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SUR QUELQUES GROUPES D'ORDRE p^ ;

Par M. M. POTRON.

Celle Noie a pour but de rectifier et de compléter les résultats
obtenus dans ma Thèse de Doctorat louchant les g^e (groupes
d'ordre />0)? et de réparer en particulier une omission de
quelque importance, commise dans la détermination des types
de figure (i i) (i 111) dans le cas de p > 2 (Thèse, p. 94, g5).

Il s'agit des types de gp^G ayant pourcommulant le central et
ne contenant pas de g/,s de figure (n i ) (11). Leurs équations
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peuvent toujours (Thèse, p. 92) être mises sous la forme

aP==bP==î, cP==&Pa«, dP=by, eP=b^\ fP^b^,
(a==o, i),

ûM cd = c, <?-i ce = ça, /-i c/ == et), e-1 ̂ e == db^,
f-idf=cla, f-^ef=e.

Nous Savons à nous occuper ici que du cas (Thèse, p. g3) a == i ,
j â ' ou^ou P'^o.

Le changement de générateurs le plus général conservant la
forme des équations de G est de la forme (Thèse, p. 76)

«1== b-fïa^, b^= 6n'a^,
d = fuezdycxbknh, d^ == f^e^dy'c^b^a^,

ci == f^e^dyttc^bk"a^\ /i = f^e^d^c^b^'a^",

avec les conditions (Thèse, p. 89, 90, 91, N désigne un non carré
arbitraire) :

Ç'=triï], ^'==toN$, œN==±: i ,
v'==fùWy, y=(t)N.y, 5'=ti)Na, i^==toN2^,
^^œNy, y^coa"", ^=(0^", ^"==0)^^,

ç ̂  a"^— zx" -\- yu"— o^", ^ ̂  .-r^— ux"-{- N(^<s"— z y " ) ' »
^ Ç 2 _ _ N ^ 2 ) [ ( ^ Î _ N ^ 2 ) ( N ^ 2 _ ^ 2 )

-+-( . r^—Ny»)(N^2— i^2)_^2N(.ry—y.y")(^;^— M^^J ^ o,

et il opère sur les exposants des équations de G une transformation
définie (Thèse, p. 94) par

ç+ pi(x>Tf} ==A, r̂ -+- piioNÇ ̂  pa? 4- y y + ̂ -s -+- ^M,
P^ = N2 ,̂ p'i Ç == pN^ + p^ -+- p'u + ̂ N^,
P'; (07] = .r̂  p'i œ N ç = pa?' -t- PV -¥- y s" -+- ̂ / ̂ ,
PÏTI =Ny, PÎNS =pNy4-p/a'<r-+-pv/-^-^N^•

Si Fon fait y\ = p';'== o, il vient

^=y= ̂ ^+ y'u"^ yu"^ p^N^so,
donc ^^P^'SESO; ainsi on peut faire ^==(3^==o toujours et
seulement si P"s=s ^EES o.

Supposons d'abord ^/ ou ^'"•^ o; en prenant

i\ == ̂ = a'"= ̂ = 1^=0, ç =a?==^===i,
p 4- yz + p'̂ s p'-h N y'z 4- P'M = o,
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on peut faire pi == jî^ === o, et le calcul s'achève comme dans la
Thèse (p. 94,QS).

Supposons maintenant (B'; == [^= ̂ ff = (î7^ o donc ̂  ̂ \ ̂  o et

a^sEs y=E= o, $ === a^d- yî^, ^ == .r̂ -h Ny^",
(Ç2^_]\^2)(^^2__^2)(,p2__]V^2)^o,

Ç-t- piœ7, —.r, yj + piœN^ ^x + ̂ 'y,

Pi^l-N2^ P,Ç-?Ny+^.

L/élimination de Ç, ^ puis de x^y entre les quatre dernières équa-
tions donne

(b) ^(^^^^^^^(Nî-^^Xp^-p^-o.

C'est la condition nécessaire et suffisante pour que (pi, jB^) four-
nisse le même type de G que (jî, ji').

Considérée comme une équation en ?p l'équation (6) a des
solutions rationnelles toujours et seulement si

(j^2-^p2.4_ ^2)2.4. 4N^(p5 - N )

est carré ou = o. On pourra donc faire j3i == o toujours et seule-
ment si (iî / :^—Np2-+-?)2— /iN2^2 quePon peut écrire

[ (^4-N)2-Np2][(p ' -N)2-Np2]

est carré ou ̂  o.
Supposons d'abord celte condition remplie et soit j3i = ? == o,

la condition (6) qui devient (^ — j3') (p'^^ — N2) s o montre

qu'il y a pour G -—— tjp^s q1 1 1» en prenant pour N une racine

primitive i de /?, correspondent à (Cf. Thèse, p. 94)

p=o, P'=^, ...,̂ , P^P'^o.

Supposons maintenant (P'2—-Np2+N Î2) l—4N2^2 non carré,
donc Ppi ̂  o, les types distincts de G correspondent aux sys-
tèmes (j3, P') vérifiant cette condition et tels que

^(^^-^^^^(^-P^^XP.-^o^o, h^k.

Pour trouver le nombre des types de G, cherchons d'abord le
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nombre des systèmes ( p < , p^) solutions de (^). En posant

Q, P f 2 _ _ ] ^ J Ô ^ - + - N 2
x = Pi - -———^———. y == ?„

(6) devient

^ — N ^ = - ^ [ ( ^ . _ N ^ + ] V 2 ) 2 _ 4 ] V 2 p ]

et Pon sait ( < ) que cette équation admet p + \ systèmes de so-
lutions. Cherchons ensuite le nombre des systèmes (p, |3') tels
que (^--Ni^+N2)2-^2^2 soit non carré, c'est-à-dire tels

/ j 3 ' 2 — — N B 2 - + - N 2 \ 2 . , r , * .que {s-——^r-,——1 soit précède d un non carré. L équation

P / 2_N^2„2c jV^_^_^2= ,o ,

où c 2— ï désigne un non carré et qu i , en posant

^=^_cN, y=?,
devient

. r2—Nj2^] \2 (c2__ i^

a comme précédemment p + ï systèmes de solutions pour une

valeur donnée de c. Comme c 2 — ï parcourt (2) ^ ( / ? + £ — 2)

(e désignant le caractère quadratique de — ï ) valeurs distinctes
auxquelles il faut ajouter la valeur — ï si s = = = — ï , il en résulte

que c parcourt toujours ^—— valeurs distinctes. Les p T sys-

tèmes (p, p') que nous avons à considérer se répartissant en caté-
gories de p -+-1 qui fournissent pour G le même type, il v a

exactement pour G ~—— types distincts.

Dans la liste des g^o (Thèse, p. i64) il faut donc supprimer dans
les types (27) celui qui correspond à (â'== o et ajouter les p ~ ]

types pour lesquels les seconds membres des équations sont

ï , ï, &^'a, 6%, ï, ï , c, ça, cb, db^, aa, e,

( ' ) DE SÉGUIER, Éléments de la théorie des groupes abstraits, n° 44.

( ^ I l y a . ^ - t - e — 2) non carrés ^ o suivis d'un carré 7^0 (DE SEGUIER,
loc. cit.).
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PA et j3^ parcourant pour h = i , 2; . . . , S—il les î (/? — i) sys-
î 2

ternes de valeurs telles que l'on ait

(P/?^ + N2)2- 4 Nî 13,2 non carré,
^^^P^P^^+C^-P^^ÎCP.-P^^opourA^Â:

(^=^,...,^).


