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2..0 N

REGHERCHES SUR LA DIVISIBILITE DU NOMBRE (11—)—1—‘)7
PAR LES PUISSANCES DE LA FACTORIELLE :.»...n;

Par M. C. pe Poricnac.

§ 1.

Avant d’entrer en matiéres, rappelons quelques résultats bien
connus.

Désignant par [%] le quotient entier de la division de @ par b,
notation usitée par Lejeune-Dirichlet, et appelant e 'exposant
de la plus haute puissance du nombre premier p qui entre comme
diviseur dans le produit 1.2.3....z, en sorte que ce produit est
supposé divisible par p¢, mais non par pe*, on a la formule clas-
sique

=0

35

i=1
La limite i = % est symbolique; elle se justifie en remarquant

que, dés que p'>>x, on a [;] =o.

De plus, on a toujours

Il en résulte

-1 -2

Par suite, si I'on écrit,
r =pgy+nr (1‘1<P, 71=[ J))
q1=pgs—+ras ("z<P, 91'—‘-[

9
14
qr=pgs+rs (ra<p, g:= [%’

(') Voir, entre autres, LEJEUNE-DIRICHLET, Zahlentheorie, § 15, odi-
tion 1863.
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on obtient

i=w

2 [[%—] = g1+ g2+ gz+....

=1

Cela posé, je commencerai par démontrer trois propositions :
Soit  un nombre entier écrit dans le systéme de numération

dont la base est le nombre premier p, en sorte que
T=appt+ Any PP+, .+ asp?+ a1 p + a,

avec @ << p & un rang quelconque.

Désignons par Ex la somme des chiffres de x :

Ew =aQo+ a;+ ady+...+ap—1+ ay.

Prorosition 1. — L’exposant de la plus haute puissance du
nombre premier p qui entre comme diviseur dans le pro-

x——Em
p—1

Démonstration. — D’aprés ce qui précéde, il suffira d’établir
Pégalité

duit 1.2.3...2 ecst

Conservant les notations adoptées ci-dessus, on a

g1 =appti4a, 1 pti4-.. . +azpi+asp-t+a= :;]s
[%1] =¢qy = app"t+ ap— 1 pti+...+a3p +as = iI%]’
[25)=50 == -
[%] == L7

............................................
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Chaque colonne de ce Tableau se compose de termes en pro-
gression géométrique. Faisant donc la sommation par colonnes

et introduisant pour la symétrie le terme nul %’;—E?, il vient
i=w
An(P"—1)+an—1 (PP 1 —1)+. ..+ a3 (PP—1)+asy(p’—1)+a1(p—1)+a—ae _2 z
p—1 T &)

=1

c’est-a-dire, d’aprés nos notations,
c. Q. F. D.

Prorosition 2. — Soit n un second nombre entier écrit dans
le systéme numérique de base p; faisant I'addition z + n, on

aura
2(x+n)=2x+2n-—k(p—-|),

ou k désigne le nombre total d’unités que, dans 'addition, on
est amené a reporter d’une colonne i la suivante.

Démonstration.
r=ay+ a;p+ ap?—+... a<p,
n=>byg+bip+bap2+... b <p.

L’addition, membre 3 membre, donne
b b

T+ n=ayg+a
+bo+b1

p+a,
+ by

pPi...+am | p™,
+bm |

expression dans laquelle il faut ramener dans chaque colonne la
somme des deux chiffres & un nombre inférieur & p. Ces réduc-
tions faites, on obtiendra

X+n=coy+c1p-+cCap?+... (e;: < p).

Comparons ces deux expressions.

Comme dans la premiére, chacun des deux chiffres a;, b; d’une
colonne quelconque est moindre que p, leur somme est moindre
que 2p. On a méme partout

ai+bi+ 1< 2p,

puisque le maximum est p —14p —1+1=2p —1. D'aprés
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cette remarque, on peut composer de proche en proche le Tableau
suivant :

(2 +b0 =,\‘0 P+ cCy
ay +by +hy =k, p+e
a +by +ky =hy p+oy

c;<p (ki=ooul),

am—+ b+ kg = kmp +Cm
kmw =cmy1=ooui
par suite

A+ a4 oA+ 0g+by 4. ..+ by ko+ k. Ak
=(ko+hi+...+kp)p+co+c1+...4+ Cp+ Cpsi.

Or, comme chacun des nombres k¢, Ay, ..., kn est égal & zéro
ou & un, leur somme est égale au nombre d'unités reportées d’une
colonne a la suivante, soit &. D’autre part, on a par définition

Ao+ a1+ as—+...+ a,, =21’,
bo+bl+b-_)-+...~1'—b,,, =2n,

Co+ Ci—+Ca+...Cp~+ Copyy = E (z+n).

Il en résulte donec bien

2(x+n)=2x+2n—k((p—l) (1). c¢. Q. F. D

On trouverait de méme

Z(z—n):Zx—Zn—i-lc(p—l),

k étant ici le nombre d'unités empruntées au chiffre d’une

(') Arithmétiquement, Popération s’indiquerait ainsi :

.a; ... a;a,a a, a;, < p:
b, ... by b, b, b, b, <p,

cee € vel €3 Cy €y €y c; < p.

Dans chaque colonne, 'addition de deux chiffres ne peut surpasser 2p — 2
(18 dans le systéme décimal). On ne peut donc jamais reporter plus d'une unité
dans la colonne suivante. Le chiffre de cette colonne augmente de 1, celui de la
précédente diminue de p & chaque report; d'ou la formule,
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colonne et reportées dans la précédente suivant les régles de
Parithmétique élémentaire.

On voit d'ailleurssqu’en posant z + n=m, d’oltz = m — n,
la formule d’addition devient

rnE:E(m—n)—l—-Zn—- k(p—r),
2(1)1—)1):2"1—Ell+/n‘(P-—l).

Prorosition 3. — Faisant le produit nz, on aura

En:c =2n.2x—k(p —1),

ou k représente éncore le nombre d’unités que, dans le produit,
on est amené a reporter d’une colonne a la suivante.

d’out

Démonstration. — Soient
r=ay+a1p+ ap?i-... a; <p,
n=bo+b,p—|—b2p’—tr—... [),‘<P,
nE=co+c,p—+cs p2+... b;<p.

‘La multiplication, membre 2 membre, donne

Ilz':aobo—l‘-aobl P—l—aobg P!—i"...1
+ a1 by +a by
+a2bo |

résultat que, pour abréger, nous écrirons
nr = G+ C|p+ C-gpz—i—....

Observons que, par définition,

Co+ Cy + C,+...:2n.2x.

Siayby<p, on a Cy= ¢, ; mais, en général,
C0=P]('o+ Co

et 'on reporte 4, unités a la colonne suivante, et cela quand bien
méme cette colonne ferait défaut dans le produit membre &
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membre nz ; ce qui arriverait par exemple si 'on avait @, = b, =o.
On a donc jusqu’ici
nr=cy+ Gy | p+Cep?+....
—+ ko
On posera de méme

Ci+ ko= pky—+ ¢y

etl’on reportera £, unités a la colonne suivante. Observons qu’ic
on pourrait avoir k; > p, ce qui ne change rien i la marche du
calcul.

On obtiendra ainsi successivement

Co :‘—Co-l—kop,
Ci—l—ko =C|+kgp, Co+C1=Co+Cg+ko(P—l)+k1p,
Cot-k1. =cy+kap, Co+ G+ Co= co+ cy+ cot+(ko+ k1 Y (p —1)+kap,

Ci+ki—1 =C,_'+kip, Cm—f* Cl+Cg+. ..+GC;
=cCop+Cy+Cot...
“+ci+(ko+ky ..o +kist)(p — )+ ki p.

Mais, comme le produit est fini, il arrivera un moment ou I'on
trouvera k; = o; on aura alors

Cot+GCi+...4+Ci=co+c1+...+Ci+(hkot+ ki +...+kim) (p —1),

Zn.Zx :2)1.1‘—;— k(p—1)
2nz=2n.2x—k(p—l). C. Q. F. D.

Remarque. — La Proposition 1 exige que p soit un nombre
premier. Dans les deux autres propositions, p peut étre quel-
conque.

c’est-a-dire

ou

§ 2.

Nous allons maintenant faire quelques applications de ces trois
propositions.

TrtorkME. — 2 et n étant, comme ci-dessus, écrits dans le
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systeme de base p nombre premier, si le produit
1.2.3...(n—0Nn
esi divisible par p*, — a exposant maximum —
(z+1)(z+2)...(xz+n)

sera divisible par p***; o k représente le nombre d’unités
reportées d’une colonne & la suivante dans ’addition x + n.

Démonstration. — Par la proposition 1, on a

n— En
o4 = ——
—1

p

et, par la.-méme proposition, ’exposant maximum avec lequel p
entre dans le produit

I.Z...w(z‘+1)(z‘+2):..(x—1— n)
est

zx+n— Y (x+n)
p—1 ’

‘De méme, I'exposant maximum avec lequel p entre dans le
P q
produit

est

Le nombre premier p entrera donc dans le produit
(z+1)(x+2)...(x+n)
avec un exposant égal a la différence des deux précédents, soit

x+n-2(x+n)—x+2x n—z(x+n)+2z
P = 2

—_1 p—1

D’ailleurs, par la proposition 2, on a

N@+ny=Na+Fn—kp—n;
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Pexposant considéré est donc

n——zx—En +2.‘L‘ r— n;—z‘n i

= o+ k.
p—1

C.Q. F. D,

En vue d’une application de la proposition 3, partons de
Pidentité
1.2, ..N -——I.E -
1.2...N—1.N

Posant N = a, 4+ a,, elle devient, en admettant @, << a.,

1.2.. (a1 +as—1)(a;+ as)
toccar(ar+1)(a+2)...(a+ as)

=1,

et comme, d’aprés un théoréme classique, le produit
(ay+1)(a;+2)...(a1+ ay)
est divisible par 1.2...a,, on a

1.2.3...(a,+ a,y)
[.200.Q1.1.2...09

= entier.

(1)

On trouvera de méme généralement avec N=a, + a,+...a,

1.2.3.. (a1 + ay+...+a,)
e200.@1 1200 Q3.0 102...Qy

= entier.

(2)
Sil'on pose dans (1) ay=x, ay=(n—1)z,on aN=nz et

)

= entier.
x

D’autre part si dans (2) on pose @y =a,=a;=...=ap==zx
on a
1.2.3...n2

4 23z = entier (1),

relation quirésulte de(3) a fortiori. Pour le faire voir mettons (4)

(1) Les expressions (1), (2), (3), (4) sont bien connues wmais en vue de ce
qui suit il y avait intérét & montrer qu’elles résultent de l'identité initiale par
la suppression de certains facteurs au dénominateur.
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sous la forme

(5)

I.2...nx
1o .xr(r.2...a)r-!

= entier.

Changeant dans (4) n en n — 1, on obtient

[.2...(n—|)m_ - .
2.1 M (nombre entier)

ou
1.2...(n—1)x=(1.2...2)"=1.M;

remplagant dans (3) on a

2. ..nr

= entier.
L. (ro2..z)-t M

Donc (3) ou (4), ce qui est la méme chose, résulte de (3) par la
suppression au dénominateur du nombre entier M.
L’expression (3) peut se mettre sous la forme plas explicite

l.'z...(n—l)a-[n—l.m+1][n—|.z'+za]...[n-——l.x—i—x—x]n;r
2. (n—nx.a.2..(zr—1)r

ou, en réduisant,

[n—=t.z+i][n=1.z2+2]...[n —1.24+ 2—1] .
120, (2 —1) -

L’expression (3) est donc divisible par n quel que soit z et, en
posant
[n—lm..T—f-l][n—lx—l—n‘..][ll—lm-—ka‘-—l]
1.2...(x—1) ’

qn-1=
on trouve
1.2...nx
.2...(n—nxr.1.2...r

= nqp—1-

Changeant successivement nen n-—1,n — 2, ..., il vient

1.2.3... nr=rt.2...(n—10)x.1.2...2.0q 1,

23 (n—nNr=r1.2...(n—2)z.1.2... (R —1)qp—9.

d’ou par multiplication

12,07 =(1.2...2)0.2.3.. .0.¢19s. . . Qri=2 (n—1
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ou

[

.o nx

I. :
—~ =1.2.3...2.¢1q2-- . @n-2qn—1-

(5a) (1.2...7

Dans une Note insérée aux Comptes rendus de I’ Académie des
Sciences, 19 décembre 1881, M. Mathieu Weill a démontré par
un procédé d’analyse combinatoire la divisibilité du nombre

(—:—i—:::n par la factorielle 1. 2...n. L'équation (5a) implique ce

théoréme et deplus fait connaitre explicitement le résultat de la
division. On voit que le théoréme en question, tout comme ceux
qu’expriment les égalités (1), (2), (3), (4), résulte de I'identité
initiale avec N = nz, par la suppression de différents facteurs au
dénominateur. Ils se trouvent restitués dans I’équation (5a) qui,
en y remplacant les quantités ¢4, q»,- .., par leurs valeurs, repro-
duira I'identité initiale.

On peut pousser plus loin cette investigation et montrer que

I’entier
_ 1.2...nx
T (1.2...2)n

est en général divisible par une puissance de la factorielle 1. 2...n
supérieure & l'unité, soit (1.2...n)* avec 2 > 1. La proposition 3
trouvera ici son application.

Soit p un nombre premier non supérieur au plus grand des
deux nombres x et n; p¢ la plus grande puissance de p qui

divise E. Evaluons d’abord e.
Par la proposition 1, p entre dans le numérateur de E avec un

exposant
nx —an‘
A ———

P
et dans la factorielle 1.2...z avec un exposant
e
gg= —
—1

P

par suite p entre dans le dénominateur de E avec I'exposant ne,
et 'on a

e =g — ns,, c’est-a-dire = ——

P —1
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D’ailleurs par la proposition 3

an’ =2n2x —k(p—1).

Par conséquent

S g
(b) € = -;:—' A.z‘ -+ k,
telle est la valeur exacte de.l’exposant cherché, ou, comme on dit
aussi, le nombre de fois que le nombre premier p entre comme
facteur dans l'entier E.
Si l’on se contente d’une valeur approchée on peut écrire

On retrouve ainsi une formule approximative déja obtenue par
M. Désiré André ().
Cherchons maintenant avec quel exposant ¢/, p entre dans
Pexpression
1.2...2%
(l.z...x)”l.2...n'

E'=

Par la proposition 1, p entre dans 1,2...n avec un exposant

n— En
8= o

P

Conservant les notations précédentes on aura donc
e =€ — ney—¢;,

et, comme nous avons trouvé

n—Yn
€g— Neg= —P—:-I—'Zx-l"k,

(') Dans une Note insérée aux Comptes rendus de I’Académie des Sciences,
le 13 février 1882, M. Dd&siré André a donné ce résultat sous la forme

23(a+pB+7v+...)P(n) od 5 désigne 'exposant &, a + P 4+ v+... =Z z ct

ot P(n) représente le nombre de fois que p, nombre premier, entre comme
n -—Z n

facteur dans 1.2...n, c'est-d-dire VT d’aprés la proposition 1.
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il vient
n— yn
e = _2 (Zw—l)—i—k.
P——[

Cette valeur ne doit jamais étre négative puisque nous avons
trouvé plus haut que I¥/ est un nombre entier; et en effet il résulte
de nos notations que 'on a toujours

21;1, kZo.

Par une généralisation immédiate, p entrera dans ’expression

W 1.92...n2
(tooac..x)t(voon . n)h

avec un exposant

" =g —ne,— hzy,
soit

<

n -—Zn

(7) e = S <2ax-—h>+k,

et pour que E” soit un nombre entier il faut et il suffit que cette
expression soit nulle ou positive quel que soit p parmi les nombres
premiers non supérieurs au plus grand des deux nombres z et n.

Dans le cas d’un nombre premier p supérieur a la fois & z et
A n les développements du Paragraphe 1

r=ay+ayp+... (a; < p),
IL‘:[)o"'r‘l)lP”F-'- (bl<P)1

sc réduisent & leurs premiers termes @, by. On a.

E.’l‘:.r; Ell:ll,

ct Uexpression (7) donne simplement
"= k.

Dans ce cas aussi les valeurs ci-dessus trouvées pour les expo-
sants €., ¢y se réduisent 4 zéro comme cela devait étre, eu égard
, e , . . . oy
aux hypothéses x << p, n <p; par suite I'égalité

" =¢;— nea— ke
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se réduit a
e =g,

d’ou 'on conclut
£ = ]fo

Il est facile de vérifier ce résultat par la formule classique
o= [i?-] En effet, dans les notations du Paragraphe 1, la mul-
P
i=1
tiplication nx se réduit aussi au seul terme
nr = Gy
et pour déterminer A& on a d’abord (voir § 1)

Co=nx = pko+cy (co<lp);

d’ailleurs, puisque z <p, n < p, ona nx < p?*; donc ko << p, par

. nx . Ly .
suite A = ko= [;—] » terme unique auquel dans ce cas se réduit

la sériei [%] .

i=1

Désignons maintenant par ¢ le minimum de zx pour tous les

nombres premiers considérés quand z est mis sousla forme
r=ay+a p-+apr+... (a;<p;  p=1(2,3,5,7,11...).
Alors pour un nombre premier quelconque de celte suite on aura

assurément
2:1:?,0.

Si donc on remplace . par ¢ dans la valeur de ¢, la nouvelle

expression
=¥
(8) 7:[2%‘—-5]—1—]\

ne sera jamais négative et il en résulte, remplacant /4 par o dans E’,
XXXIIL. 2
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que la quantité

I.2...nr
(re2...z)n(1.2...n)%

(9) I =

est toujours un nombre entier (*).
Remarque. — Si Ex =1 pour un certain nombre premier on

a nécessairement o = 1. Ecartant le cas illusoire z =1 cette cir-
constance ne peut se présenter que si 2 = pi. Alors’expression (8)
s’évanouit. En effet, le premier terme s’annule en vertu de I’hypo-

thése zx =1=0¢. Quant a k, remarquons qu’en mettant n sous

la forme
n="bo+byp—+ byp?+...

le produit nz s’effectuera parla simple addition de ¢ a chacun des
exposants de p dans l’expression de n. On n’aura donc rien a
reporter d’une colonne a la suivante, par suite X = o. Dans ce
cas on a simplement

I1.2...nx

F=E= ([.‘)'..“z-)ll([_Q.--n).

§ 3.

Dans les notations des Paragraphes 1 et 2, un nombre entier
quelconque z étant écrit dans le syst¢tme de numération dont
la base est le nombre premier p, savoir

r=ay+a1p-+ayp*+ ... (a < p),

. . . nx . . . .
(') M. DESIRE ANDRE, loc. cit., pose Q = et énonce ainsi qu’il suit le
E] ) (.1; Y

1
théoréme qu’implique ’égalité (g): :

« S'il est impossible d’exprimer  par une somme de moins de Ak puissances
d’un méme nombre premier le quotient Q est divisible par la puissance ki*™ de
la factorielle 7. »

Dans la notation de M. André z=a + Bp + v p*+... doit étre considéré
comme exprimé par la somme de « + § + y +... puissances de p; savoir a puis-
sances égales & zéro, § puissances égales & 1, Y puissances égales a 2, etc. Si z nc
peut étre exprimé par moins de & puissanceson a K =minimum (a4 +7v--...)=5
de notre texte. L’égalité (g) correspond donc bien & I'énoncé de M. André; mais
dans cet énoncé la signification de la lettre & est toute différente de celle qui est
attribuée a la méme lettre dans le présent Mémoire,
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on a par définition

2x=ao+a1+a2+....

s = le minimum Ez que donnent les diverses expressions

de x quand p parcourt la suite indéfinie des nombres pre-
miers.

Ce minimum ne peut se rencontrer qu’avec un nombre premier
non supérieur a z. Car avec un nombre premier quelconque supé-
rieur a z, I'expression de z se réduit a son premier terme a, et

donne Zx = x, tandis que, pour tout autre nombre premier non

supérieur & z, on a Zx << x. Le nombre z lui-méme ne saurait
donc étre égal a o.
Nous avons vu également que le nombre entier

1.2...n7
(o2, )

E =

est toujours divisible par (1.2...r)7. Mais la puissance & est-elle
une limite supérieure et sinon, dans quels cas est-il possible de
déterminer de combien la puissance limite surpasse o? C’est ce
que nous nous proposons de rechercher.

Reprenons a cet effet 'expression

n -—Z n .
(1) a—_———]—)-:—l—-(Ea'—h)—i—/{ [82; (7)]
qui fait connaitre I'exposant ¢” de la puissance du nombre pre-
mier p dans le quotient

E— [.2...n2
T (e ) (1.2...n)k’

exposant qui selon la valeur de A pourra étre positif, nul ou négatif.
Remplacant, dans (1), A par ¢ 4 1, ot @ représente un nombre
entier positif quelconque, il vient



ce ui peut s’écrire

(2) ’l—En(ZT—c>+A—u t—-zn

Cette formule est exacte quels que soient z et n et jusqu’ici nous
n’avons rien stipulé sur les grandeurs relatives de ces deux
nombres. Or, pour déterminer ¢, nous pouvons nous borner, ainsi
qu’il vient d’étre dit, a faire varier le nombre premier p sans

dépasser z. D’autre part, lorsque p > n, on a 2 n=n et la for-

mule (2) se réduit & ¢"= k. Sil’on suppose x > n, alors pour tout
nombre premier compris entre n et x cette formule est indé-
pendante de y. et par conséquent illusoire en ce qui concerne
Pexamen de cette quantité. Nous introduirons donc la restriction
suivante :

Convention restrictive : x est au plus égal a n.

Y

D’aprés la signification de ¢, tant qu’en donnant & w des
valeurs croissantes’expression (2) ne sera pas négative le nombre E
sera divisible par pot#; il ne le sera plus a partir du moment ou
<" deviendra négatif.

Or le premier terme de ¢” dans (2) étant essentiellement positif
(ou nul) quel que soit p, les valeurs de p susceptibles de
rendre ¢’ négatif ne se rencontrent que parmi celles pour les-

quelles
n — n
e
P——l

et, si p est un des nombres premiers qui donnent Ex =g5,0na
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le nombre
i [.2...07
T (rea.o)n

sera divisible par pote—! et ne le sera pas par poté, et cela suffit
pour que E soit divisible tout au plus par la puissance ¢ + @ — 1
de la factorielle 1.2...n.

Nous sommes donc amenés en définitive & comparer les valeurs
n — n

de £ et de ——
P —

—- Cette comparaison se fera aisément dans

chaque cas particulier par un calcul direct, mais il n’existe
aucune formule susceptible de rattacher a la variation de z et
de n ni la variation de k, ni celle des nombres premiers pour
lesquels Ex est minimum. Il faut donc se créer une méthode
indirecte d’'investigation ; celle dont nous ferons usage repose sur
la remarque suivante :

Remarque. — Lorsque n augmente, p restant constant, la quan-

n— n
tité ——— ne peut pas diminuer.
p—1
La démonstration directe serait facile, mais elle n’est pas néces-
n — n

saire. Puisque . représente par la proposition I (§ 1)

I’exposant de la plus grande puissance du nombre premier p qui
entre comme diviseur dans la factorielle 1.2...n, il est clair que,

si I'on fait croitre n sans faire varier p, cet exposant ne peutl
décroitre.

Comme conséquence immédiate, quand n croit, p restant cons-
tant,n——Zn ne peut décroitre.

Voici comment cette remarque peut étre utilisée :

Ezposé de la méthode d’investigation.

Soient z et n deux nombres donnés respectivement compris
entre des limites pour le moment indéterminées
ZoI T3 X,

neTnZN.
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Pour satisfaire a la convention générale xZn, nous suppo-
serons 1,3 X.

Soit encore p un nombre premier quelconque non supérieur
an.

n-— n
D’aprés la remarque la quantité —=— ne pourra jamais
p q q P —1 P J

N—>»N
décroitre quand n croit jusqu’a N, donc > seraun maximum.
Imaginons qu’on puisse déterminer X et N de facon que, dans
le produit nz, variable dans les limites fixées, la quantité &k qui cor-
respond & NX soit un maximum. Le désignant par K nous poserons

ny— E oy
N

D b

pP—1

(3) ]

comparant, & dessein, K non avec la valeur maxima correspon-
N ——EN ng— Y ny
dante — mais avec la quantité minima — = Supposons

qu’on ait déterminé le minimum de u pour lequel celte inégalité
est satisfaile, on aura a fortior:

p—I1
et il en résulte que pour cette méme valeur de . on aara partout
dans le produit variable nz
n ——2",
—_—

pP—1

A<

puisque d’une part k& est égal ou in(érieur & K et que d’autre part

n —-—En 110—2’10
———— est égal ou supérieur & ———-
e P —_—

Le nombre p désigne ici un nombre premier quelconque non
supéricur 2 n. Si nous le prenons inférieur a z et si pour ce

nombre premier on a zx: son pourra conclure, ainsi qu’il a été

(.2...07 _, C e
- n’est pas divisible par

dit plus haut, que le nombre E = G.2...0)m
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(r.2...n)°, Mais si avec p on n’a pomtz.x:cr P'inégalité

k<<pw 5y cesse d’étre un criterium de non-divisibilité. C’est

pourquoi il faut concevoir théoriquement le procédé que nous
venons de décrire appliqué successivement & tous les nombres
premiers non supérieursi z. Soit p’’'un d’entre eux différentde p.
Partant toujours des deux nombres donnés z et n on détermi-
nera de nouvelles limites 2, X’; n, N’ remplissant les conditions
précédemment imposées & 2, X et no N et]’on en inférera un nou-
veau nombre 1’ déterminé par I'inégalité

n,
=X
K < N—;)’—:T—‘

En continuant ainsi on obtiendra une série de nombres

’ n .
R U

Soit M le plus grand nombre qui se rencontre, une ou plusieurs
fois, dans cette suite. On aura I'inégalité

dans laquelle 4 se rapporte au produit nzx des deux nombres
donnés et p a tous les nombres premiers non supérieurs a x; par

conséquent aussi a ceux pour lesquelszx:a. Pour ceux-ci

Pinégalité précédente est, exactement ou @ fortiori, un criterium
de non-divisibilité; on pourra donc conclure que le nombre E
n’est pas divisible parla puissance ¢ + M de la factorielle 1. 2. . .n.
Telle est la conception théorique de la méthode d’investigation;
il s’agit maintenant de montrer qu’elle ést réalisable.
Déterminons d’abord les limites supérieures X et N.
z étant un nombre entier quelconque, p un nombre premier
non supérieur 3 z, il existera toujours un nombre entier ¢ tel que

pittZe < pl,
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et 'expression générale de z sera
T=ag+ap+ asp+... 4+ a; pi1,

ou a;_ n’est pas nul et out le minimum de 7 est 2, eu égard a la
condition pZ z.
Dans cette formule, le minimum de z correspond a
O=y=a1=...=aj—y, ai—1=1I.

On a donc
minimum z = pi-1,

Le maximum s’obtient en donnant a chaque coefficient sa
valeur maximum p — 1, d’out

maximuma =p —1--p —1.p...--p—(.pi~t=pi—1.

Prenons maintenant pour » un nombre quelconque au moins
égal au maximum de x, soit

n=>by=-bip—+...+-biypi~1-bipi+...;

alors, dans le produit nz ol n est fixe et z variable dans ses
limites, on aura un maximum pour & en prenant x maximum. En
effet, & étant par définition le nombre total d’unités reportées
d’une colonne a la suivante dans la multiplication membre a
membre des deux expressions

r=ap+ap—+... (@, @, ... variables),

n=2~0y--byp-+... (by, b,. ... constants),

ce nombre total ne saurait étre plus grand que lorsque chaque
coefficient a,, a,, ... est le plus grand possible, c’est-a-dire égal
a p —1, auquel cas z est égal & son maximum pi — 1.
Nous pouvons donc prendre
zy = pi—1, X =pi—1,

et les limites de z se trouvent déterminées.

Passons a la détermination des limites de n et prenons, sauf
justification,

ng= Aph, N=(A+1)ph—1 avec A,

ol \ peut varier de 1 a p — 1.
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Il s’agit de justifier le choix de N, eu égard & la régle donnée
dans la méthode d’investigation.

On peut écrire
N = pt—1+)ph,

d’ott résulte immédiatement

N=p—1+p—i1.p+p—1.p2+...4+p—1.pt-t4 Aph,

formule exacte puisque X << p.
Pour un autre nombre n quelconque de n, a4 N, on aura

n = bo+ b][) ...+ b[,_qph'—l—f— )\p/'.

Mais dans le produit nx, oit z est supposé fixe dans ses limites
et n variable, la quantité £ est maximum quand chaque coeffi-
cient de n est le plus grand possible, c’est-a-dire quand » = N.

La limite N est ainsi justifiée et 'on voit que le maximum
maximorum de & correspond au produit maximum NX.

D’autre part, n étant donné, il existera pour tout nombre pre-
mier p un nombre 4 tel que

phInzZpht—y,
et, par conséquent aussi, une valeur de A pour laquelle
ApRZRZ (A +1)pt—1  (1ZXZp—1).
Sil'onfaith=1iethA=1,0na
n=|pi, pi+1, ..., 2pi—1l.
Avec h =i et exceptionnellement ) = o, on a
n=pi—r;

c’est, d’aprés nos conventions, le minimum absolu de n égal a X
maximum de z. Ici ny=n=N.

Faisant varier 4 & partir de Z, on peut résumer I'ensemble des
valeurs simultanées de z et de n dans le Tableau suivant. Il se
compose de divisions indiquées par des accolades { et de sub-
divisions indiquées par des barres verticales |. Les divisions cor-
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respondent aux valeurs de /4, les subdivisions aux valeurs de .

@ =|pi-1, pi-ta1, ... pi—1]

n= [pi—1] N pipit1...0pi—1|
|2ptapi+1,...3pi—1|
A(p—1ph(p —1)pi+1...pi+t—1l|
VP, pitia1 L 2 pitt—g|

i [({,2_,).}:i+1’(1, —1)pitt ,_,‘Pi+2._,]}
Y e B e O

:IPIL’P/l+I,..’).PIL—'II-.. .
[Aph Aph+1 ... ()\+I)P"—l|---:

(12XrZp—n).

z étant un nombre donné et p un nombre premier non supé-
rieur & z, 'exposant ¢ sera déterminé, et n, quel qu’il soit, a
partir de pi—1, tombera forcément dans une des subdivisions
de ce Tableau.

En faisant varier p et ¢ le Tableau donne pour z tous les
nombres entiers, sauf I’unité, puisque le minimum de ¢ est 2, et,
pour 7, tous les nombres entiers & partir de pf— 1.

Pour appliquer la méthode générale, nous aurons a former le
produit NX correspondant & la subdivision dans laquelle tombe »
et & déterminer  par la condition

n.)—Zno
K<p———o
pP—1

n, étant pris dans la méme subdivision.

Nous commencerons par le nombre n = pi— 1, seul de sa sub-
division.

On a ici

X=n=pi—1=p—i1+p—1.p+p—1.p2+...4~p—1.pi},

Zn:EX:[{p-—l).

Supposant le produit X effectué, on aura dans les notations
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du paragraphe 1, toutes réductions faites,
nX =rco+c p+cop?+-..., c<p,
et comme n = X = pi—1, on a ici
nX = (pit—i1)2=1—2pi+ p2.
D’ailleurs, on a identiquement

1—2pi4-pi=1-+p—ao.pi+ p—1. pi+t
P Pt p— 1L P p— 1. p2iY

d’ott résulte immédiatement

Co=1, Ci=Cy=...= Cj--4 =0,

Ci=p—2, Citr1 = Cit2=1..= Coj—1 =P —1I

211}{: ip—r).

Nous pouvons maintenant évaluer K par la formule générale

2nx=2n.21‘—k(1)——1) [Proposition 3, § 1],
qui devient ici .
Fox= <2n)‘-K(p— 0,

(p—1)=(p—1)2—K(p—1),
K=i2(])—[) —i.

et

c'est-a-dire

n se confondant ici avec ses limites ny, N, nous avons, confor-
mément & la méthode générale, & déterminer le minimum de w

)
v — Ell
— 1

dans I'inégalité

7
K< yp—r—onr
.. P
Or, on a ici

n — n
i — (P — i
E Y bl {p 1),:Iol l——i:x—i—p+p2—f—...-¢—,oi—l-—i,

P p—1 p—1
et 'inégalité devient

B(p—1)— i n(I+p+pi+...+pi-t) —ip
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ou
(4) 2(p—1)-+i(p-—1) < p(I+p - pt4...+ pi=l),
(ue nous indiquerons briévement ainsi

‘r1< "2-

Notre but est de trouver le minimum numérique de p pour
lequel cette inégalité est satisfaite quel que soit p, nombre pre-
mier, et £ nombre entier 3 2.

Or pour i = 2, p = 2 'inégalité devient

o (n—1) 3wy w >0

La limite inférieure cherchée ne peut donc étre moindre que 3
et I'inégalité (4) est satisfaite par les valears minima { =2, p =2
avec 1 3 3.

Nous chercherons maintenant a la vérifier avec ¢ et p nombres
entiers quelconques, & partir de 2; par implication elle se trou-
vera vérifiée pour p = nombre premier quelconque.

A cet effet nous remplacerons successivement dans l'inéga-
lité (4) i et p par i +1, p + 1 et nous comparerons dans les deux
cas l'accroissement 6V, du premier membre avec I’accroissement
5V, du second. Tant que 'accroissement du premier membre sera
égal ou inférieur a l'accroissement du second l'inégalité sera
encore satisfaite et la condition 8V,Z3V, donnera dans chaque
cas un minimum pour y qui pourra étre supérieur au minimum 3
déja trouvé avec les valeurs initiales i =p—=—12. Le maximum
minimorum ainsi obtenu sera la limite inférieure-de  dans l'iné-

salité (4).
1° Changement de 7 en { + 1 dans (4).
On a
Vi=(2i+1)(p—1)+pu—1;  SVy=ppi.
La condition oV, 28V, est
(20+1)(p—1)+p—1Z ppl.

Elle peut s’écrire

(2i 1) (p—0) T (Pi—1)+1,
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ou

. _ pi—i 1
2WAIT W - —
pP—1 p—1

et sera satisfaite a fortiori sil'on pose

. _ i—
u+1~gp£——;,

c’est-a-dire
()] 21T P (14 P+ plae. .0 pi=l,

Dans I'examen de cette nouvelle condition et de celles que
nous rencontrerons par la suite, nous aurons a4 opérer identique-
ment comme avec l'inégalité (4) : chercher d’abord les valeurs
initiales minima de 7, p, p qui y satisfont et comparer ensuite les
accroissements des deux membres quand i et p augmentent sépa-
rément d’une unité.

Or la forme de la condition (5) montre que, si elle est satisfaite
par trois valeurs Z, p, i, elle le sera encore par les mémes valeurs ¢,
« et toute valear supérieure de p. 1l suffit donc de I’examiner avec
p =2 elle devient alors

20+ 1 M (I+ 2422 4., - 2i-1)
el pour le minimum 7/ = 2 on trouve
5Z3 1, ®*32.
Changeons maintenant dans (3) fen ¢+ 1. On a

Accroissement du 1°*f membre = 2
Y

Accroissement du 2° membre = p.27,

et la condition
2T w.of

est toujours satisfaite quels que soient . et 7.

La condition 8V, Z 8V, est donc satisfaite quels que soient iet p
avec S 2 et a fortioriavec 15 3. On en conclut que I'inégalité (4),
satisfaite avec w53, p=2, =2, le sera encore avec w33,
p = 2, i quelconque.
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2¢ Changement de p en p + 1 dans (4). On a ici

SV =2, oV, = p.zI—‘.—])-—%l—i—(]7—i—l\)’+...+(p+l)"“"
— (V- p - preim - pi=1)]

La condition & satisfaire : 6V,Z 36V, devra étre traitée identi-
quement comme la condition correspondante dans 1° et comme
I'inégalité (4). Nous appliquerons le procédé sans répéter les rai-
sonnements.

On voit d’abord que 6V, croit avec p. Car en groupaut les
termes(,rdeux i deux on a

eVo=p ) I+ (p+1)2—p2 (p +1P— p3—+. .o+ (p + 1)1 — pi-1]
et ia différence des deux termes d’un groupe quelconque

m.m—1

2. 4 mpm—1
1.2 P

(p+1)m—pm=1-mp —+

est posilive et augmente avec p. Il suffit donc encore d’étudier la
condition 8V, Z8V; avec p = 2; elle devient alors

2T (51_[ —(?f—l))
2

(6) ii?!’-’l(|+3i_.)j+1)

S

ou

et pour le minimum 7= 2 on trouve
w4,

limite plus élevée que celles obtenues jusqu’ici.
Changeant maintenant ¢ en i + 1 dans (6) on trouve

Accroissement du 1* membre = 27+,

Accroissement du 2¢ membre = £ :3l+l—2l+2-—(3l—21+1)f
2 !

= [ oitt) = [ o
_232.31 2b+t = p (31—oi).

La condition
27 412 (31— af)

est satisfaite avec i = 2, n =1; a fortiori avec .5 4; elle le sera
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aussi quel que soit 7; car changeant encore { en i + 1 on a

Accroissement du 1°* membre =1,

Accroissement au 2° membre = 1 (31— o/l — (3i—9i) = ®(2.30—a2fy

et la condition
17 1 (2.30—2f)

est évidemment toujours satisfaite.

En résumé nous trouvons 4 comme maximum minimorum
telle est donc la limite inférieure de p dans I'inégalité (4).

De I'examen du cas 2° considéré isolément résulte que I'inéga-
lité (4) sausfaite avec pS4, =12, p —2 le sera encore avec
« S 4, { = 2, p quelconque.

Associant les résultats de 1° et de 2° la conclusion finale est
la suivante :

L’inégalité (4) est toujours satisfaite avec y. = 4 et ¢, p nombres
entiers quelconques, sauf Punité.

Elle est donc aussi satisfaite avec p nombre premier quel-
conque.

D’ailleurs 'inégalité (4) est identique a la condition

n—¥»n
K<(1-————-P p
avec
n=pi—i,
par suite on a
—
n—z‘ n
KIf———

P

et il en résulte, comme dans l'’exposé de la méthode, que dans
tout produit nz, ol

n=pi—1 et pi-1ZxZpi—1,
on a

n— n

k<4

-

puisque n est constant et & Z K.
Remarquons enfin que la limite ;. = 4 convient & toutes les
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valeurs de 7, le minimum == 2 inclus. Pour des valeurs de ¢
supérieures a 2, la limite s’abaisserait.

Ainsi, en reprenant Uinvestigation avec {53, on trouverait,
quel que soit p, minimum p = 2; avec {35, minimum p=1.

Généralisation. — Passons maintenant au cas général

n:l)\plz,)\ph—*—], ...,()\—;—])Ph__ll’
X:Pi_..l, "0:)\]),", N:—()\-E‘l)p"-—l,

et, comme ci-dessus,

N=p—t+p—1.p-...4p—1.ph- 1~ Aph,

Ex =i(p—1), 2N=h(p—n)+x,
Znoz ’ p—1 =1P—l.

Formons le produit NX

Notons

NX = [)\ +I)p/l—l].[pi_l] = ‘_Pi—()‘+l)PI‘+()‘ —I—l)le'i,
et 'on a identiquement

NX=1+(p—1)p'+(p—1)pH +...+(p—1)pht+(p— L —2)ph
+—(p— |)pIL+l,1__..+(p — 1) ph+i-t 4 )‘ph—ki.

Pour la valeur limite A= p—1, le coefficient de p* devient
égal & — 1 et la formule est en défaut. On la corrige immédiate-
ment en écrivant ce terme et le suivant

p—1.plt+4p—oa pht,
sans changer les autres termes, sauf le dernier qui devient

(p—1)ph+i.
Notons ici

A=p—1, N=phtt—g, EN =(h+1)(p—1),

no——Zno
ny=(p—1)ph, 2"0=P—l, T

NX =(Ph+i__. |)(Pi_.__ 1)= 1_pi_p/l+l+ph+i+|,

=Ph—l7
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et on a bien

NX =1+(p—0)pi+(p—1)pi+i+...+(p—1)plt+(p —2)ph+!
H+(p—1)phttro. 4 (p—1)ph+i,

Procédant, nous trouvons
A<p oy, 2NX=h(p-——l),
A=p—1, 2NX=(h+l)(p~—l).

Evaluons maintenant dans les deux cas la quantité K qui cor-
respond au produit NX par la formule

ENX =2N.ZX— K(p —1).

On trouve d’abord

A< op—1,
hip—ny=[h(p—1)+X).ilp—1)— K(p—1),
K=i[h(p—1)+A]—h,

nyg— E ny
— est

et la condition K << u 5=

/-
(7) iTh(p—1)+ M= h < pa ot

) — 1
Ensuite

A=p—1,
(h+=n(p—=C+0)(p—0.i(p—1)—K(p—1),
K=ih+1)(p—1)—(h+1),

ny — o
etla condition K < —=

est ici
(7%) [+ (p—1)—(h+1)< p(pht—1).
Or, en faisant A= p — 1 dans l'inégalité (7), on aurait
h+0)(p—1—hlp(ph—1),

et il est clair que si cette derniére inégalité est satisfaite, I'iné-
galité (7°) le sera a fortiori. 11 suffit donc d’examiner I'inéga-
XXXILo 3
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lité (7) en y comprenant la valeur limite A = p — 1. De la sorte,
le cas exceptionnel rentre dans le cas général.

L’inégalité (7) contient deux uouvelles indéterminées & et A.
Montrons d’abord que si elle est satisfaite avec deux valeurs parti-
culi¢res £, A, elle le sera encore avec toutes valeurs supérieures
de ces deux quantités.

Nous procéderons comme avant, changeant successivement /4
en h+1 el X en X1, et comparant les accroissements des deux
membres.

Changement de h en h + 1 dans (7). — L’inégalité (7) peut

s’écrire

Ph_l

Rli(p—1)—1]+ 1A < p) >

k4

d’ou
Accroissement du 1* membre = i(p —1)—1,

» 2¢ » = p.)\p".
La condition a remplir est

(p—1)Z pAph+1,
et si elle est satisfaite pour une valeur quelconque de £, elle le
sera a fortiori pour une valeur plus grande. Il suffit donc de la
vérifier pour 4 = i, valeur minima. Elle devient alors
i(p—1)ZpApi+,
et comme on a toujours
1p2pt,
la condition est, a fortiori, toujours satisfaite.
Changement de \en A +1dans (7).

Accroissement du 1 membre = ¢,
Ph_l
p—1

» 2¢ » =pn

La condition est
;= .ph_l .
L p—1

et il suffit encore d’y remplacer A par Z; elle devient alors

. pi—1
121;_[-
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Le premier membre est indépendant de p; le second, qui est

égal A 1+ p 4+ p2+4...+4 pi~!, croitavec p; on peut donc y rem-
placer p par son minimum 2, et il vient finalement

LZ: :"'(‘)-l’“l)’

condition qui est satisfaite avec =12, pn 1.

Elle le sera encore avec i > 2; car, changeant 7 en 7 + 1, l'ac-
croissement du premier membre est 1, celui du second est p 2f,
toujours supérieur.

Notre assertion est donc justifiée, et il suffit, pour déterminer
dans (7), d’'y faire A =1¢, A =1.

L’inégalité est alors

i — 1

L . ).
tfep—n)+1]—i <
[i(p —1)+1] >

—1
ou

(8) 2(p—1) < pu(l+p—+p2+...+ pi-t),

En la comparant avec l'inégalité (4), qui se rapporte au cas
particulier n=X = p?— 1, on voit que si (4) est satisfaite, (8)
le sera a fortiori. 1l en sera donc de méme de (7). Un nouvel
examen est, par suite, inulile, et nous pouvons prendre p = 4
cemme limite in(érieure valable dans tous les cas.

Premiére conclusion. — Quels que soient, dans le Tableau
général ci-dessus, x, n, ¢ et p, on trouvera dans le produit nz

(9) k<4—__—,

z el n étant donnés, sil’on fait parcourir & p la suite des nombres
premiers non supérieurs a z, on obtiendra pour chaque nombre
premier un nouveau tableau, et, quelle que soit la subdivision
laquelle r appartienne dans ces diflérents tableaux, la condition ( g)
sera toujours satisfaite.

Cela étant, elle subsistera aussi lorsque le nombre premier p
sera un de ceux pour lesquels Zx est minimum. Mais dans ce
cas, c'est-a-dire aveczx =6, il a été expliqué en détail dans ce

Paragraphe, notamment dans P'exposé de la méthode d’investi-
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gation, que l'inégalité (9) est un criterium de non-divisibilité du
nombre

onar

Y

par (1.2...n)°"" et il enrésulte enfin que le nombre E sera divi-
sible tout au plus parla puissance g + 3 de la factorielle 1.2. . .n.

Toutefois pn = 4 n’est qu'une premiére approximation et il est
possible d’abaisser cette limite.

Cas dans lesquels pw=1. Faisant u =1 dans l'inégalité (7)
qui exprime la condition générale
n(,—znU
K<p—F—v,
[) — 0
on obtient

(10) Jh(p—1)+ X — " <A1+ p-t=p2ai...+ph-1)
(hZ ;1205 p—1).

Rappelons que la quantité maxima K correspond ici aux valeurs
maxima X = pi—1,N = (A +1) p* — 1 (voir généralisation).

Nous avons vu que si cette inégalité est satisfaite pour certaines
valeurs ¢, p, , A elle sera satisfaite pour Loutes valeurs supé-
rieures de /. et de A, les autres quantités restant constantes.

Introduisant dans l'inégalité '’hypotheése

h = l—|— I
elle devient

i) (p—1)+ k| —(E+1) <A1+ p +. ..+ pi).

Pour les valeurs minima {= 2 = p, ce qui implique A =1 il
vient

o -

Yy < 7.
L’inégalité est donc satisfaite pour des valeurs quelconques
de f, p, h, avec hSi +1.
Conclusion. — Sil'on a
Pi—lzx <pi; Pi+xz‘ n
pour tout nombre premier non supérieur a z, o sera la puissance

la plus élevée de la faclorielle 1.2...n qui divise le nombre
1.2...nr
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Dans le tableau des valeurs simultanées de = et de n la con-
clusion précédente qui résulte de 'hypothése 2 =i + 1 s’applique
a tout nombre n situé dans la troisiéme division du tableau ou
dans une division supérieure. Avec { = 2, par exemple, le tableau

est
) xr
Eypp—%—l...[)‘l——lg ,
Hprpr+roapr—r1lap2. . 3pt—u| ... [ (p—0)p2..p3—1]|
n

:|]/3p3—i—1...2p3——1 |2p3. ..

Ezxzamen du cas h =1i. Le nombre n dans cette hypothése
appartient a la seconde division du Tableau, qui se réduit a

r

\ opi—1 pi—1 !
!P p “T_|...P I‘

n

Vptocapi—1lepl. . 3pi—1| . [ (p—1)pt.. pitt—1 | (

Pour I’examen de ce cas il faut faire dans (10) A =1, d’ou
(11) 2(p—1)+Ii(A—1D) < A1+ p—+...+ pi-l.

Cette inégalité doit étre satisfaite avec A << p, et son exactitude
dépendra des valeurs relatives des indéterminées qui y figurent.

Ci-joint I'énumération de tous les cas possibles. Les valeurs
correspondantes de p et de A sont inscrites en dessous de ces deux
quantités et en regard les unes des autres.

p- A Inégalité (t1).
2, 1 en défaut
. 3 1,2 id.
{=2
' 5 { 23 id.
>0 ¢ c e
([ S4 satisfaite
{2 1 en défaut
) I id.
3 e
2 satisfaite
t=3 ,
_ 1 en défaut
5
=) satisfaite
.7 S1 id.
2 I en défaut
t=14 ] _ - .
33 31 satisfaite
iz5 lza St d.
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Si I'on remplace dans (11) A par w, on retombe sur I'inéga-

ng — E ny

lité (4), qui exprime la condition K << u dans le pro-

P—
duit NX avec 1y = n = N=X = p?—1; l'inégalité (4) est donc
satisfaite avec pn=1, {35 et la remarque en a déja é1é faite en
terminant ’examen du cas unique ou n coincide avec ses limites
extrémes.

En résumé, le Tableau des valeurs simultanées de = et de n,
pour lesquelles I'inégalité (11) est toujours satisfaite, quel que
soit p, est

x = gpi—’Pi—l—l—l...p‘.—I’,
i35, n=p"—1Hp",pi—r-l,...2p"-—1|2pf,...3pi~—113p"...
pi—r1l...[(p—n)pi...pHt—1]|.

>

En prolongeant ce Tableau indéfiniment, on retomberait sar le
cas A i+ 1 examiné toul d’abord, et la condition 35 dispa-
raitrait.

Le produit nz de deux nombres quelconques, pris dans le
Tableau ci-dessus, donnera

-
—_1 ’

ke ——
<P

car I'inégalité (11) exprime la condition générale p=1, c’est-

a-dire
ng— Eno
h———
p—I

K<

K se rapportant au produit NX dans lequel X = pi—1 est un
nombre fixe, et N un nombre variable égal au maximum de n
dans une subdivision quelconque du Tableau, tandis que r, repré-
sente le minimum de n dans la méme subdivision, et nous avons
vu que la condition g =1 entraine
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puisque g, n, N étant pris dans la méme subdivision, on a

n— En ne— Eno
N .

P p—1

Le nombre 2 étant choisi égal ou supérieur a 2%, il y aura tou-
o] )
. . ey = e .
jours un nombre premier p, tel que pi~' Zx < p* avec iS5 qui
conviendra par conséquent au Tableau ci-dessus. Il peut se faire
que 'expression arithmétique de z au moyen de p

r=ay+ a1 p+ay,p:+... (a<<p)

donne Z:r =o. Dans ce cas, ainsi qu'il a été expliqué en détail
n — n
au début de ce paragraphe, l'inégalité £ < = dans le pro-

duit nz ol nS z est le criterium de la non-divisibilité du nombre

1.2...n2x . .
— +1 o+t
E= o) par p°*tt et, par suite aussi, par (1.2...n)0H,

Donc si p, dans le Tableau ci-dessus, est un des nombres pre-
miers pour lesquels E.z' =0, le nombre E ne sera pas divisible

par la puissance ¢ + 1 de la factorielle 1.2...n.

Bien que, n,, n, N appartenant & une méme subdivision du

no—‘-zno
Tableau, I'inégalité K < —Z =’ relative au produit NX,
neSn

entraine k << = dans le produit nz, il pourra arriver que, la
premiére inégalité n’étant pas satisfaite, la seconde le soit; on en
rencontrera de nombreux exemples.

Cas particuliers et exemples. — Notons d’abord

z = ph,
n==>by+bp+bypr+....
n—Zn
Dans le produit nz, on aura évidemment 0o = £ < —_
(Voir Remarque, § 2.)
Mémes conclusions avec n = p#,  quelconque.
Dans le premier cas, an a évidemment ¢ =1, et ’on en con-
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-~ l.a...npk
clut que le nombre E = oo ph)
de la factorielle 1.2...n.

n’est pas divisible par le carré

Exzemple 1. — Soit maintenant
r=1+p, no = p?, N=o2p2—1.

Nous écartons les hypothéses p =2 et 1 + p = 2% qui ramé-
nent au cas précédent.

Dans la Tableau qui correspond & p, onai=2; z est égal au
deuxi¢me nombre inscrit au Tableau, et n tombe dans la pre-
miére subdivision qui correspond a A =1.

[ n

:p p+1...p2—1, ‘ ;
x X ;]pﬂ p2+1...2p7——1!:.
ny N
L’inégalité (11), qui exprime relativement au produit NX la

nyg— no
condition K < BT est en défaut (voir I'énumération).

Mais il pourrait se faire qu’avec un autre produit on trouvat
n— n
k< — Prenons, a titre d’essai, le produit Nz. On peut

I’évaluer directement.

On a

r=1-41.p, N=2p2—1=p—1+4(p—1)p+1.p2,

2.1-:2, 2N=2p—1, L\ﬂzp—-xﬁ—}ﬂ_lzzp,

p—1 p—1
Nez=[p—1+(p—1)p+1.p2|(1+1.p) =Co+ Cyp + Gy p2+ C3 p3,

dans les notations du Paragraphe 1. Ici
Co=p—1, Ci=2(p—1), C,=p, C;=1.

On raménera cette expression a la forme exigée dans le sys-
téme de numération de base p, savoir

Nz =cy+cyp+capt+... (c<p)
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par les opérations indiquées au Paragraphe 1.

Co=p—1=rcy, Ci=1.p+p—2, Ci+h=1.p+1,
RS s i
/\’1 Cy /n'-g Cy

Cst+ha=no2=¢c3 si p>a.
On a donc
k=k+ky=02 avec p>2;
on aurait
k=3 avee p = 2.

Dans tous les cas, on a

\'—ZN

p—1

’

c’est-a-dire

2 < 2p avec p>2,
<2p avec p=o.

De plus, on a

ng— Yy n
’ Z ¢ opr—a

P —1 :[)——I :])+I,

Ilo—-zﬂo
o — = .
p—1

9 \ _‘ .
d’ou suit, avec p > 2,

Soit maintenant n un nombre quelconque entre les limites n,,
N et 4, la quantité qui correspond au produit nz. On aura cer-

A.’< n ——le,

p—1

tainement

n— n
: ! ’ by . [
puisque &’ est au plus égal & k et que —5—; estau moins égal

ng— E ngy

A —= .
p—1
D’autre part, on a Zx =2 et 'on peul étre sir que 2 est le
minimum Ex, c’est-a-dire o. Car, en supposant toujours p > 2,

le nombre £ =1 + 1. p est un nombre pair, donc un autre nombre
premier P ne donnera pas x —=P* (seul cas dans lequel on
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trouverait s=1), & moins que P=2, d'ol z =1+ 1.p = 2%,
hypothése écartée au début.

Cela étant, d’aprés une remarque souvent répétée, la condition

k,< n—Zn

p—1
. e ey ere 1.2...n7
est un criterium de la non-divisibilité du nombre E — WL

par p°tt, d’otlon conclut que ce méme nombre Eavecz =p—+1,

— | p2. p2 2 1visi 5
p>2,etn=|p? pi+1...2p — 1] est divisible par le carré de
la factorielle 1.2...n, mais non par une puissance supérieure.

Fzxemple 2.

x=2p, no= p?, N=opl—1=p—1+4+(p—1)p+1.p%;

— N—>»N

On a encore =2 dans le Tableau, et I'inégalité (11) est en
défaut.
Evaluons le produit N z.

=p+I,

Nz =(2p*—1)2p=—2p+4ip’=(p—2)p+(p—1)p*+3p3

développement exact en admettant p > 3.
Dans cette hypothése,

2N1‘= 2p,
2N.7'::2N.Ex-—k(p—n)

2p=(2p—n2—k(p—1n; k=2,

et la formule

donne

et I'on a, comme dans I’exemple 1,

fe no—zno - N——ZlN.

pr—1 p
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On en conclut, comme dans cet exemple, que dans tout pro-
n—z n

D’ailleurs, ici encore, ¢ — 2, et il en resulte que le nombre

1.2.3...2
B= a5
pas divisible par une puissance de la factorielle 1.2...n supé-
rieure a 2.
On pourrait multiplier les exemples de ce genre, qui montrent

duit nz otz =2pet p2ZnZap? ona k<< ———o

avec p >3 etn=|p? p2+1...2p>—1|n'est

n— n
que I'on trouvera &k << = avec des valeurs de n plus rap-
prochées de = que ne I'indique la méthode générale, et il est pos-
sible que = soit dans tous les cas I'exposant maximum de la puis-

«2... N o . . .
(———7, mais il ne serait pas facile

de resserrer les limites ny, N, de maniére a obtenir une certitude
a cet égard.

Sauf le cas is0lé np= N =X = pi— 1, les résultats obtenus
jusqu’ici ne s’appliquent qu’aux nombres z et n, qui ne sont pas
compris dans les mémes puissances consécutives d’'un méme
nombre premier. S’il en était autrement, c’est-a-dire si z et n se
trouvaient tous deux dans la premiére division du Tableau, la
méthode générale ne pourrait plus s’appliquer sans modification.
La difficulté consisterait dans le choix de limites n,, N suscep-
tibles de conduire & un maximum numérique pour p dans I'iné-

sance de 1.2...n qui divise

no— n.
galité K <u = et il faudrait avoir recours a d’autres

moyens. Dans son étendue actuelle, le présent travail suffit
néanmoins peur montrer le parti que I'on peut tirer théorique-
ment de la quantité k dont la nature n’'indique @ priori autre
chose qu’un élément matériel de calcul numérique.



