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SCHWARTZ'S THEOREM ON MEAN PERIODIC
VECTOR-VALUED FUNCTIONS

BY

FRANCOIS PARREAU and YITZHAK WEIT (*)

RESUME. — Nous exposons une preuve plus simple du theoreme de SCHWARTZ
sur les fbnctions continues a valeurs dans C^.

ABSTRACT. — A simpler proof to SCHWARTZ'S theorem for C^-valued continuous
functions is provided.

1. Introduction and preliminaries

The theorem of L. SCHWARTZ on mean periodic functions of one
variable states that every closed translation-invariant subspace of the
space of continuous complex functions on 1R is spanned by the polynomial-
exponential functions it contains [4]. In [2, VII], J.-J. KELLEHER and B.-A.
TAYLOR provide a characterization of all closed submodes of C^-valued
entire functions of exponential type which have polynomial growth on R.
By duality, their result generalizes Schwartz's Theorem to C^-valued
continuous functions.

Our goal is to provide a simple and a direct proof to this result.
C{H,CN) denotes the space of continuous C^-valued functions on R,

with the topology of uniform convergence on compact sets. By a vector-
valued polynomial exponential in C^IR.C^), we mean a function of the
form e^p^x), x C 1R, where A C C and p is a polynomial in (7(IR, C^).

THEOREM. — Every translation-invariant closed subspace ofC(H^CN)
is spanned by the vector-valued polynomial-exponential functions it con-
tains.

(*) Texte recu Ie 16 mat 1988.
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320 F. PARREAU AND Y. WEIT

For the theory of mean-periodic complex functions, we refer the reader
to [4L [1L [3]- We need the following notations and results.

Let Mo(IR) denote the space of complex Radon measures on H having
compact support. For ^ e Mo(IR), the Laplace transform jl of ^ is the
entire function defined by fl(z) = f e-^d^x), z e C.

We remind that / e C(H) is mean periodic if ^ * / = 0 for some
/^C Mo(IR), /A ^ 0. For / c C(H), f- is the function defined by
f~W = f(x) if x < 0 and f-(x) = 0 if x > 0. If / is mean-periodic,
^ C Mo(R), p. ̂  0 and ^ * / = 0, then the function p. * /- has compact
support and the meromorphic function

^-(/^r)?^
which does not depend on the choice of p., is defined to be the Laplace
transform of/([3]).

The heart of our proof is the fact that F is entire only if / = 0 (see
[3, Theorem X]).

The dual of C{H,CN) is the space Mo(H,CN) of C^-valued Radon
measures on IR having compact supports. One notices that Mo(R) is an
integral domain under the convolution product and Mo(H, C^) is a module
over Mo(IR) with the coordinatewise convolution. We denote the duality by

N

M-E^*^0)j=i
for /, = (^) e Mo(H,CN) and / = (/,) c C(H,CN). If / is a vector-
valued polynomial-exponential with

m

f^W =^awx£exx (1 < j < N),^^^

e=o
we have

^^=EEa?)^)(A)•
j=l ^=0

For any subset A of C(H, CN) let

A±={/,cMo(n,C7v); (^f)=0 for all f e A}.

If V is a translation-invariant closed subspace of C(R, C^), Sp(V) denotes
the set of all vector-valued polynomial-exponentials that belong to V.
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SCHWARTZ'S THEOREM ON VECTOR-VALUED FUNCTIONS 321

By duality, V is spanned by Sp(V) if and only if Sp(V)-L C V-L.
Since V is translation-invariant, V 1 ' is a submodule of Mc^lR.C^) and
p, = (^) ^ V1 if and only if

N

^^*/ ,=0 f o r a l l / = ( / , ) c y .
j=i

2. Main result

In this section, V denotes a given translation-invariant closed subspace
of C(H, C^). We have to prove (^ f) = 0 for any ^ C Sp(y)1 and / C V.
We need some more notation and three lemmas.

Let 0 < r < N be the rank of V 1 ' as a module over Mo(H). That means
r is the greatest integer for which there exists a system (cr^)i<^<r where
<7^ = (o'£j)i<j<,N ^ ^-L for 1 < ^ < r and with a non-zero determinant of
order r. We shall suppose given such a system with, say,

p=det((7^; 1 <iJ < r ) /O.

One notices that p is the non identically zero entire function given by

p(A) = det(p^(A) ; 1 ̂  i, j ^ r), A e C.

If r = 0, %.e. V"1 = {0}, we take for p the Dirac measure at 0 and p(A) = 1,
A C C .

For /A = (/^-) c Mo(R,C^) let

A^(/2) = del

/AI . . . ^ ^
^1,1 • • • CTl,r CTlj

(for 1 < j < N)

and

Ti{ji) = det

0"r,l .

0-1,1

^-1,1
/^l

^+1,1

O-r.l

, . (7. '^J

^i,r

^-l,r

/^r

^+1^

(for 1 < t < r)
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322 F. PARREAU AND Y. WEIT

From the definition of r, for any ^ C V1-

(1) A,(/ , )=0 ( f o r l < ^ < A O .

By expanding the Aj(/A) along the last column, (1) is equivalent to

r

(2) /?*/^ =^T^)*O-^- ( ! o r l < j < N ) .

LEMMA 1. — Let \ € C 5^cA ^W p(\) -^ 0. For a = (a^) C C^, ^e
vector-exponential e^ • a belongs to V if and only if

N

(3) ^a^-(A)=0 K£<r.
j=i

Proof. — Let a G C^. We have e^ • a 6 V if and only if, for every
p.= (/^-) C V-S

TV
(4) ( /^•a)=^a^-(A)=0.

j=i

This proves the "only if" part. Conversly, since p(\) ^ 0, (2) implies
that for any ^ C V 1 ' the equation in (4) is a linear combination of the
equations (3).

LEMMA 2. — Let fi G Mo^.C^). If (fi.e^ • a) = 0 /or a^ A e C
<SHC/I p(\) ^ 0 anc? a G C^ 5^c^ ^Aa^ e^2' • a C V, ^Aen Aj(^) == 0 /or
1 < ̂  < A^.

Proof. — Let A e C with p(A) 7^ 0. If /^ satisfies the hypothesis, the
solutions of (3) are solutions of (4), which implies that the determinants
A^(/^(A) for 1 < j < N are equal to zero. Then, since p and the A^(/^
are entire functions and p -^ 0, the Aj(/^) are identically zero. Hence,
A^) = 0 for 1 <j < N .

Remark. — LEMMA 2 shows that any /A C Sp^)1 satisfies (1) and (2).
If r = 0, A^(/A) = ̂  for 1 ̂  j < N ; hence Sp^^ = {0} if V1 = {0}.

LEMMA 3. — Let A C C, m > 0 and fi e Sp(y)1. There exists
v € Y'1 such that

y^\\) =: ̂ (A) (for 1 < j < N, 0 < t < m).
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Proof. — Suppose the element {jr. \\))i<,j<N,o<£-m oiCNm does not
belong to the subspace

M(A,m) = {(^(A^K^cx^n ; v C V^}.

/ p\
Then there exists (a- )i<j<N,o<e<m such that

EE^i^)-0 for^y^
j=i ^=o

and
N m-1

EE^^W^o.
j==l ^=0

Then if
m—l

f,(x)= E^^ ( fo r l< j<7V) ,
^=o

the polynomial-exponential / = {fj)i<j<N satisfies

(i.J)=0 ( f o r ^ C V 1 ) ,

therefore / € Sp(V), and
W)/0,

and we have a contradiction, since ^ e Sp^)^.

Proof of the THEOREM. — Let ^ = (/^) € Sp(y)-L, / = (fy) C V and

N

^E^*^-j=i
We have to prove that g = 0. By LEMMA 2, A^(/A) = 0 for 1 < j < N and
[L verifies (2); therefore

N r N

/^E^'*^ "E^^^E^^ *^)-
J==l ^=1 J=l

For 1 < i < r, since o-^ e V1, we have ^=1 o^j * /j = 0. So

p ^ g = 0 .
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324 F. PARREAU AND Y. WEIT

Hence g is mean-periodic and the Laplace transform G of g may be
denned by

G=[p^g~Y/p.

By ([3, Theorem X]) it is enough to prove that G is entire.
If [a, b] is any interval that contains the supports of the /^j; (1 < j < N)^

^ /^ * /• {x) is equal to g(x) tor x < a and 0 for x > b. Thus the function

N

^=^ - -^^* /7
j=i

has compact support. For 1 < £ < r, let
N

^=^^,j*/7.
j=i

By the same argument, the functions h^ have compact supports and,
by (2),

N r
So /? * ̂  ̂  * f^~ = ̂  T^) * h^

j=i ^=1
r

p ^ g~ = y^ ̂ (/^) * ̂  + p * 5 ;
^=1

1 r

(5) G=-^^( /A)^^+5 .
p ^=1

The functions s and hi (1 < ^ < r) are entire, as Laplace transforms
of compactly supported functions.

For any ^ C V-1, since ̂  fj * /^ = 0, ̂  ̂  * /̂ ~ has compact support,
and it follows by (2) that the function

1 r

(6) -: V^ T^V^) • hi is entire.
p ^==1

Let A C C and let m be the order of p at A. By LEMMA 3, we can choose
y e V1- so that P^^A) = /^(A) for 1 < j < N , 0 < k < m. Then the
functions (i>j — {ij)l p for 1 < j < N and the functions

\(r^S-r^} ( f o r l<^< r )
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SCHWARTZ'S THEOREM ON VECTOR-VALUED FUNCTIONS 325

are analytic at A. It follows from (5) and (6) that G is analytic at A.
Since A is arbitrary, G is entire. That completes the proof of the

Theorem.
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