Let 3 € R, k € NU {00}, and let (p,v) be a solution
of (3.42) in Cf(on,T) for some £ > 1. If Equations (3.44)—(3.50) hold
with 6 = 1, then for any A < 1 we have

pe @@+ A+ () ClNE) (o),

(3.52) 0—2j-2>0
Y€ (2P AL + A} + ﬂ Cf+2JJ+11+A)(QzO,T) + Coo (Qz,7)-
0-2j-1>0

If one further assumes LYy, B12,a, p(0) € L (Qy, 1), then it also holds that

€ (@A +ALNL®+ ) cf*;jg)(szmj).
0—25—2>0

Proof. — The result is obtained through a repetition of the proof of Theo-
rem 3.4, keeping track of the differentiability of the remainder terms. O

We are ready now to prove polyhomogeneity of solutions of the Cauchy
problem for Equation (3.5). We consider only the simplest case of equations
satisfying the conditions (3.53) below, considerably more general statements
can be proved using similar methods. The differentiability hypotheses below
are clearly satisfied by equations with smooth bounded coefficients; however,
they also allow for a wide class of equations with polyhomogeneous coefficients.
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We restrict ourselves to the case in which the corner conditions are satisfied to
arbitrary order; if not, one obtains expansions as in (3.52), with a remainder
in which a finite number only of time derivative are controlled; such results
can be proved by identical arguments, compare the proof of Theorem 3.6. We
hope to be able to show in a near future that the corner conditions are not
needed, in which case one should obtain polyhomogeneous expansions in which
uniformity is lost when the corner 7 = x = 0 is approached; this will be
discussed elsewhere.

THEOREM 3.7. — Consider a solution (p,9) € Cs X Cs of the system (3.5),
suppose that in addition to (3.12), (3.13), (3.19), and (3.50a) we have

(3.53a) By, B_,EBY 0,07 € L>®(Quy 1),

(3.53b) EY om0 =0, @id, EY |, = (0, —20,) ®id,
(3.53¢c) EY — E%)4e0, BL — ELym € 2P0 AL (Qay.1),
(3.53d) EA € 2 A% (Quy.1)-

If a,b € 2P AL (Quy.r) and p(0) € 2P A (M,,), with B € R, and if the initial
data satisfy corner conditions to arbitrary order, in the sense that
(3.54) VieN, 0:p(0),0:4(0) € CL(My,),
for some (i-independent) A € R, then

p € (@A + A (o), O € (@A + 2A)) Qo 1) + Coo (R, 7).
In particular, if k = oo then the solution is polyhomogeneous.
REMARK. — The class of initial data satisfying corner conditions to arbitrary
order is rather large; for example, if an initial data set (¢(0),1(0)) satisfies
them, and if f, g are arbitrary functions smooth up to boundary on the initial
data hypersurface, then (¢(0) + f,%(0) + ¢) will also satisfy those conditions.

More generally, large classes of such initial data can be constructed using a
polyhomogeneous generalisation of the Borel summation lemma.

Proof. — The hypothesis (3.54) with ¢ = 0 and Proposition 3.1 show that for
all 7 € [0, T] we have ¢(7),19(7) € C3 (M, ). Proposition 3.3 shows then that
the hypotheses of Corollary 3.5 are satisfied, and the result follows. O

4. The semi-linear scalar wave equation

Let f be a solution of the semi-linear wave equation

(4.1) Og f = H(2", f),
here Oy is the d’Alembertian associated with g. Set
(1.2) F=a-tovizg,
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Letting g = Q2g as in (2.1), from (2.3) we obtain
~ n—1/~ RN\ ~ (n . N
(4.3) O f = T(R_W)JH'Q ( +3)/2H(x“,Q( 1)/2f).

Let g = n be the Minkowski metric; under the conformal transformation (2.4)
one obtains from (2.5) that g is again the Minkowski metric, and (4.3) becomes

(4.4) O,f = Q- (32 F (1 Q=112 F),

We shall assume that the initial data for f are given on a hypersurface ¥ C M,
which, in a neighborhood O of Z7 is given by the equation

(4.5) Lno={y =3}

This corresponds to a hyperboloid in M given by the equation 2°+1 = +/ 1+;§E.

It is convenient to introduce the following coordinate system (z,v,7) in a M-
neighborhood of Z7:

@6 r=3' =120, o= (X)) - 20 v (Te) .

ni(v) € S™71, with v = (v?) denoting spherical coordinates on S"~ L Equa-
tion (2.5) gives

(4.7 Q=z27+z+1) ==z
If we let h denote the unit round metric on ™!, we then have
(4.8) n = 2dzdr + dz® + (z + 7+ é)Qh,

1 ~ -
e v Ol T )T Vet iy 0, )
2

n—1 Ah ~
—{_a.(8, — 20, B, :
{ ( )+x+7+% +(x+7-+%)2}f

(4.9) an =

where A}, is the Laplace-Beltrami operator of the metric h. We set

1
(410) €e_ = 87-, €4 = 87- — 281, e = mhA,
(4.11) ¢ =e (f), ¢ =eilf)
1 ~
(4-12) pa = Pa = mhfl(f)a

where h4 denotes an h-orthonormal frame on S™~L We use the symbol D to
denote the covariant derivative operator associated to the metric h. (The use-

fulness of introducing two different objects for ha(f)/(z + 7+ %) will become
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clear shortly.) Equation (4.4) implies the following set of equations:

n—1 n—1
13) { e—(¢4+) = De,ytha — 2(3:_’_77_14_%)¢+ = —mqﬁ +ay,
—ea(d4) +eq(Ya) — m¢A =ba,
1
i { e—(da) —ealo-) + m¢A =aa,
“Desdaten(6)+ gl e = e b
(4.15) e (f)=¢-,
(4.16) er(f) = oy,
with ay = b4 = 0 and
(4.17) ay =b_=G=H(=", QD2
4.1. Existence of solutions, space derivatives estimates. — We note

that the partial differential operator standing on the left-hand-side of (4.13)
is symmetric hyperbolic; the same holds true for (4.14), or for the joint sys-
tem (4.13)—(4.16). Now, part of our technique consists in deriving weighted
energy estimates for symmetric hyperbolic systems having the structure above,
¢f. Section 3. Each such system comes with his own estimates, so that for
the systems (4.13) and (4.14) we can obtain estimates with different weights.
This allows us to handle a reasonably wide range of non-linearities, giving ex-
istence and blow-up control for initial data in weighted Sobolev spaces (with
conormal-type blow-up at Z7):

THEOREM 4.1. — Consider Equation (4.1) on R™! with initial data given on
a hyperboloid & D ¥, 0 in Minkowski space-time, and satisfying

(4.18) F150g0 =02 F10 e HE L (Sa0),
(4.19) 0o(Q V2 f) 15 € CE(Ban0) NHE 2 (Sag0),
(4.20) O IRf)g € HE (Bao.0),

with some k > %n +1, -1<a< —%, Suppose further that H has a uniform
zero of order ¢ at f =0, in the sense of (A.30), with

4 if n=2,
(4.21) £><3 if n=3,
2 if n>4.

Then:
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1) There exists 0 < 74 < T (< %xo), depending only upon xo and a bound
on the norms of the initial data in the spaces appearing in Equations (4.18)-
(4.20), and a solution f of Equation (4.1), defined on a set containing Q7. ,
satisfying the given initial conditions, and satisfying

11l 2o (20, ) < 00

2) Further, if 7. is such that f exists on Qu, -, and if ||f||Loo(QZOYT*) < 00,
then for 0 < 7 < 7. we have

flEzO,T € L™ (Zao,r) N Hip1 (Zao,r)s
~ ~ a1l o
87‘f|ZQCO,T € Hg(zﬂﬁoﬂ')v 3zf|2m0, € Hk 2 (Ezo,‘r) N CO (210,7)7

with a T-independent bound on all the norms.

REMARKS _

1) Integration in x of condition (4.19) implies that f € L™>(X;,.0)-

2) Some further information can be found in Theorem 4.3 below.

3) If the inequality in (4.21) is not an equality for n = 2,3 (no further restric-
tions for n > 4), then a proof similar, but simpler, basing on Proposition 3.2
instead of 3.1, leads to the same result with @ = —%.

Proof. — As before, we write ||f(7)[lng for ||fis, . llns(s,, ). ete. Recall
that the standard theory of hyperbolic systems (cf., e.g., [35, chap. 16, vol. ITI])
shows that for any 0 < z1 < x there exists T'(x1) > 0, satisfying 221 + T < o,
and a solution f of (4.4), defined on Oy, 20,7, With initial data on ¥, 5, ob-
tained from those on X, by restriction. The idea of the proof is to derive
x1-independent, weighted a priori estimates for the solution. These estimates
will guarantee that the existence time T'(z1) does not shrink to zero as x;
goes to zero; they will also guarantee that the weighted Sobolev regularity is
preserved by evolution. We start with the following:

LEMMA 4.2. — Under the hypotheses of Theorem 4.1, consider on Qy, o, 1 the
system (4.12)—(4.16), set

(422)  Ealt) = [ F0) 3, + - )5

2
+||¢+(t)||§1§—1/2 + Z||¢A(t)||Hg'
A
Then there exists a x1-independent constant C' such that

(4.23) E.(t) < C{Ea(o)eCt n / tec(t_s)S(s)ds},
0
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where
(424)  S(s) = D Jlaa() + llas ()02
@l + S ba .
A

Proof. — We wish, first, to apply Proposition 3.1 to the system consisting of
Equation (4.14) together with e_(f) = ¢_; in order to do this we set

_(f _
p= (m), =9
We choose EY 9, = ex @ Id, we set
(4.25) Ly = (_eg(w ).

and we define
t) = lF®|3 + lle-(F ||Ha+Z||€A O3z

The hypotheses C1-C5 of Proposition 3.1 are readily verified, and for
any o < —% the inequality (3.20) gives

(4.26) Ea(t) < C{Ea(0)e”" / c(- S)(ZHGA G2
+ Hd)"‘ HHQ 1/2 + ||b )Hi_la_l/g)ds}.

Next, we apply Proposition 3.1 directly to (4.13): setting
Bor(®) = e (DOl + X lleatDOl
for any o/ < —1 it follows from (3.20) that
(4.27) EBa(t) < C{EaI(O)eCt +/t e (lay (5300
MCCIRED DO AREY S

We set
E(t) = Eq(t) + Eq_1/2(t).
It follows from (4.26) and (4.27) with o/ = o — 3 that we have
t
(4.28) E(t) < C(E(O)eCt + / €= (E(s) + S(s))ds),
0
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with S(s) as in (4.24). Equation (4.23) with E, replaced® by E follows now
from Gronwall’s Lemma. Since E,, is equivalent to F, our claims follow. O

Returning to the proof of Theorem 4.1, Lemma 4.2 applied to (4.13)—(4.15)
gives (recall that G was defined in (4.17))

t
(120)  Ea(t) < C(Ba(0)e" + / O G(5) 212,
0

By hypothesis the function H appearing in (4.1) has a uniform zero of or-
der ¢ > 2, in the sense of (A.30); we wish to use (A.31) to control the term
containing G(s) in (4.29). This requires an L* bound on f, which will be
obtained next. As k > in+ 1, the Sobolev embedding (A.24) gives

430) eI, + ller (DO s + leaFHSZ, < CEa(o)
Now the conditions (4.21) on n and ¢ give

G| < CYF ()| D202 < O f ()| fw™ 2,
so that (recall that o < —1)

(4.31) 16y < CIFO) e
From (4.13) we have
n— n—1
(4.32) Or g4 — ﬁ(b‘l’ De,a— mQL -G,

and (4.31) together with Proposition B.1 yield

(4.33) [0+ ()| oo < Ce[|01(0)

leg le;

+OAea“$N%MM@Wq+W¢®W%+ﬂﬂ®Mﬂ*
t
g@wwgw@+ée%s>((>wuhﬂ ,

for some continuous function C(Ey (. ), || f(.)||z=). Integration over [z, o —27]
of 0,] = §(6- — 6,) gives

xro—2T

)| < | Flr.mo —20)| + 3 (6= = 60| / 5 ds.

Forany 0 <7 <7 < %xo the f(7,zo — 27) term is estimated by a multiple
of the initial energy in a standard way, which leads to the estimate (recall

(8) The constant C in Equation (4.23) does not necessarily coincide with that in (4.28).
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that a > —1)
(4.34) [[J()]| pee < CEa(r) + Ce[64(0)llcg
+ [ I (B, 0] ) s
Next, | G(s)| 172 < Ol H(s, 2D Y| 124 (i 2, and our hypothesis

that H has a uniform zero of order ¢ together with (A.31) gives
w172 < ) Fllaatntarz—en1y2.
HG HH 1/2 C(”f( )z )||f||Hk+< +2)/2—€(n=1)/2
In view of (4.34) this can be estimated by a function of E, (s) and of || f(s)| =,

(4:35) [|G(s)| 30172 < CUFS) ) [1F6)] 300 < CUF$) 2w Eals),

provided that

n+2

n—1

(which coincides again with (4.21)). If (4.36) holds, from (4.29) and (4.34) we
obtain

(43D | F(D)] po + Bal(r) < Ce (Ea(0) +[|0:£(0)]| g + 10-F(0)]])

+/0 B (5, 1|17(5)| s Ba(s)) ds,

for some constant C, and for a function ® which is bounded on bounded sets.
It then easily follows that there exists a time 74 and a constant M, depending
only upon z¢ and a bound on the norms of the initial data in the spaces
appearing in Equations (4.18)—(4.20), such that || f(7)||~ and E,(7) remain
bounded by M for 0 < 7 < 7. Since all the objects above were z;-independent,
so is 7. By the usual continuation criterion (cf., e.g., [35, Prop. 1.5, chap. 16,
vol. III](9)) the solution exists on €, 4, -, for all z1; it thus follows that the
maximally extended solution of the initial value problem considered here exists
on a set which includes Qg -,

(4.36) 0>

To establish point 2), suppose that a global a priori L> bound on ]7 is
known. Then (4.29) and (4.35) give a linear integral inequality on E,, and
Gronwall’s Lemma gives a global bound on E,. Arguments of the last part
of the proof of point 1) yield the result. O

For the purpose of estimating time derivatives of the solutions we will need
a generalisation of Theorem 4.1, which covers the equations contained by time-
differentiating Equations (4.13)—(4.16). There are lots of ways to relax those

(9) In that reference symmetric hyperbolic systems on a torus are considered; however simple
domain of dependence considerations show that the results there apply to the setup here.
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hypotheses; for simplicity we shall only make those generalisations which are
strictly necessary for the arguments in the next section to go through. First, the
fact that f is scalar valued plays no role in our considerations above; henceforth
we assume that f has values in RY for some N > 1. Next, the definitions (4.10)
of ex and e4 will be kept. We will consider systems of the form

%) B B e\ _[a

(4.382) PO+ (o ) (0) = (5) 6
(4.38b) o=(51) v=(3)
together with

1 ~ ~
(4.39a) A= mhA(f) + Baof

1 ~ ~
(4.39Db) ha = mhA(f) + Bau/f,
(4.39c) e (f)=Boo_ + Bif,
(4.39d) er(f) = ¢4,

for some matrix valued functions B4 ¢, Ba,y, Bo, B1, with By invertible. Here
e_ ZADA

fA)tDA €4 )

is the (geometric) principal part of Equations (4.13)-(4.14). The nonlinear

term G = G(z#, f) will be labeled as

(4-41) G = (Ge(9-)) Ger(wa)> Ge(94)) Ger(0-));

with the order of the components following that of Equations (4.13)—(4.14).
The B,p’s will be labeled as By_ 4, , Bs_ 44, etc.; for example, in this notation,
the second of Equations (4.14) takes the form

(442) e+(¢7) = De,pa—By_p_¢— — B¢7’¢+¢+
=By pa0a— By paa+b+Ge o),
with actually B¢—,¢A = B¢_,wA =0.

(4.40) pP= ( (

Some effort will be needed to prove the information of point 3) of the theorem
that follows; this is needed to be able to iteratively apply that theorem in the
next section:

THEOREM 4.3. — Consider the system (4.38)—(4.39) with
(4.43) H“(T)Hﬁg + ||b(T)||H? +a§)21:1),2||Bab(T)||C2 —|—Asi152 ||BA7,\(T)||CQ
A=,
+[1Bom)llep + [1Bo™ (M) oo + 1B1(7) [ g < €
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for some constant 5’, and suppose that

(4.44) G(a", f) = Q2 (gr, Qn=D/2 f )

with Ge_(¢,) = 0, with H having a uniform zero of order £ in the sense
of (A.30), with £ satisfying (4.21). If the initial data satisfy (4.18)—(4.20) with
some k > %n—i— land -1 <a< —%, then:

1) The conclusions of point 1) of Theorem 4.1 hold with a time T4 depending
only upon the constant C in (4.43) and a bound on the norms of the initial data
in the spaces appearing in Equations (4.18)—(4.20).

2) The conclusions of point 2) of Theorem 4.1 hold.

3) Under the hypotheses of point 2) of Theorem 4.1 we also have

(4.45) [ +27)0 f| oo,y < O
REMARKS
1) The condition G._(4,) = 0 can be weakened to
(4.46) Ge (o (@, f) = Q@ IPH, (o (@, QD)

for some function H,_(4,) with a uniform zero of order £. Similarly it suffices
to assume that

(447)  Gepu (e f) = HRH, (@, QY]
for some function H., (y,) with a uniform zero of order /.

2) If the inequality in (4.21) is not an equality for n = 2,3 (no further
restrictions for n > 4), then the result remains true with o = —%, see Remark 3)
after Theorem 4.1.

Proof. — Let us start by remarking that, because ¥4 = ¢4, in equations
such as (4.42) we can replace By_ ¢, by By_ ¢, + Bg_ ., obtaining a system
in which B, 4, = 0. Proceeding similarly with the other equations we may
thus without loss of generality assume that

(4.48) Biy, =0.
The proof of points 1) and 2) is then identical to that of Theorem 4.1, with the
following minor changes: Equation (4.32) is replaced by the equation
(4.49) e—(¢4) + By, 0, O+
= Deyda— Bpy— ¢ - — By, 104 +aq +Ge_(4,)

to which Proposition B.1 still applies, recovering (4.33). Further, the equation
O.f = %(qb, — ¢4 ) has to be replaced by

7, Biy Bop- — 94
8$f+ 7][ - 92 ’

and the desired conclusion is obtained by Proposition B.3. The remaining
arguments do not require any modifications.
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To prove point 3), from (4.42) we obtain

(4.50) ey [(x +27)¢-] = (¥ +27)(Deyda — By_ 5 ¢

—By_ .04 —By_ 4,04 +b_ + G€+(¢7)).

From Equations (4.31), (4.33), and (4.39¢) together with ¢_, ¢4 € Hy C C§,
D.,¢a € Hf_; CC§, we obtain

eyl +2m)9_] < Ca~?,

for some constant C depending only upon the initial data and ||]7H Lo (Q
Integrating as in the identity (3.41) we arrive at

By {(z +27)(0: f = B1f )(w,v,7)}
< }Bo—l{(x + 2009, f(z +27,0,0)}| + C(I fll 10, .., + C)
< C([10- fllezr + 1F O 2 (0sp.) + C),
and Equation (4.45) follows. 0

ZOYT*)'

4.2. Estimates on the time derivatives of the solutions. — So far we
have established existence of solutions with initial data in weighted Sobolev
spaces, as well as weighted estimates on the space-derivatives of the solutions.
The next step in proving polyhomogeneity is to establish estimates on time-
derivatives. Similarly to the linear case, the question of corner conditions arises.
In order to handle that, we introduce an index m, which corresponds to the
number — perhaps zero — of corner conditions which are satisfied by the
initial data. Next, the definition (A.30) of a uniform zero of order [ has to be
strengthened by adding conditions on time-derivatives: we shall require that
for all M € R, for all 0 < ¢ < min(k,!) and for all 0 < j < m there exists a
constant C = 6(M, m, k) such that for all |p| < M we have

H O F(r,..p) ‘
OptoTi
We start with the following:

(4.51) < Clpl*.

0
Chtm—i—j

THEOREM 4.4. — Let N 3 m > 0; consider a solution f: Qg . — R of (4.1)
satisfying || f| L= (q., ..) < o0, and suppose that

(452)  0<i<m+4+1, 9ifis, o € Hivmi1i(Teo0);
(4.53) 0<i<m, 0,0 f 15, € CE(Su00) N Hipmti(Da00),

with some k > %n +1land -1<a< —%. Suppose, further, that H is smooth
in f and has a uniform zero of order ¢ at f =0, in the sense of (4.51), with £
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as in Equation (4.21). Then for 0 < 7 < 7 and for 0 <i<m, 0 < j+1i<

k—l—m—%n we have

(4.54a) [(r+22)0,)" 0% fis,, . € L(Sagr) N Hipmi1 i i (Sao.r),
o ool .

(4.54b) 0. [(7 +22)0- 0 fls,. . € Myt i i (Sao.r) NCG(Sagr),

and

(4.55) 0<p<k—3n, [(r+22)0,]707 " fis, €M ,(Saor),

with T-independent bounds on the norms.

REMARK. — As before, in dimensions n > 4 the result remains valid
for o= —%; in dimensions n = 2,3 the value —1 for a is allowed if the
inequality in (4.21) is not an equality.

The proof below actually proves the analogous result for systems consid-
ered in Theorem 4.3, provided that obvious time-derivative conditions on the
coefficients are added to (4.43), the simplest possibility being

(456)  [[0ra(T)lly,  H1107b(T) |5,

k4+m—1
+sup (|02 Bap(7)lleg,  + sup [|0iBar() o
a,b=1,2 A=1,2 ktm—i
A=¢,
HoiBo)ey OB, <G,

with 0 < ¢ < m + k; the same remark applies to Corollary 4.5 below. Before
passing to that proof, we note that an important consequence of Theorem 4.4
is that corner conditions will hold at any time 7 > 0, regardless of whether or
not they hold at 7 = 0:

COROLLARY 4.5. — Under the conditions of point 2) of Theorem 4.1, for any
0<7 <7y andf0r0§i<k—1—%n we have

€ H(l:fi(zwoﬂ')v

xqg,T

a:_}“l Zeg.r € LOO(EMLT) N Hngl—i(Ewoﬂ')a 8i+1ﬁ2
.~ a—2i o
0:0: f15,, . € Myi® (Bao,r) NCG (Xag,r)-
We shall need the following simple Lemma:

LEMMA 4.6. — Let F(z*,p) be a function which is smooth in p at fized x*
and suppose that it has a uniform zero of order £ > 1 in p. Then

1) For alli € N the function 0L(F (z*,u(x*)) has a uniform zero of order ¢,
when viewed as a function of (u,0.u,...,0u).
2) Let H = 0,F, then H has a uniform zero of order £ — 1.
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Proof. — Let u = (u%); smoothness of F' in p allows us to write
(4.57) F(#,7u) = Aiy iu' - -u™,

with some coefficients A;, . ;, = Ai,,. 4, (Z,7,u) which are smooth in u, and
totally symmetric in i1, ...,%¢; recall that the summation convention is used
throughout. Point 2) immediately follows from (4.57). From that equation we
also obtain
0. F(1,%,u) = (5.,-141'17_“)%‘@ + auiAilwwieaTui)uil_ ot
+ éAil,...,z'eU“' cutrgute

which proves point 1) for ¢ = 1. The result then follows by straightforward
induction. O

We can pass now to the proof of Theorem 4.4:

Proof. — We assume that Equations (4.38)—(4.39) are satisfied; Theorem 4.3
shows that (4.54)—(4.55) hold with ¢ = j = p = 0. Consider the vector-valued
function

(. (z +27)0: f, 0, (z + 27)0r 0,1, (z + 27)0,)),

so that the new function f in (4.39) is (f, (z + 27)8, f ), while the new func-
tions ¢, resp. 1, in (4.38b) are (p, (z + 27)07¢), resp. (¢, (z + 27)0;¢). We
claim that a set of equations of the form (4.38)—(4.39) holds for those new
functions. Consider, for instance, Equation (4.39¢); set

f:: (x + 27)(97]7, qg_ = (x4 27)0, b,
etc., we have

e (f) = 0-((x +27)(Bog— + Bif))
= Bod_ + (2B + (x + 27)0:Bo)¢d— + Brf + (2B1 + (z + 27)0.B1)

which is linear in (f, f, (;5_,5_). In fact

e‘(f?) - (2Bo+ (CCBi|?2T)8TBQ é)o)(j{)
0

+( 2B, + (mB—i—l 210, B1 By )( f?)
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and the new matrix By is again invertible, as desired. Next,

e~ (64) = 0, ((x +27)0:01)
=0, ((a: + 27’)( —Dapa— By ¢_o—
— By 404 — By, 0+ +ar +Ge_(5,)))
—DAqu — By 4 Q/b\— - B¢+¢A$A - B¢+¢+($+
+ linear (g, ) + a4 + G. 3.y
ar = —2Daga+ Oray € HY 1,
e 32 = 0r(Ge_(p))(z + 27),

where “linear” denotes terms which are linear in the relevant variables. The
equation for e_(¢4) is handled in a similar way. The equations involving
only ey or J4 are straightforward, since those operators commute with multi-
plication by (z 4 27). By Lemma 4.6 the new non-linearity has again a zero of
order ¢, when considered as a function of (]7, (z+ 2T)8Tf). In order to apply
Theorem 4.3 we need to check that the initial data are in the right spaces.
Clearly

G

((z +27)0- F)(0) = 20, f(0) € HyFL © He,,, N L™,
(0 ((x + 2710, ))(0) = (8, f + 20,0- F ) (0) € Hitppoy C CENHE 2

Condition (4.20) requires some more work:
(0-((z +27)0-F))(0) = (20-f + 22 )(0)
= (20, f + 2(20, + €4)0- ) (0)
= (20, f + 20,0, f + e, (Boo— + Bi1f))(0).

The first two terms are obviously in Hj,,_,, and so is wey(Bif) =
2(8, — 20,)(B_f). Equation (4.42) gives
(ve4(0-))(0) = x(Deyda — By .6 ¢— — By_ 4, ¢+
~By_ 6404 = By_y,tba b+ Gep(5))(0).
The desired property (zey(Bo¢-))(0) € Hy,,,_; follows immediately; the
only non-trivial term is G, (4_), the Hj, ., norm of which can be esti-

mated by a function of ||f(0)z~ and |/f(0) cf. Equation (4.35).

Now, (z + 27’)87]715 uniformly bounded on 2, -, by point 3 of Theorem 4.3, so
that we can apply point 2) of Theorem 4.3 to conclude that Equations (4.54)—
(4.55) hold with j = p = 1 and m = 0; straightforward induction establishes
Theorem 4.4 for the remaining j’s and p’s.

gonsider7 now, m = 1; the result already established with m = 0 shows that

0-f(T) exists and satisfies (4.54) with ¢ = 1 for any 7 > 0; similarly (4.55)
holds with m = 1 for any 7 > 0. Now, a calculation similar (but simpler) to

HHngerl ’
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the one done above shows that (f, 8TJ7) satisfies a system of equations of the
form (4.38)—(4.39) with initial data satisfying the conditions of Theorem 4.3
by hypothesis; the uniform bounds on some interval [0, ;) follow by point 1)
of that theorem. We therefore have

(7, 8TJ?)HL<><>(QWT*) < o0

We can then apply the result already established for m = 0 to the system
of equations satisfied by (f,0-f) to obtain the conclusion of Theorem 4.4
with m = 1. An induction upon m finishes the proof. o

4.3. Polyhomogeneous solutions. — The aim of this section is to establish
polyhomogeneity of solutions of a large class of semi-linear systems of the form

(4.58a) Oro+ Bi1w+ Biap = Litp+ Lis +a+ Gy,
(4.58b) Opth + Ba1p + Bt = Loy + Laoth + b+ Gy,

with a nonlinearity G = (G, Gy) of the form
(4.59) G =a P H(a", 29y, 2% iy, 297 ).

Here we have decomposed v as

V1.
(4.60) ) = (%),
this is motivated by different a priori estimates we have at our disposal for the
appropriately defined components 11 and 15 of ¢ in the applications we have
in mind. Polyhomogeneity of solutions of (4.1) will follow as a special case,
see Theorem 4.10 below. We will need to impose various restrictions on the
function H, in order to do that some terminology will be needed. We shall
say that a function H(z*,u) is §-polyhomogeneous in x with a uniform zero of
order ¢ in u if H is smooth in u € RV at fixed z#, if H satisfies (A.30) for
any 0 < ¢ <min{¢, k} and any k € N, if

(4.61) VieN, O H(.,u)e A%
at fixed constant u, and if we have the uniform estimate for constant u’s
(4.62) Ye>0, M >0, i,keN, 3C(e, M,i, k), V|u| < M,

[|0LH(. ,u)||ckfe < C(e, M,i, k).

The qualification “in w” in “uniform zero of order £ in u” will often be omitted.
The small parameter ¢ has been introduced above to take into account the
possible logarithmic blow-up of functions in .A%_ at x = 0; for the applications to
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the nonlinear scalar wave equation or to the wave map equation on Minkowski
space-time, the alternative simpler requirement would actually suffice:

(4.63) YM >0, i,k e N, 3C(M,i, k), V|u| < M,

oL H (. ,u)||c2 < O(M,i, k),
again for constant u’s. Clearly functions which are jointly smooth in u and
in x* satisfy the above conditions; Lemma 4.7 below provides another class of

such functions. The following simple facts about functions in the above class
will be useful:

LEMMA 4.7. — Let mq1,mo, k € N, my < maq, and let P(z*,u) be a polynomial
inu=(u',...uV) of the form
P(2",u) = Z P ()™t - - u
m1<j<mz
with coefficients Py, . ; (z") € AS_. Then:
1) P is 0-polyhomogeneous in x with a uniform zero of order mj.
2) If f e Ai +C2 for some X\ > 0, then for any € > 0 we have

P(,2f) € 2™ P (A} +CA°).
The proof of Lemma 4.7 is elementary and will be left to the reader.

LEMMA 4.8. — Let k,q € N and let H(xz*,u) be §-polyhomogeneous with re-
spect to x with a zero of order m in w. If

; {A‘;mLm+C<§o if ¢ =0,
AS +Co otherwise,
for some A > 0, then for any e >0
H(.,2f) € 2™ (A} 4+ C3°).

Proof. — We Taylor-expand H in u to order r, where r is any number satisfying
rqd > mqd + A. We then have

H(a" 2% f) = P(a*, 2% f) + R,

where P is a polynomial and R is a remainder. We note that the coefficients
of the expansion of P can be obtained by differentiating with respect to v and
setting u = 0, and are therefore in A%, by (4.61). Further, the usual integral
formula for the remainder in a Taylor expansion together with (4.62) shows
that R has a uniform zero of order r, in the sense of Equation (A.30). The
result follows from Lemma 4.7 and from Lemma A.5. O

We are ready now to pass to the proof of the non-linear analogue of Theo-
rem 3.4:
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THEOREM 4.9. — Letp € Z,q,1/6 e N,—-1 < ' € R, k € NU {0}, and let

(‘Pa W € Cgo, (Qro,T) X Cgo, (Qfo,T)a ’lr/)l € LOO(QIO,T)

(1 as in Equation (4.60)), be a solution of (4.58) with G of the form (4.59),
where H is §-polyhomogeneous in x with a uniform zero of order
p—o61

T
Suppose that Equations (3.43)~(3.44) hold, and that

(4.65a) By e (AN L) (%,17), Bi2,Ba2, B2 € Ai(Qfo,T))
(4.65b)  a,b€ AL (o), 9(0) € AL(M,,).
Then

o€ (m(mq—p)éAi + Az)(QIO,T) — xmin((mzv—q)&o)_Ai(QIOI)7

¢ € ginlma=pdt L A2 ) 4+ Coo(Qug 1) C (AL N L®) (g 1)

If one further assumes LYy, Bia,a,(0),Gy(.,0) € L®(Qyy 1), then it also
holds that

(4.64) m >

pE (Qj(mq_p)(;A(]z + A(;z N Loo)(on,T)'

REMARK. — Obviously the theorem remains true if we replace G' by a finite
sum of nonlinearities satisfying the above hypotheses, with different p’s and ¢’s
for each term of the sum.

Proof. — The result is established by a repetition of the proof of Theorem 3.4,
using Lemma A.5 and Lemma 4.8 to obtain the necessary estimates on the
non-linear terms. We simply note that the condition on the order m of the
non-linearity guarantees, using Lemma A.5, that

8z¢ =cC2 € C;\O_e,
with A = min{8’,mgd — pd} > —1, hence ¢ € L* by integration. Decreasing
B3’ if necessary we may without loss of generality assume that 8/ = A\. When
applying Lemma 4.8 it is convenient to view the function H as a function

of the variable f := (i1,2%9,zp) € L. The remaining details are left to
the reader. O

As a straightforward corollary of Theorem 4.9 one obtains:

THEOREM 4.10. — Let § =1 in odd space dimensions, and let 6 = % n even
space dimensions. Consider Equation (4.1) on R™, n > 2, with initial data

J7|{T:o}, 3?/37'|{r:0} € (A% NL>)(My,).

Suppose further that H(xz*, f) is smooth in f at fized x*, bounded and 0-
polyhomogeneous in x* at constant f, and has a zero of order £ at f = 0,
with £ as in (4.21). Then:

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



38 CHRUSCIEL (P.T.) & LENGARD (O.)

1) There exists T, > 0 such that f exists Qu, r, , with

(4.66) £l 2 @ v -

2) If the initial data are compatible polyhomogeneous in the sense that there
exists A < 1 such that

VieN, 0,0:(0) € CNMsy),

then the solution is polyhomogeneous on each neighborhood Q0 . of It on
which f exists and satisfies (4.66) with 74 replaced by 7.

Proof. — Point 1) is Theorem 4.1 specialised to polyhomogeneous initial data.
To prove point 2) we set

(4.67) o= (1), where w1 =7, va= (1)),

(4.68) o = s

Then Equation (4.3) takes the form (4.58) with
(4.69) G = —Q (2t QD2 ) = Q-2 g (g1 Q=1/2y)

(4.70) Gy, = —G, Gy, =0, Gy, = (_OG).

For n even we take 0 = %, p=n+3,q=n—1; the condition (4.64) then reads
m > (n+1)/(n— 1), which coincides with (4.21). For n odd we take § = 1,

p=2(n+3),¢=3(n—1), and (4.21) guarantees again that (4.64) holds. [

5. Wave maps

Let (N, h) be a smooth Riemannian manifold, and let f : (M, g) — (N, h)
solve the wave map equation. We will be interested in maps f which have the
property that f approaches a constant map fy as r tends to infinity along light-
like directions, fo(x) = po € N for all € M. Introducing normal coordinates
around pg we can write f = (f%),a=1,..., N = dim N, with the functions f*
satisfying the set of equations
afb ofe
1 Og f%+ g T¢ (f) =— —

(5 ) g f +g bc(f) oxt Oxv )

where the I'y.’s are the Christoffel symbols of the metric h. Setting as before

fe=Q-(=D/2fa 5 — O2g we then have from (2.3),

8(9(7171)/2}7)) 8((2("*1)/2]76)
oxH ox¥

n—1~ —2\ za
+ (R RO

(5.2) O ]7‘1 = _Q*(n*1)/2§MVPgC(Q(n71)/2J}“)
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In particular if (M,g) is the Minkowski space-time (and if we use the
same conformal transformation as in Section 2) we obtain a system of Equa-
tions (4.13)—(4.17) with a4 = ba = 0, with the obvious replacements associated

with f — f, and with G in (4.17) replaced by
(5.3) G* = —Ta (0 V2)){ QD26 gt + ¢hioty)
—(n— 1)9(”*3)/2}2[(acd’F —(1+z+ 2T)¢ll) —(n— l)fb] }

5.1. Existence of solutions, space derivatives estimates. — As before,
for even space-dimensions n the occurrence of non-integer powers of {2 above
does not allow the use of the standard conformal method except for special
target manifolds (N, h), ¢f. [11]. This can be handled in our approach, and
we show:

THEOREM 5.1. — Consider Equation (5.1) on R™! with initial data given on
a hyperboloid S D X, o in Minkowski space-time, and satisfying

(Hy i NL>®)(Bg0,0) if n >3,

( g+1 n C?)(Zro,o) if n=2,

€ Hg(zfo,o)a

HE(Zg0,0) if n>3,

(HE N L>®)(Xgy,0) if n=2.

(54) fa|2z0,0 EQ*(nfl)/Qfalsz’O c {

(5.5) Dy (= (=72 pay

|Zm0,0
(5.6) 3T(Qf(n71)/2fa)|zmo’0 c {

for some k > %n—i— 1, -1l<a< —%. Then:

1) There exists T+ > 0 and a solution f* of Equation (5.1), defined on a set
containing g, -, , satisfying the given initial conditions, such that

(5.7a) ||fa||c§)(nm,f+) < oo, n=2,

(5.7b) ||xe+(]7a)||Loo(Qm’T+) + Z ||xX¢fa||L°°(QIO,T+)
i=1

1Tl e g oy + 120 ol
Here the X;’s are the vector fields defined in Section A, cf. Equation (A.7).

2) Further, if 7. is such that f* exists on Qg -, with (5.7) holding with
Ty = Tw, then for oll 0 < 7 < 7 we have uniformly in T

y < 00, n > 3.

zQ, T4

JMIZW, € LOO(EM)J) N Hngl(Ewo,T)v

0- f5,, . € HY (Sagir)s OufIs, . € HE (Baor).

If n = 2 we also have uniform bounds in the following spaces

FU50gn € CONHE ) (Bar)s 0-fx,, . € (HENL®)(Say.r)-
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REMARK. — Integration of condition (5.5) implies of course that f belongs
to LOO(ZIO,()).

Proof. — The proof is similar to that of Theorem 4.1, but simpler, because
we do not need to gain a % in the decay rate, as done in Lemma 4.2. We
write Equation (5.1) in the form (4.12)—(4.16), with a4 = bs = 0 and with G
in (4.17) replaced by G* defined in (5.3). We write G* as

(5.8) G*= A"+ B*+(C*+ D* + E°,

with the order of terms in (5.8) corresponding to that in (5.3). Since we are
working in normal coordinates, I'}, has a uniform zero of order one in the sense
of (A.30) at f* = 0. We want to use Equation (3.20) to get an a priori estimate

for the solutions of (5.1); for this we shall need to estimate the H{ norms of
all the terms which occur in (5.8). The simplest such term is E®:

1By = (n — 1)?||Tg(Q0 D72 )@ D/2 fey(n-D/2 fryg-t-(n)2
(n — D?||T5 QD72 )@= D/2 QD2 |y,
k

e

%

where we have used the fact that Q/x is a smooth, and therefore bounded,
function. The function Fgc(ﬂ("’l)mf)(Q(”*l)/gfc) (Q(=D/2fb) can be viewed
as a smooth function F of z(»~1)/ 2f“ with a uniform zero of order three. We
can thus apply (A.31) with £ = 3 to obtain

(59) By < CUFS) ) - [ Fllpggr2-n < CUFG)z) - 1l

since n > 2. We note that in dimensions larger than or equal to three we
have at least one power of x “left unused” above, which will be made use of
in estimating the remaining contributions to G% We proceed in a similar way
with the other terms; in space dimension n = 2 we view

Q(nJrl)/QDa = Q(n+1)/2(n _ 1)(1 o4+ 27_)Q(n73)/21-\gc(Q(nfl)/Qf)fchb_

as a smooth function F' with a uniform zero of order three of (x(”*l)/gf“,
z(»=1/2$2 ) which leads to the estimate

(5.10) D)y < CUFE) Iz 6= ()llz=)) (1l + 6~ (6)llreg)-

On the other hand, in dimension 3 or higher we can view QtD/2Da a9 5
function F with a uniform zero of order 3 of (z(»~1/2fe z(n=1/224% ) which
implies

(5:11)  [[D(s)[|ye < CUIF Nz llzg—(s)llze) (Ll + llzd—(5)lI7¢g)-
Regardless of dimension we view
QntD)/20e = Q(n+1)/2(n — 1)z Qn—3)/2 I‘gc(Q("’l)/Qf)f%i
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as a smooth function with a uniform zero of order 3 of (z("~1/2 fa, z(n=D/2342),
obtaining thus

(5.12) Oy < CUF Sz, s ()1z) (1 Fllreg + 64 () 1z )

Viewing B* as a function of (z(n=D/2fa g(n=1)/2z40) and viewing A® as a
function of (zx(=1/2fe x("’l)/2x¢‘1,x(”*l)/2x¢‘i), one similarly obtains
forn >3
(5:13) [[A(5)[[p < CIF )Nz, 26— (5)ll o wds ()] =)
< (ILFllrg + llzo— ()l + lzd+(8) ),
(5.14) HB(S)HHg < O(IIf3)lposs lxpa(s)llre) (| fllrg + zda(s)llng ),
while in dimension 2 it holds that
(5:15)  [[A(s)][ 5 < C(IF )Nz, 16— (5)ll o |z ()] )
X (1 fllag + 1o (8)llmg + llzds(s)lI2g )
(5.16) ||B(s HH; < C(I1F (), lpals)loe) (I fllrg + oa(s)lng)-
Summarising, in space dimension 2 we have obtained
BAN[|G(5)]| 5y < CIF ()l 16— (5)ll o, DAl oe, 1z (5)]| £ )
X (Il + 6= ()2 + Nz () llreg + lda(s)lleg)
CIF )z, 9= (), [|Pa(s)llzoe, ¢+ ()| ) v/ Bals),
where

(518)  Ea(t) = [F(O)5 + 6= @) + 1+ O30 + D l0a(®)]l5e
A

On the other hand in higher dimensions we can write

(5:19) [|G(5)]l5¢p

< C(If ), ladals)llnee, [2¢—(s)] o, |26+ ()][1) vV Ea(s).
To obtain a closed inequality from Equations (3.20) and (5.17) or (5.19), we

need to control all the L, norms occurring there. Since k > L

5n + 1, from
Equation (5.17) and the weighted Sobolev embeddings we obtain

(5.20) 1G] < C1f () 16— () o [[@a() | e Eal(s)),
if n =2, or — from (5.19) -
(5.21) 16O |ee < CUFE] - Bals)),
for n > 3. The identity
_ _ 1 [mo—27
(5.22) Fo(r,z) = fo(r, 20 — 27) — 5/1 (@2 — @5 )(7,5)ds
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yields
(5.23) 1£5)]| oo < C(VEQ(0) + [lo—()llcg + l64(5)llcg)
< C(VEa(0) + VEu(s))

for n > 3, while if n = 2 we use the estimate
(5:24) |F ()| + [[#4()]| e < C(VE0) + |6 (9)lles + 164 (5)les)
< C(VEa(0) + V/Ea(s)).

In Equations (5.23)-(5.24), for notational simplicity we have estimated
]7“(7, xo —27) and its angular derivatives by a multiple of the initial en-
ergy E,(0); strictly speaking, this should be some functional of (E,(0),7)
for 7 small enough; then such an estimate holds by standard methods
for 0 <7< < %mo. Further, such an inequality is correct if we already
have a weighted L* bound as assumed in point 2) of the theorem. If n > 3
Equations (3.20) for « < —3 or (3.32) if a = —3, (5.21) and (5.23) give

(5.25) Ea(r) < CEL(0) + /O "B(Ea(s)) ds,

for some constant C, and for a function ® which is bounded on bounded sets,
and we conclude as in the proof of Theorem 4.1.

If n = 2, we note the identity

T

(5.26) o_(r,x) =¢p_(0, 2+ 27) + / es(¢-)(0,2(r — o) + 2)do.

0
From the second of Equations (4.14) we obtain

ler(9-)(s,2)| < C(llo-(s)lleg + 19a(s)lles + [l04(5)llcg + 1G(5)lleg )=,
so that
(5.27) |p—(,2)| < [|¢-(0)]| +C/O (lo—(@)cg + llpa(@)les
Ho1(0)lleg + 1G(a)lleg) (2(7 — o) + 2)" do.
It follows that
(528)  [|o—(7)]| p < [l&—(O)]| e + O/O (VEa(0)+ [G(0)llcg ) (T — 0)*do.
Let

(529)  F(5) = [|F)]] oo + |0~ )] o + [|04(5)]| e + VEals).
It follows from (3.20), (5.24) and (5.28) that we have

T

(5.30) F(r) < CF(0) + / @(F(J)) (1 +(r— J)O‘)da,
0
where ® is a function bounded on bounded sets. We have the following:
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LEMMA 5.2. — There exists a time T, depending only upon C, F(0), and
the function ®, such that any positive continuous function F : [0,74) — R
satisfying the inequality (5.30) with a > —1 is bounded from above by CF(0)+1
on [0, max(74+,74)).

Proof. — Let

M= sup |®(z)];
0<x<CF(0)+1
if M = 0 the result is obviously true, so assume that M # 0. From Equa-
tion (5.30) we obtain that on any interval [0,7) on which F < CF(0) + 1 we
have

T a+1
F(r) < CF(0) +/ M(1+ (7 — 0)*)do = CF(0) +M(T+ ;+ 1).
0
(Equation (5.30) with 7 = 0 shows that CF(0) > F(0), and continuity of F
implies that the set of such intervals is non-empty.) The result is established
by choosing
1 ra+17t/(etD)

2M’ { 2M } )
Because the existence time 7, in Theorem 5.1 does not depend upon =z,

Theorem 5.1 with n = 2 follows again by an argument identical to the one
given at the end of Theorem 4.1. O

T*:min( O

As in the case of the nonlinear wave equation (4.1), in order to obtain time
derivative estimates we shall need a more general version of Theorem 5.1. Thus,
we consider systems of the form (4.38)—(4.40) with a rather more general form
of the non-linearity G appearing there. It should be clear from the proof of
Theorem 5.1 that it is convenient to treat the case n = 2 separately, this will
be considered in Section 5.3 below. We thus start with a result which holds
in dimensions n > 3; the same proof gives similar results in dimension n = 2
for equations with a nonlinearity of higher order:

THEOREM 5.3. — Let n > 3 and consider the system (4.38)—(4.39) with
530 o)y + [ + 500 1Bt

+[1Bo(M)llep + B3 (| o + |1 B1(T)lgy < €
for some constant 6’, with the nonlinearity G in Equation (4.38a) of the form

(5.32) G = &~ (FO2E (g D2 F D 20 2 /2 )
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with G._(4,) = 0 (¢f. Equation (4.41)), and with H having a uniform zero of
order £ > 3 in the sense of (A.30). Suppose that the initial data satisfy

(5.33) P50 = Q02 0 e (MR N L) (Sa0.0),
(5.34) 00 f 15 0 € Hit (Ba0,0),
(5.35) 0r 15,00 € MR (Z0.0);

with some k > %n—i— 1, -1<a< —%, then:

1) There exists T > 0, depending only upon the constant C in (5.31) and
a bound on the norms of the initial data in the spaces appearing in Equa-
tions (5.33)—(5.35), and a solution f* of Equations (4.38)—(4.39), defined on a
set containing )y, -, , satisfying the given initial conditions, such that

(5:36) [|res(F) | pm e, ..y + 2 10 XiF ey 1)
=1

+ ||fa||Lw(QZO,T+) + 207 f* || Lo (0 < oo.

2) Further, if 7. is such that f® exists on Qg, r. with (5.36) holding with
T4 = Tw, then for all 0 < 7 < 7 we have

10,7+)

(5.37a) fa|zm017 € L>(Xz,,7) N Hg—i—l(zﬂﬁo,‘l')’
(5.37b) O f 150y, € Hi (Zag,r)s
(5.37¢) (%cfalzmoj € Hi (Bao.r)s

with uniform bounds in T; this implies

(5:38) (207 d1ll Lo (@up.r) + 1207 Pall Loy -

+ H(x + 2T)anaHL°°(QIO,T*) < 0.
If k> %n—i— 2 then we also have
(5.39) |z(z + 27)0-¢— ||L°°(on,u) < 0.
Proof. — The transition from Theorem 5.1 to Theorem 5.3 is rather similar to

that from Theorem 4.1 to Theorem 4.3. We note that the estimates done in
the course of the proof of Theorem 5.1, with n > 3 there, can be summed up
in the inequality

(540) [l IEH (@, 2D < C(IF o)1 g

where R B
f = (f) m(bAa $¢+,$¢_)-
The minor modifications of the proof of Theorem 5.1 needed to obtain (5.37)

and the estimate (5.38) on (x+ 2T)8T]7are identical to the ones described in the
proof of Theorem 4.3. The estimate on |20, ¢ ||~ (q,, . ) is obtained directly

o, T
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from Equation (4.49) and from (5.40). The estimate on [|20;dallL~(q,, ..) i
obtained from the (4.38a)-equivalent of the first of Equations (4.14). Next,
for k > in + 2 Equations (4.42) and (5.40) give

(5.41) er(p_) € Hy_, C CY.
Differentiating Equation (5.26) with respect to x gives

T

(5.42) Opp_(7,x) = 06— (0,2 + 27) + / (Ozes(0-))(0,2(r — 0) + x)do,

0
which together with (5.41) implies, by straightforward integration,

(5.43) z(x +27) |02 (1,2)| < C.
This, (5.41), and the identity 0;¢_ = (0r — 20, + 20;)d— = e (Pp—) + 20,H—
establish (5.39). O

5.2. Estimates on the time derivatives of the solutions, n > 3

To control the time derivatives of the solutions, as in Section 4.2 we introduce
an index m which counts the number of corner conditions which are eventually
satisfied by the initial data at the “corner” 7 = z = 0. As before we make a
formal statement only for solutions of the wave-map equation (5.1), it should be
clear from the proof that an analogous statement holds for solutions of (4.38)—
(4.39) under appropriate conditions on the coefficients there.

THEOREM 5.4. — In dimension n > 3 let N > m > 0. Consider a solution
[ Qao.r. — R of Equation (5.1) satisfying

(5.44) ||xe+(f“)HLm(onm) + Z HxXifvaHLoo(Qmo,T*)
i=1

+ 1 N Lo @y o) T 1207 f4 | Lo (g 1) < 00
and suppose that
(5.45) 0<i<m+1, 9:f%s, o€ Himiri(Saoo):
(5.46) 0<i<m, 80if"s, ,€Hitmi(Ee00),

with some k > %n—|—2, —1l<a< —%. Then for 0 < 1 < 7y and for 0 < i < m,
we have

(547a) 0<j+i<k+m-— in,
(T + 2$)3T}jaifalzzw € L (Za0,7) VHyimg1—imj (Bao,7),
(547b) 0<j+i<k+m—in—1

D [(T + 2x)57]jaif~a|z € Hgﬂn—i—j (Zao,7);

xg,T
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and
(5.48) 0<p<k—3in [(r+22)0. 700 [, €HY ,(Suor),

with T-independent bounds on the norms.

Proof. — The proof is an inductive application of Theorem 5.3, as in the proof
of Theorem 4.4, and will be omitted. O
5.3. Estimates on the time derivatives, n = 2. — In space-dimension 2

the following equivalent of Theorem 5.3 holds:

THEOREM 5.5. — Let n = 2, consider the system (4.38)—(4.39), suppose that

(5.31) holds for some constant C, with the nonlinearity G in Equation (4.38a)
of the form

(549) G = $_3/2H(33'u7 xl/Zf, ml/Q(bAa $1/2¢_, $3/2¢+),

with Ge_(¢,) = 0 (cf. Equation (4.41)), and with H having a uniform zero of
order £ > 3 in the sense of (A.30). Suppose that the initial data satisfy

(5.50) P50 = Q2 5, 0 € (R N CY) (Zag.0),
(5.51) 0:(2 2 f )5, 0 € HE (Za00),

(5.52) 02 )5, 0 € (HRE NV L™)(Sg0).

for some k >2, -1 <a< —%. Then:

1) There exists 7+ > 0, depending only upon the constant C in (5.31) and
a bound on the norms of the initial data in the spaces appearing in FEqua-
tions (5.50)~(5.52), and a solution f® of Equations (4.38)—(4.39), defined on a
set containing Q. -, , satisfying the given initial conditions, such that
(5.53) 1Mo (9., ) < 00

2) Further, for any 7. such that f® exists on Qg -, with (5.36) holding with
Ty = Ty, we have for all 0 <7 < 7

J?GIEEO,T € (Clo N Hig 1) (Bao,r), a'rfalEzO,T € (Hy N L>)(Xa0,7);

8w.]7a|2z0,7- € Hg(zﬂ)ﬂ')’

with bounds uniform in 7. This implies

(5.54) ||333r¢+||L°°(QZO,T*) + ||3Tfa||Lw(Qmo,T*) < 00.
If k > 4 then we also have
(5.55) }|(m+27)aT¢A}|Lm(Qmm) < 0.
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If k > 4 and if 83f| Segr € H,;ll then it further holds that

(5.56) (@ +27)07 6| < 0.

10,7*)

Proof. — The proof of point 1) is essentially the same as that of Theorem 5.1,
with the modifications discussed in the proof of Theorem 4.3. We note that
the key estimates (5.17) and (5.20) hold in exactly the same form here, simi-
larly for Equations (5.29)-(5.30). The estimate on 9, f in (5.54) follows from
the definition of the norm in (5.53). The estimate on [[20;¢+ | L~ (q,, ., I8
obtained directly from Equation (4.49) and from (5.17). To obtain (5.55) one
needs to prove a bound on d4¢_. This is obtained by differentiating (5.26)
with respect to v and using the already known uniform bound for G in H,
so that 4G € Hj_; C Cg'. Finally,

e+((x + 27—)87'(?5*) = (z +27)0; (e+(¢,)),
and integrating as in (5.26) one finds
(5.57) (x4 27)0r¢_(7,7) = (x + 27)0:¢_ (0, x + 27)

+ /T{(2(T —0) +2)0; (e4(¢-)) (0, 2(T — o) + z) } do.
0

The term at the right-hand-side of the first line of (5.57) is bounded because of
the hypothesis on Bzf Expressing e (¢_) by the right-hand-side of (4.42), one
immediately finds that all the linear terms that arise after differentiation with
respect to T are in Hg:ll or better, and therefore give a finite contribution when
integrated upon. The contribution from the non-linearity G can be rewritten as

v N {H70, f + Hya0r¢" + Hy 0,6 + Hy, 00:6. },

with appropriate functions H, which, by Lemma 4.6, all have a uniform zero of
order £ — 1 > 2 in their arguments. This easily implies that the coefficients (in-
cluding the ! factor) in front of the 7 derivatives are in L, and since each of
the T-derivative terms is in Hg:ll or better, the whole term is in Hg:ll C Cg‘fl.
This is sufficient to lead to a finite contribution in (5.57), and (5.56) follows. O

We finally arrive at the two-dimensional equivalent of Theorem 5.4; com-
ments identical to those made in Section 5.2 apply here. The main difference
is that in dimension 2 we need the L*° bound on 0.f to obtain existence,
which leads to the compatibility condition (5.62) on the second 7 derivatives
of fwhen one attempts to iteratively apply Theorem 5.5. The proof is again
identical to that of Theorem 4.4 and will be omitted. Let us just mention that
one easily checks that the conditions spelled out below guarantee that the ini-
tial data for the inductive system of equations are in the right spaces for the
iterative application of Theorem 5.5. Further, Equations (5.54)—(5.56) provide
the a priori bounds which guarantee that the existence time of the solution
will not shrink at each iteration step.
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THEOREM 5.6. — In space-dimension 2 let N 3 m > 0. Consider a solution
[ Quo.r. — R of Equation (5.1) satisfying

(5.58) 17 lleo ...,y < 00

and suppose that

(5.59) 0<i<m, 3ifalzmo,o € (Mitme1—i NCY)(Zao,0),

(5.60) 0<i<m, 3zaif“|zw,o € Hitym—i(Xa0,0)

(5.61) O 5,0 € (HE 0 L) (Za0.0),

(562) 8T+2f~a|210,0 € Hl;—ll(zwo,o)a

with some k > 4, —1 < a < —%, Then for 0 < 7 < 7 and for 0 < i < m,
we have

(5.63a) 0<j+i<k-+m—3,

(T + 2$)3T}j3ifalzzw € (Miymi1—i—g N CY)(Sao,r);
(5.63b) 0<j+i<k+m-—3

O (T + 296)37}J8if“|2m, € Hiymioj(Xagr):

and

(5.64) 0<p<k-3, [(r+22)0:]" 0" "5, €My ,(Saor),

with T-independent bounds on the norms. O
5.4. Polyhomogeneous solutions. — We are finally ready to prove poly-

homogeneity at Z of solutions of the wave map equation:

THEOREM 5.7. — Let § = 1 in odd space dimensions, and let § = % n even
space dimensions. Consider Equation (5.1) on R™, n > 2, with initial data

(5.65) OLf% (rmgy € (AL NL®)(My,), i=0,1, n=2,
(5.66) [ {r=0y € (Al N LX) (May)s Orf*)(ro) € Al(May), 1 >3.

Then:
1) There exists T4 > 0 such that f* exists on Q7. , with

(5:67) [ Flleg,..) <00 n=2,

(5.67b) Nz (f) |y ) + D 1eXif (.0, )

- i=1 -
I L @y ry ) + 1207 f Lo (00 -y ) <00, 123
2) If the initial data are compatible polyhomogeneous in the sense that

VieN, 9 f%0) e L®(M,,),
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then the solution is polyhomogeneous on each neighborhood Q0 . of It on
which f exists and satisfies (5.67) with 74 replaced with Tx.

Proof. — Existence of solutions follows from Theorem 5.1. Theorems 5.4
and 5.6 give the time-derivative estimates which are necessary in Theorem 4.9.
In order to apply that last theorem, we set

(5.68) o= (ﬁ;)
(5.69) U1 = (f9), W2 =(¢%).

Equation (5.2) takes then the form (4.58). As in Theorem 4.10, for n > 4
even we take § = %, p=n+3, ¢ =mn—1; while for n > 3 odd we take
§=1p=4in+3),g=3(n—-1). Forn=2weset § =1, p=3,¢q=1
The non-linearity here has a uniform zero of order 3, which is compatible with
the hypotheses of Theorem 4.9, and the result follows by that last theorem. O

Acknowledgements. — We are grateful to Helmut Friedrich for many useful
comments on a previous version of this paper.

Appendix A

Function spaces, embeddings, inequalities

Throughout this paper the letter C' denotes a constant the exact value of
which is irrelevant for the problem at hand, and which may vary from line to
line.

Let M be a smooth manifold such that
M=MUOM

is a compact manifold with smooth boundary dM. Throughout this work the
symbol x stands for a smooth defining function for dM, i.e., a smooth function
on M such that {z =0} = M, with dx nowhere vanishing on M. It follows
that there exists g > 0 and a compact neighborhood K of M on which x
can be used as a coordinate, with K being diffeomorphic to [0, 2] x M. For
0< 1 < a9 <29 We set

(A.1a) My, ={peM|0<z(p) <z},
(A1b> Mm1,z2 = {p €M | T < x(p) < 332};
(A.lc) OM,, = {peM|z(p)=a1}~0M.

In what follows the symbol £ will generally denote one of the sets M, My, ,
or My, z,. Any subset of M;, can be locally coordinatized by coordi-
nates y° = (z,v?), where the v*’s can be thought of as local coordinates
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on M. We cover M by a finite number of coordinate charts O; so that the
sets €2;, where

Qi = (O,xo) X Oi,

cover M,,. We use the usual multi-index notation for partial derivatives: for
B=(B1,...,0n) € N" weset 8 = 07" .. 9P We will write 87 for derivatives
of the form 052 -- 9%, which do not involve the 2! = z variable.

If O is an open set, for £ € NU oo we let C(O) denote the usual space of
k-times differentiable functions on O; the symbol Cy(O) is used to denote the
set of those functions in Cy(O) the derivatives of which, up to order k, extend
by continuity to O. We emphasise that no uniformity is assumed in C,(0O), so
that functions there could grow without bound when approaching the boundary
of O. Nevertheless, the symbol ||- ||, will denote the usual supremum norm of f
and its derivatives up to order k. The symbol Ci4(O) denotes the space of k-
times continuously differentiable functions on O, with A-Hélder continuous k-th
derivatives.

For a € R, k € N and A € (0, 1], we define C§(2;) (resp. Cg, 5 (%), Ci(£),
Cir A (£2;)) as the spaces of appropriately differentiable functions such that the
respective norms

||f||C3(Qz) = SUPpeQ; xiaf(p)}ﬂ
|‘f|‘c6¥+/\(9i) = ”f—“C(S?l(lgl) sp x(y)fotf)\|f(y) _ f(y’)I,
(A.2) Ve yy €B(y. ba(y) N ly —y']?
I fllea o) = Z ||xﬂ155f||cg(m)a
0<IBI<k
I fllez, 0 = Ifllez_ 0+ X 1270 Fllcs, s
|B|=Fk

are finite. Let O be an open subset of M, or a submanifold with boundary
in M; for such sets we define:

(A.3) { 1flleg o) = sup; [ flleg@inoy + 1flley@ar,, 2n0);

1flleg, ) = supi [ flleg, , inoy + 1 f oy sy 2n0)-
We note that f € Cp/7(Q) if and only if 277 f € C2, ,(Q).

We define the spaces HE(£2;) as the spaces of those functions in H}°¢(€;) for
which the norms ||. |2 (q,) are finite, where

B dx
(A4) Mgy = > [ @=rmomp2an

0<|8|<k
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Here dv is a measure on OM arising from some smooth Riemannian metric
on M. This is equivalent to

(A.5) Z /(x_a(max)m@ff)Qd—xdv,
0<Br+18|<k 7 St x

and it will sometimes be convenient to use (A.5) as the definition of || f ”%‘?(Q)

For O’s such that Q; C O the spaces H{(O) are defined as the spaces of those
functions in H°¢(O) for which the norm squared

(A.6) 112 0) = S 1 e + 112 conon,, o

is finite. We note the equivalence of norms,
HfHHo(O) ~ ||f||H31/2(O)’

and that HY (Mg, 2,) = Hx(My, »,) for all @ and k whenever x1 > 0, the norms
being equivalent, with the constants involved depending upon x; and x2, and
degenerating in general when x; tends to 0.

It is often awkward to work with coordinate charts, in order to avoid that one
can proceed as follows: Choose a fixed smooth complete Riemannian metric b on
M. Let x be any smooth defining function for )M, we let X; be the gradient of
x with respect to the metric b; rescaling b by a smooth function if necessary we
may without loss of generality assume that X; has length one in the metric b in
a neighborhood of 9M. As before we cover M by a finite number of coordinate
charts O; with associated coordinates v*; the v*’s are then propagated to a
neighborhood of M by requiring

X1 (UA) =0.
This leads to a covering of M, of the kind already used, and one easily checks
that
Xl = 8x

in the resulting local coordinates. This gives then a globally defined vector 0,
on My,. Fori=2,...,r welet X; be any smooth vector fields on OM satisfying
the condition that at any p € OM the linear combinations of the X; exhaust
the tangent space T,0M. (If OM is a sphere S"~1, a convenient choice is a

basis of the collection of all Killing vectors of (S™~1, h), where A is the unit
round metric on $”~!.) Over the domain of a chart (v?) of M, one thus has

(A.7a) 04 =Y fa(0®)Xi,
=2

(A.7b) X; = i XA (0804,
A=2
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for some locally defined smooth functions f};,,XlA; clearly things can be ar-
ranged so that those functions are bounded, together with all their partial
derivatives. We propagate the X;’s to M,, by requiring [X1, X;] = 0, equiva-
lently

(A.8) D XA =0.

It follows that (A.7) still holds with z-independent functions. For any multi-
index 8 = (01, 02,...,0:) € N” we set, on My,

(A.9) Df = X' X5 X[ f = O Xy X
It follows that we have (here, |3| = 81 + -+ + 5r)

I fllegangy = D 127D Flicg (asay)s
0<|BI<k

—a dx
||f||f2}1g(Mm)% > / (z wlpﬁf)??dV
0<|8l<k ? Meo

(where =~ denotes the fact that the norms are equivalent), etc.

There is a useful way of rewriting |[.[[# (as,,) which proceeds as follows: for
feH(My,), s € (1,2),and n € N we set

(A.10) fu(s,v) = f(x = xos/2"™,v),

letting ~ denote again equivalence of norms one then has, after a change of
variables,

2dx
(A1) £l (ary) = / D0 ) S
) rglog%gk [2_"$0,21_"w0]><8M} } T

—2a 22no¢/ Dﬁ (s, 2d d
"o Z Z [172]><8M| f (S U)‘ o

n210<|B|<k

Q

g 2 Z 22" full i, (1.2 x001)-

n>1
More precisely, we write A ~ B if there exist constants C1,Cs > 0 such that
C1A < B <(C5A. In (A.11) the relevant constants depend only upon « and k.
It turns out to be useful to have a formula similar to (A.11) for functions

in H{ (Mg, .z, ); this can be done for any x; and z2, but in order to obtain uni-
form control of certain constants it is convenient to require 2xo < 1. For such
values of z; and z3 we let ng(x1,22) € N be such that x;/2%0F! < x5 <
r1/2". Forn € N, n > 1, and for any f : M,,., — RY we then define
fn:(1,2) x OM — RY by

flxys/2™ v) if n < ng,
(A.12) Jn(s,v) = f(x2s,v) if n=no+1,

0 if n>mng+1.
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(This coincides with the definition already given for M,,, when this set is
thought of as being an “M,, ,, with zo = 07, if we set ng = +00.) A calculation
as in (A.11) shows that for any 2zs < x1 < x¢, there exist constants C; and ¢y,
independent of xg, x1 and x2, such that for all f € H¥(My,. 2, ),

no 2

(A13) 1272 Y {2 full (. 21x0nn) }
n « no 2
<3, .y < Cra > {2 full moraixonn } -

n

Equation (A.11) leads one to introduce(!®) spaces By, , that arise naturally
from weighted Sobolev embeddings, c¢f. Equation (A.25) below: we define

(A.14) ||f||zsk“ Mey) = w5 Z 22na||fn||%‘k+k([l,2]><8M)7
n>1

fn as in (A.10), and we set

B\ (Myy) = {f € Crpa(May) 5 1 fllsg,  (May) < 0}

k+X
Clearly
Bl?Jr)\ (Mﬂﬁo) C CI?Jr)\(Mzo)'

Since the general term fy, as well as sums of the form X, > x fy,, of a convergent
series tend to zero as IV tends to infinity, for f € By, \(My,) we actually have

(A.15) hm W lleg, .,y = 0.
We have the trivial inclusion,
(A.16) o >a = C\(My,) CHE(M,,).

The fact that the inequality o/ > « in (A.16) is strict has various annoying
consequences, which are best avoided by introducing yet another space — the
space G of functions in Hf (M,,) for which the norm squared

—a dz
(A.17) ||f||é?(Mm0):sup{ Z/ |z +51Dﬁf(x,v)|2?dy}
n2l * gk (27w, 21 P ao] xOM

is finite. We note that || f||ge(ar,,) is equivalent to

(A.18) rg“ sup {27 fall o (,21x 000 }

(10) The symbol B might suggest to the reader that we specifically have Besov spaces in
mind; this is not the case, and we hope that the notation will not lead to confusion.
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with f,(s,v) = f(xos/2™,v), as in (A.10). To define the G (M, 4,)’s, assum-
ing again that 2 < x5, we let I, (21, 72) be defined as

(2—113:1’ 21—77,3:1) if n< no,
(Alg) I, = ($2, 2$2) if n=mng+1,
(%) if n>mng+1,

where ng is as in (A.12). For all f € H}°°(M,, .,) we set
dx
(420) 113, .,) = s | / (et 1 Ly}
i (Mg =) = 7 ;%I;Sk QN {1, xdM} v

(we identify (a,b) x OM and M,p). Similarly to (A.13), there exist con-
stants co and Cs3, which do not depend upon xg, x1, and x2, such that for
all 2z9 < x1 < xg,

(A.21)  coxy “sup || fullm,(uaxom) < IIfllgem,, o)
< Coxy @ sup || full . (1,21x000) -

We have the obvious inequality

(A.22) [ fllge @) < Ifllme (@)
together with the modified version of (A.16),

(A.23) o >a = Cf, C O
in particular the function (x,v) — z® is in Gg(My,)-

If Sk denotes a space of functions, where k € N is a differentiability index,
we set Soo = [Npen Sk €9 % = pen 5 etc.

We note the following:

PROPOSITION A.1. — Let Q =M, or Q = M,,, 0 <z <o, or Q= Mg, 4.,
229 < 21 < o, and let HY = HY(Q), ete. For k' e N, A€ (0,1, 0 <k + X<
k — %n ENor0<k+A<k-— %n € N we have the continuous embeddings

(A.24) Hy CBRyx CClyy, Hy COF CCa,

and there exists an xs-independent constant C' such that we have

(A.25) vieny, Nflse @ < Clifllxg @),
(A.26) viegr, Iflleg, @ <Clflgp@-

Proof. — (A.25)—(A.26) follow immediately from (A.11) and (A.13), together
with the standard Sobolev embedding; the remaining inclusions in (A.24) are
trivial. (|
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All other inequalities involving Sobolev spaces have their counterpart in
the weighted setting; we shall in particular need various weighted versions of
the Moser inequalities. The reader should note the different weights for the
members of Equation (A.31) below — this shift of weights in this inequality is
the key to our handling of nonlinear equations.

PROPOSITION A.2. — Let Q =M, or Q = M,,, 0 < x1 <z, or Q@ = My, 4.,
2z < 1 < x, and let HY = HY(Q), ete.

1) There exists a constant C = Cla,d/,B,k,x1) such that, for all
fe Hg/ NCE and g € Hf mcgﬁﬁfa , we have
(A.27) 1£9ll3go+0 < C(IFlleg N9llzgz + 1 a9l goroer)-

Further, for all |y] <k,
(A.28) [|27 DY (fg) — (2D f)g o0
S O{”f”c(?”gHH,: + ||f||7—(g:1 (||$319||Cg+ﬁ—a/ + Z ||Xig||cg+,8—a/)}7

i=2
where the vector fields X are defined in Equation (A.7).

2) Let F € Cx(M x RYN) be a function such that for all B € RY there exists
a constant Cy = C1(B) so that, for all p € RN, |p| < B, we have

||F( ap)Hcg(MZO) S Ol.

Then for alla < 0, 8 € R, and B € RY there exists a constant Ca(B, k, o, 3, 71)
such that for all RN -valued functions f € 'Hgfﬁ(ﬂ) with ||z f| @) < B we
have

(A.29) [FC ")l < Co(1+ [ £lle-s)-

Further, if F has a uniform zero of orgi’er £ >0 at p = 0, in the sense
that for all B € R there exists a constant C(B) such that for all |p| < B and
0 <4 < min(k,¥),

I'F(.,p)

: < C(B)|p|*
oy <C(B)pl" ",

(A.30) H

CR i (May)

then for all « € R, 8 > 0, there exists a constant Cg(é,é, k, o, 8, B) such that,
for all f € HY™P(Q) with Il fll oo () < B, we have

(A.31) HF( 7$5f)||71g < C3||f||Hz—w-

REMARK. — Hypothesis (A.30) will hold if F is e.g. a polynomial in p with
coefficients of p? vanishing for j < ¢, and being functions belonging to CJ
for j > /.
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Proof. — We shall give a detailed proof of (A.29) and (A.31), the inequali-
ties (A.27)—(A.28) follow by an analogous argument using [35, Vol. III, p. 10,
Equ. (3.21)—(3.22)], ¢f. the calculation of Proposition A.3 below. Let, similarly

to (A.10),
B

Fa(s,0) = F (o = 3 0)s () £(o = 3v)):

from Equation (A.11) we have
2 (e} no
(A.32) | F(. 7$5f)||Hg(Mmo) ~ @ 22" Pl B, (. 2y x o01)-
n>1
We have the obvious bound
ToS\P ./ 208
s | (52) 7(22,0)| < 1o Flie o,y < M.
[L,2]xoM | N 2 2

Further the partial derivatives of (s,v) — F,(s,v,p) with respect to s and v
at p € RY fixed, |[p| < M, can be bounded by a constant depending only upon

s [FC g,

The usual Moser inequalities [35, Vol. ITI, p. 11, Equ. (3.30)] give

IF 21 xoary < C(L+ 2722 fullFr, n.21x000))

with f,, asin (A.10), and with a constant C' depending upon k and M. Inserting
this in (A.32) one obtains (recall that a < 0)

2 no —<n
(A33) |FC.o N,y < C D22 (1+ 272 fallfr 1 21x0n)
n>1
< C(l + Hf”?—(g_ﬁ(Mmo))'
This establishes (A.29) for Q = M,,, and (A.29) with Q = M readily follows.
The remaining ’s are handled in a similar way.

To establish (A.31), we note the inequality
8‘7|+iFn 5P max(£—1i
‘#‘ < Clp| (¢ ,0),
oy op*

which follows from (A.30) when |y|+i < k. Letting y stand for (s,v)€ [1,2]x0M,
it then follows that for |o| < k we have

07 Fy| = ‘ Z C(Ul,...?ai,ﬂ)(ﬁ

B(lor|++|oil)
)
[vI+lo1]++|oi|=]o]

ohI+iE, o ”,
*Gran? (Pfn) -0 (sﬁfn)‘
< 2—Eﬂnc Z |801(8ﬁfn)} }801(8[3.](‘”)}

lo1]|+-+|oi|<|o]
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The usual inequalities [35, Vol. III, Chap. 13, Sect. 3] give

1 Fll mr (1,21 x0nr) < C(ky M)27P™| frll i (1,21 x 001)
for some constant C(k, M), and one concludes from (A.32), as in (A.33). O

We have the following sharper version of (A.27)-(A.28):

PROPOSITION A.3. — Let Q =M, or Q = M,,, 0 <z <z, or Q= Mg, 4.,
2zy < 1 < x0, and let HY = HE(Q), etc. There exists a constant Cs =
Cs(a, B, k) such that, for oll f € HY NB§ and g € Q,f N COB we have

(A34) 1 Fgllnzrs < s (g lgllgg + 17z lgllcs).

Moreover it also holds that

(A.35) Vhyl <k, [[2MD7(fg) — (@D f)g o

< c{I1f ssllgllgy + £l (l20agllcs + D 1 Xigllee) }-

i=2
where the vector fields X are defined in Equation (A.7).
REMARK. — A useful, though less elegant, inequality related to (A.34) is
(A36) V|y+o| <k,
|27 (DY )2 (D7g)||yya+0 < Cs(l£llsz llgllgs + 1 f 1z gl ce)-

Proof. — We will prove (A.35), the proof of (A.34) is essentially iden-
tical.  When Q = M,, we do the rescaling f,(s,v) = f(zos/2",v),
gn(s,v) = g(xos/2™,v), we then have, for all |y| < k,

(A37) [« D (£9) = (D" g0

r gy Hoto) Z 22 +0) | DY (f,,g,) — (D’Yf”)g"HiIg([l,Q]xaM)

IA

—2(a+ n(«
Carg DN 920t B) (|| £ (12 o g2, + [ £l 3, 1D 13

n

—2(a+ na n,
< Cay (S22 ful3 ) sup (22l guly,)
+( 322 full,, ) sup (227 Dgalli~) }
C(I11IEg g2 + 171 llgll2s)

2
Cs (£ g llallge + 1f ez, Nlglles)”™

(In the third line above we have used the inequality [35, Vol.III, p. 10,
Equ. (3.22)].) The case Q = M follows immediately from the above; the case
Q = My, is treated similarly using (A.12)-(A.13) and (A.19)-(A.21). O

%

IN
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Similar results can be proved in weighted Holder spaces:

LEMMA A4, — Let Q = M, or Q = M,,, 0 < 21 < zg, or Q = My, 4,
209 < a1 < o, and let C¢ = CX(Q). Let f € C2NCY and g € C) NCY with
oa+0=vy+p=o0c. Then we have fg € C] and

(A.38) I1fglleg < Ci(Ifllegllglicy + llglles 1/ lleg )

Proof. — The proof is very similar to that of Propositions A.2 and A.3.
We use the same conventions as in (A.12), (A.19). We have | fgllc; ~

sup,, 2" || fugnll ¢y (w), Where
(A.39) w=[1,2] x OM,
similarly for f and g. The interpolation inequality [27, App. A]
[ frgnllenw) < CUlfallscllgnlloww) + lgnllscll fall crw))

leads to the conclusion. O

We have the following C,f equivalent of the second part of Proposition A.2,
with a similar proof, based on Lemma A.4:

LEMMA A.5. — Let F be a function satisfying the hypotheses of point 2) of
Proposition A.2, with a uniform zero of order ¢ in p in the sense of Equa-
tion (A.30). Then, for anye >0, B €R and f € C,f N L>® we have F(.,x°f) €

Cf“e, and there exists a constant C depending upon || f||L~ such that

(A.40) PG ) g < CA1S ) - I p-

The space of polyhomogeneous functions Aphg = Apng(M) is defined as the
set of smooth functions on M which have an asymptotic expansion of the form

o0 Nri

(A.41) f~ Z Z fija™i In? z,
i=0 j=0

for some sequences n;, N;, with n; /" co. The polyhomogeneous expansions of
the introduction are of this form if 7 there is replaced by 1/z; this corresponds
to the conformal transformation of Section 2, which brings “null infinity” to
a finite distance. We emphasise that we allow non-integer values of the n;’s;
however, we shall mostly be interested in rational ones, as those arise naturally
in the problem at hand. Here the symbol ~ stands for “being asymptotic to”:
if the right-hand-side is truncated at some finite i, the remainder term falls
off appropriately faster. Further, the functions f;; are supposed to be smooth
onM, and the asymptotic expansions should be preserved under differentiation.
It is easily checked that the space Apng is independent of the choice of the
function z, within the class of defining functions for OM.
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Appendix B

ODE’s in weighted spaces

In our handling of PDE’s we will need ODE estimates to obtain information
about solutions, we thus begin with some a priori estimates in weighted spaces
for ODE’s. While the results are well-known in principle, and easy to prove,
we present them in detail here because their precise form is necessary for our
arguments elsewhere in this work. For a vector w we denote by ||w| or by
|w| the usual Euclidean norm, while for a matrix b the symbol ||b|| denotes its
matrix norm.

B.1. Solutions of 8-¢ + by = c in weighted spaces. — Let O be an
open subset of M, which might be the whole of M, or a coordinate patch
of M with coordinates v*, whichever appropriate in the context; we set

(B'l) u0027w1 = (:Eg,xl) x O x [O,T],

(B2) Sw27m1 = (xZaxl) X 07

with 0 < 22 < x1. The time variable 7 will usually be the last variable, so 7
will run from [0, T'] whenever Uy, , is involved. Strictly speaking, Uy, ,, should
carry an extra 7' index, but we have not done that in order not to overburden
notation. To avoid ambiguities we emphasize that the spaces C{ (U, »,) in the
Proposition below are defined as in the previous section, with the v variables
there corresponding here to some local coordinates on O together with the time
variable 7; the time derivative 0, should be understood as a one-sided one
att=0andat T="1T.

PROPOSITION B.1. — Leta € R, b € CY(Uy, 2, End(RY)), ¢ € C(Uyy 21, RY),
then the unique solution ¢ of the equation

(B.3) Orp +bp =c,
with initial data @ = ¢|,—g € CX(Suy o1, RY) is in CF Uy, 2y, RY) with

(B4) lleles @y..r)
< O(n, Nk, T2, blleo s, o)) (1Plles s,y ) + lelle @y o))
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We also have the estimates

(B:5) [le(lgg(s,, .y < Cel’l={ [l Olles

.E2 ml)

+ e IImesH Hca(sw,ml)ds}’

0
(B.6) o()leg vy < CeX =L [[0(0)] s,

(=)

+ efclb“"’SHc(s) ds

T (=0 blocs )
e 6l .. .., (1O egs.n

s bt
+/0 e I ||C(t)||cg(812,zl)dt)ds}'
REMARKS

1) Analogous results in By} spaces can be proved by similar arguments.
2) An a priori estimate in weighted Sobolev spaces for (B.3) follows from
Proposition 3.1 by setting E*9,, = 0. ® id and L = ¢ = b = 0 there.

Proof. — Let k € N*, and let 8 = (81, B2, . .. Bn) be a multi-index with | 3| < k;
0% verifies the equation

(B.7) 0:0%p = —0°(byp) + 0°c.
Let € > 0 and set
1/2
e(.,t =(€—|—Z 2(B1—a) (0P, 0" >) ,
1BI<k

E(t.e) = |le(,t: )| pes,, ..

When k = 0 one easily finds d-e < ||blle + 2~ %|c|, and (B.5) readily follows.
For k£ > 0 we have

dre = 1 37 22000 (9,08,, 6%

e
IBI<k

—Z (1= |95 (—bp + ¢)| - |07
Bk

C(k,n)
e

IN

(162l (Suy.0p) + lellea(sa, .)€

IN

C(k,n)([Ibellea(s,, o) + lelles(s,,..))s

where C(k,n) is a constant depending upon k and the space dimension n,
and which arises from the inequality Y7, |a;| < /p\/>_; |ai|? for any real
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sequence (a;). The weighted interpolation inequalities, Lemma A.4, imply

1b¢llce (s.y.) < CUIBN oS0y ) 1€llee (Suy ) T 10lleo(s,, o) 1€llcg (Seyar))s

where C' is a constant which depends upon k, N and n. It follows that

dre < O|Ibllzoe(sey . llles 8upar) + 10llcos,, o) 1#lles Sy )
+lellea(s.y..p))
< O(|IbllooE (e, ) + [1bllo(s,y ) 19llcg (Suy o) + l1ellcg(Sayer))s

with perhaps a different constant C'. By integration we obtain

t
e(t) < e(0) +C/O (I0llo B (s, €) + 16(s)lco(5,y o) 19(8) leg (Suyar)
+llels)lles (s, .,)) ds,
from which we deduce

t
E(t,e) < E(0,€) +0/0 (bl E (s, €) + 10(s)llco(s.y o) 19(5) g (Sugap)

+lles)lleg(s.p.ey)) ds-

Using Gronwall’s Lemma and letting ¢ — 0 one obtains
t
E(t,0) < eCIPl=tE(0,0) + C/O ec”b”‘”(t_s)(||b(8)||cg(szz,zl) [le(s)lleg (Say.ny)

1166 e (52 ) ) 45

The estimate (B.5) for [¢llca(s,, .,) inserted in the last inequality leads to
Equation (B.6). The time-derivative estimates follow immediately from the
above and from the equation satisfied by . O

B.2. Solutions of 8,¢ 4+ b¢ = ¢ in weighted spaces. — All the results
in this section, as well as in Section B.4 below, remain valid if we replace the
set Uy, z, defined in Equation (B.1) with S, 5, defined in (B.2) — the time
dimension does not play a preferred role in the current problem. We start
with the following elementary result; the point is to ensure that the relevant
constants are xs independent:

LEMMA B.2. — Let g € C2(Uzp 2y, RY), 0 < 29 < 1. Then f defined
fora>—1 by
f(x,vA,T):/ g(s, v, 7)ds
T2

is in Cp ! (Uyy 2y, RY), with

1
1 leg #1024y ey < max {1, — Hlgllegae, .,)-
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Similarly fo defined by

folz,v,7) = — /11 g(s,v,7)ds

satisfies
(1 + (hlx)g)_l/sz € Clg(urz,rl) for a = —1,
fa € C,Znin{aﬂ’o}(blz%ml) for a <0 and a # —1,
with
1 !
”f2||c’k“i“{a+1*°}(uzzml) < InaX{l, 1+ a’v 1+a‘}||g||c,‘§(um2,m1)'

Proof. — We have the trivial relations
xT 1 Tl
/ s%ds < —— 2T for a > —1, / s 'ds=1Inz; —Inz,
i) « + 1 T

as well as the commutation rules:

ar/ gdz = g(x), 8UA/ gdmz/@UAgdx, 87/ gdm:/&gdm.

Note that

BS) e, = 10efllep wmy + > 10004 Flener

0<i+[8|<k

®2,®1 wo.wp )’

with |0z fllee | @h,..,) = l9llce_ @, ., )- To estimate 9L9°, f one writes

, z z 1
00011 < [ [020%lds < [ 0:0%less"ds < a1 0,0l
s oo a+1
The results for f5 are established in a similar way. O

We shall use the following notation
(Bg) Iwz - {CE = {Eg},

with the range of the other variables being in principle clear from the con-
text; this is the equivalent of the set OM,, of Equation (A.1) when the set-up
described there is assumed.

PROPOSITION B.3. — Let 0 < x5 < 21, suppose that b € C;, Uy, 2, , End(RY)),
0<e<1,cé€CiUsyu, RY), and let ¢ be a solution in Cr°Uy, ) of the
equation

(B.10) 0z0 + b = c.
Then the following hold:
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) Ifa< —1, then ¢ € CoM (Uyy ,) and we have, for a+2—e# 0 and for
x2 < x3 < x1 small enough so that C(||b||cae,a:3) <1,

(B.11) ||¢||cg+1(um2,m3)

1 1
< (xﬂl*l + ——|le]|ce ),
<o C(||b||cge,a:3) 57 dllco.,) 4ol lellcg Wy )

where
xéfﬁ
(B.12) C(lIbll e, w3) = m”bncgﬁ(uzz,zs)-

Moreover, if xo < x3 < x1 is small enough so that CiC(||b||C0_e,x3) < 1, where
C; is the constant in the interpolation inequality (A.38), then

(BA3) I9lz1, ) < Ca(Iblleys Corras ) {108) iy (y + el ey
+ ||b||C;€(Z/112Ym3)(||¢(x3)||00(1—m3) + ||C||cg(u12,m3))}7
with Ca(||b||co_e, Ci,x3) an increasing function in the first and third variable.
2) If a = —1, then (1 + (Inz)?)"12¢ € CQ(Usy.z,)-
3) If a > —1, then ¢y, =limy_y, ¢ is in Cr(Z,,), with
(B.14) ¢~ Gy € O Unaar) + C Uas ),

¢ € C/?+1(Z/{$27$1) Zf (bwz = 0} and

1 :I%Jra
B.15 . < ( - . )
( ) ||¢||L Uy ,zg) = 1— C/(HbHCO_E?x?)) ||¢||L (Iz3)+ 1+a ”C”Co Uy, e3)

for xo < x3 < 21 small enough so that

1—e
T
C'(Blleyess) == Tl e gy < 1

Moreover for xs small enough so that CiC'(||b||Cge, x3) < 1 we also have
(B.16) [|8llco @, . < C;(||b||c0—e,ci,x3,k){||¢(x3)||ck(zzs) + llelleg @y o)
bl <ry .y (19@8)cuizay) + el e o)) 1

with C!, an increasing function in its first and third argument.

REMARKS

1) The inequalities above are standard when x2 > 0 and when the constants
are allowed to depend upon xo, regardless of whether or not x3 can be made
small. As already mentioned, the point here is to make sure that the constants
do not blow up as x5 gets small.

2) Log-weighted estimates are easily derived in case 2); they will, however,
not be needed in what follows.
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Proof. — 1) For simplicity, we will write C for C(Us,.2,). Let ¢ be a (lo-
cal) solution of (B.10), corresponding to initial data at {z = x1} in Cx(Z,,).
For a > 0 set

calw, v, ) i= (a+ Y (0% | 979)) v

IBI<k

and e := eg. Let x3 € (z2,21)N(0,1] be such that (z3~%/|2 4+ a — €|)'||b||co—e <1
We have for all 25 < z < x3,

(B.17) —Opeq = —éZﬂlmzﬁl’l@%laﬁw I

~ LS o (970,0/0%) 11,

e
@ |8I<k

Since 3, is non-negative we have —d,e,(z,v?,7) < II ; further

_ 1 261 /58 3
(B.18) I = - > a0 (bg—c) | 079)
1BI<k
1
< B1 58 B1 58 BB
< - > (|27 05| + 2705 (bg)|) - |27 %9
1BI<k
< > @M% + 2710 (b))
|61 <k
Clearly

Z |27 0P ¢| = 2 Z |z tP19P¢| < x| cllce,

Z |x5135(b¢)| — gotl—e Z }xfa71+e+ﬁ1aﬁ(b¢)| < xa+176||b¢”cg+1—€a

1BI<k |B|<k
which gives
(B.19) —0peq < x%cllee + mo‘+1_€||b¢||cg+1fe.
Consider, first, the case k = 0; in this case (B.19) reads

—0req < 2%cllce + ma+1_€||b||cge

¢||Cg‘+17
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which, after integrating over [z3, ] and passing to the limit ¢ — 0, gives (recall
that o < —1)

a+1 a+1
x x4

1+OZ) + (1+ ))HCHCS‘

e(x,vA,T) < e(xg,UA,T) + (— (

(T Y g
24+a—€) (24+a—c¢) S Co
xotl
< ¢llcy(z,,) + m”cﬂcg
a+2—e a+2—e
(20 +(gra=g ~@ra=g) e 1ol
Suppose for the moment that o + 2 — e < 0; Equation (B.20) yields
o+l pot2—e

(B-21) e(z, 0", 7) < |9l co(z.,) + Ty ||| clleg + m”bnco—e cotts

and since 717 < 317* < 1 we obtain

= e(z, v, 1) < 5 Nblleo.,) + T

1—e
Tg
ﬁ“ lleze - lI@llco+r-
On the other hand, if & +2 — € > 0 then
4 a+1 $§+2 €
e(z,v", 1) < ||9lley(z.,) + T ||| clleg + mIIbHcge Nellgesr,

which gives

= e(z, v, 1) < x§17a||¢”00(113) +

el

mk

ﬁ” ||C €

¢||c“+1

The inequality [[¢]lca+1qy,, . ) < SUD[, 4y x717% shows that in all cases we
have

1 . 1
o < S + — o
||¢||C0 +1(uz2yzs) =1 C(||b||co_€,x3) (1:3 ||¢||Co(l'm3) |1 OZ| ||C||C0)7

with the constant as in Equation (B.12). Counsider, now, any 0 < k € N;
Equation (B.19) and the interpolation inequality (A.38) give

~dsea < 2elleg + 2T Cu(bllee - [9llcos + Blle- - 1Bllea ).
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An argument identical to the one before, considering separately the cases
a+2—e>0or <0, leads to

C(k) —1l-a 1
at1 < .
[Bllcors < 7= GOe - 7) (25" I6lcrir.,) + sl lelleg )
Ck)Ci zy €
’ b —e a+1
i 1 _CiC(||b||co—€ax3) |2—|—a—e| ” ||Ck HQSHCOJr
O(k,l‘g)

1= CiC(Jbllo—v, 73) (Nélcyiz.y) + lielleg
0

C(k)C; L 1
bllo— (23 .
= GOt os) i (25 dlleomay) + 7 |Hch0)),

which gives (B.13). We have thus shown that ¢ € Ct! (Uy, 4, ); the property
that ¢ € CPM! Uy, 2, ) immediately follows.

2) The proof is identical, except for a few obvious modifications in the cal-
culations.

3) To obtain the L* estimate, we start from (B.17)-(B.18) with k =
which upon integration and passing to the limit a — 0 gives

a+1 1 €
e(z,v?,7) < €($37UA7T)+1 llelleg + T lIbllc;<lIlleg,
from which we deduce
a+1 1 €
1l @y mg) < Nl (i) + 27 llelley + T Mblleg e[l Lo @y o)

and (B.15) follows. The proof of (B.16) is similar to that of the analogous
statement in point 1. From what has been said it can be seen that ¢,, =
limg_,,, ¢ exists and is in Cy(Z,,). It remains to show that ¢ — ¢,, satisfies
(B.14). When b is a multiple of the identity, we can integrate (B.10) to obtain

(B.22) B(w,.) = Py (e o2 M)de / o Ve ds ey ydy,

from which the result easily follows. The general case can be established by
manipulations similar to the previous ones. O

B.3. Polyhomogeneous solutions of d,¢ 4+ by = c¢. — We pass now to
an analysis of ODE’s with polyhomogeneous sources. The results here have
an auxiliary character, and several of them are rather elementary; they will be
needed to handle the real problem at hand, with partial differential operators.
Let O be an open subset of M, we set

(B.23) Uy, = (0,21] x O x [0,T].
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It will be seen in Sections 4 and 5 that(!!) integer space-dimensions force us to
consider polyhomogeneous expansions with half-integer power of x; in order
to account for that, we introduce an index

(5 - la

d
where d is a non-zero integer, d € N*. We will mostly be interested in the
case § = % or 6 = 1, however other values are also possible in the formalism
here. Results analogous to the ones below hold for the general polyhomogeneous
expansions of Equation (A.41), which can be established by similar methods.
We find it of interest that a consistent framework can be obtained in the setting

considered below:

PrOPOSITION B.4. — Let 8 € R and consider the system
(B.24a) Orp+bp=c,

(B24b) Pl {T:O}(x7 U) = &(Z‘, U)
p N;

o303 0 I (0 0) + By (0,0,
i=0 j=0

(B24c) @i € Coa{r =0}),  Gporpre € CRTPT ({7 = 0}),
with

(B25a)  b(w,v,7) =)

2 In? xbij (2, v, T) + bpste(x, v, 7),

M=

i=0 j=0
(B.25b)  bpsie € C2TWUy, ), bij € Coo(Us, ),
p N/
(B25C) C(Z‘, v, T) = Zﬂ Z Z xi& lnj TCij (J), v, T) + Cps+pB+e (ZE, v, T)v
i=0 j=0

(B.25d)  cpstpie € ngJrﬁJre(um)v Cij € COO(le)7

where 0 < € < 0, and (N;), (N}), (N]") are sequences with integer values, and
with

b e L®(Uy,).
Then the solution ¢ takes the form
P M;
(B.26) o(z,v,7) = 2° Z Z 2% In? 2 (2,0, T) + Opstpre(,v,7),
i=0 j=0

with @ij € Coo(Uz,), My is an integer sequence and ppsipre € CE2TPTE(U,,).

To prove the proposition we shall need the following lemma:

(11) This is due to occurrence of the factor Q("~1)/2 in equations such as (4.2).
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LEMMA B.5. — Under the hypotheses of Proposition B.4, suppose that in ad-
dition we have

Pps+B+e = bpstre = Cps+pre = 0.
Then for any € € (0,0) we have

p M;

(B.27) o = 2P Z Z 2P 07 2055 + Ppstpres
=0 j=0

with 0ij € Coo(Uz,), Ppstpre € CEIPTE(U,,), for some integer-valued se-
quence M.
Proof. — Inserting (B.27) in the equation (B.24a) and tracking the coefficients

in front of 2% In’ x one finds the following set of equations:

" ! "
Mo = max{No, Ny}, My = max{ OIE%?M;@ + N Niiq, Ni+1},
SRk

i min{Ny,j}
i€0,p], jE[0,M], Orpi+ > Y breirj—t = cij,
k=0 ¢=0
2 M i min{Njj}
OrPpo+B+e T 0Ppotpre = — Zﬂfﬁ Zﬂilé In’ 33{ Z Z bkz%—kj—e}-
i=p+1 =0 k=0 (=0

Here [a, b] := [a,b] NN. This system is easily solved: one begins with i = 0 and
solves the equations for j running from 0 to My. This can then be repeated for
i =1, etc., until i = p is reached. This provides the functions ¢;;. Finally, one
solves the last equation for the remainder term ¢ps54 3+, with initial value zero,
noting that the right hand side of the resulting equation is in CRO+A+¢ (U, ),
and one concludes using Proposition B.1. O

Proof of Proposition B.4. — With the notation of the proposition, we set

bphg = b — bpste; Cphg = C — Cpst+B+e, Pphg = P — Pps+a+e- We use the Lemma
above to obtain a solution ¢png of the problem

(B.28) Orp 4 bphgp = Cphg;
p N; .
(B.29) P =5 =2’ Z Z 2 In? 2y (z,v).
i=0 j=0

Then we solve
8T<PI + bSD/ = Cpo+p+e — bpo+ePphg

with ¢/|,—g = @po+p+e. We have ¢ € CEITA+E(U, ) according to Proposi-
tion B.1. To conclude we set ¢ = @png + ¢ which is of the required form, and
solves (B.24a). O
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B.4. Polyhomogeneous solutions of d,¢p + by = ¢
PROPOSITION B.6. — Let ¢ be a solution in C°°(Uy,) of

b
(B.30) Oz + P=06
and suppose that (B.25) holds with some ¢ €]0,6[, 8 € R, and with some

integer-valued sequences (N/), (N,;"). If b = o(x) (equivalently, by;(0,v,7) = 0),
then

p M; p M;
(B31) ¢ = Z Z 2 I’ 23;; + 2"t Z Z 2 I’ 2055 + Ppst1tpte
i=0 j=0 i=0 j=0

with @ij, pij € Coo(Uz,) and psiitpre € CLOTITAY(U,,), for some integer
sequence (M;).

Proof. — Proposition B.3 shows that for § > —1 the limit
wo(.) = lim o(z,.)

exists and is a smooth function on O x[0,T]. When b is a multiple of the identity
matrix the result is obtained by a straightforward analysis of the formula

(B.32) pl(@,.) = po()e Jo beds 4 / o Mo dse(y, )y,
0

using the estimates of Lemma B.2. For § < —1, and again for b — a multiple
of the identity matrix — we use instead

(B.33) o(z,.) :@(%xl,.)e_‘f;l&b(s")ds+/ e b5 oy )y,

1
271

In the general case, we first note that it follows from Proposition B.3 that there
exists A € R such that ¢ € C2,. We then write

(B.34) Dpth) — ¢ = —%ﬁ e it

integrating gives 1) — fow c € CAF9. Inserting this equation in the right-hand-side
of (B.34) and integrating again one obtains a similar equation with a remainder
term falling-off one power of § faster. The result is proved by repeating this
procedure a finite number of times. O
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