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SUR QUELQUES GROUPES D'ORDRE p°;
Par M. M. Porrox.

Cette Note a pour but de rectifier et de compléter les résultats
obtenus dans ma Thése de Doctorat touchant les gpe (groupes
d’ordre p%), et de réparer en particulier une omission de
quelque importance, commise dans la détermination des types
de figure (11) (1111) dans le cas de p > 2 (Thése, p. 94, 93).

Il s’agit des types de gp¢G ayant pour commutant le central et
ne contenant pas de g, de figure (111) (11). Leurs équations
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peuvent toujours (Thése, p. g2) étre mises sous la forme

ar=br=1, cP=0bBa%, dr=0bPF, er=0f, fr=0B",
(a=o, 1),
d-led =c, elce=ca, [f-lcf =co, e—tde = dbN,

Sldf =da, f-lef=ce.

Nous n’avons & nous occuper ici que du cas (These, p. g3) 2 =1,
3 ou 8" ou B”=£o.

Le changement de générateurs le plus général conservant la
forme des équations de G est de la forme (These, p. 56)

a; = b1ak, by = b al,
e1= fuerdrerbhah,  dy= fues dY cx b ok,
ey = fu" ez dry’ cx" br" ah"’ ft = fu”’ ez" dy” cx” bk ah"”

avec les conditions (Thése, p. 89, go, g1, N désigne un non carré
arbitraire) :
t = wy, 7'= wNE¢, oN =1,
r'=wNty, y'=wNgz, z’=wNa, u'=wN2z,
2"=wNy", Y'=wa, M"=wu, u"=wNz",
t=x3"— 32"+ yu'— uy”, 7w =zu" — uz"+ N(y3"— zy"),
(81— Nu2) (07— N y2) (N&" — ')
+ (2"t — Ny"?)(Nz2— u?) + 2N(ay" — y2") (50" — uz")] # o,

etil opére sur les exposants des équations de G une trans(ormation

définie (These, p. 94) par

-+ Biom =2, 7+ BoNE=pr +Pfy +pf3z+pf"u,
in =Ny, BE =8Ny fofus N
Bron =2, ToNE=Pa" + [+ f's"+ B"u’,
Bim =Ny, INE =BNy -+ o’ B+ NS
Si 'on fait @". = ':z o, 1l vient

2= y'E @"2"—!— ﬁ"'u"s ﬁ”u"+ @"’Nz's 0,

m

donc B’=P"=o0; ainsi on peut faire 3= f}=o0 toujours et
seulement si B’ = "= o.
Supposons d’abord 8" ou 3" 3£ 0; en prenant

n=y=a"=y'=u"=o, t=2x=23"=1,
P+Ps+fL"u=p+Np"s+ Pu=o,
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on peut faire B, = 3| =0, et le calcul s’achéve comme dans la
These (p. 94, 95).
Supposons maintenant |, = 8} = "= f£"=o0 donc 3’8 £ oet
"=y"=o, ="+ yu’, n=azu"+ Ny3z",
(82— Nn?)(Nz"—u'2) (22— Ny?) #o,
E+Bion=2, 7+ PoNi=8zx+0y,
Bin=Ney, Pii=fNy+pPa

L’¢limination de £, 4 puis de x, y entre les quatre derniéres équa-
tions donne ’

(6) N(EPi— 2R + (N2 — BB (Bi— ) =o.

C’est la condition nécessaire et suffisante pour que (8, B}) four-
nisse le méme type de G que (B, B').

Considérée comme une équation en B3, I'équation (b) a des
solutions rationnelles toujours et seulement si

(B2 — N2+ N2)2- 4NE2 (B — N)

est carré ou = 0. On pourra donc faire $,= o toujours et seule-

ment si (8’2 — N2+ N2)2— 4N28'2 que 'on peut écrire
[(F-+N)2—Np2][(§— N)*— N{2]

esl carré ou = o.

Supposons d’abord cette condition remplie et soit B, =0 =o,
la condition (b) qui devient (8, — ') (F'8,— N2) =0 montre
qu’il y a pour G 1’——%_—1 types qui, en prenant pour N une racine
primitive ¢ de p, correspondent a (Cf. Thése, p. 94)

P+t
B=o, P=ii...,i2, PpP=p=o.

Supposons maintenant (3’2 — N2+ N2)*— 4N2@3'2 non carré,
donc (f,5£ o, les types distincts de G correspondent anx sys-
temes ({3, f') vérifiant cette condition et lels que

N(BLPE — Bill) + (NP =B RL) (Bh— Bh) o, Rk

Pour trouver le nombre des types de G, cherchons d’abord le
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nombre des systémes (34, ;) solutions de (0). En posant

! p'z_N.gz_{_Nz

p=p— D EEN, o,

(b) devient
x’——N_y’E Z;’)'E lf(ﬁ'z__ N@"'-i- N2)2—4N1{5’2]

et 'on sait (') que cette équation admet p -+ 1 systémes de so-
lutions. Cherchons ensuite le nombre des systemes (B, &) tels
que (B'2— NB24 N2)2— 4N28'2 soit non carré, c’est-a-dire tels
2 NP2y N2\2 )
que (ﬁ P N2

. . I3 ’ ’ ’ Y .
Ry ) soit précédé d’un non carré. L’équation

B2—NpB2—a2cNB'+ N2=o,

ou ¢* — 1 désigne un non carré et qui, en posant

z =0 —c¢cN, y=238,
devient

z?— Ny2= N2(ct—1),
a comme précédemment p -+ 1 systémes de solutions pour une
valeur donnée de ¢. Comme c>—1 parcourt (2) %(p +e—2)

(¢ désignant le caractére quadratique de — 1) valeurs distinctes
auxquelles il faut ajouter la valeur — 1 si e=—1, il en résulte

—1 ..
lid valeurs distinctes. Les Sys-

2 2 .

2 —

que c parcourt toujours

témes (B, B') que nous avons a considérer se répartissant cn calé-
gories de p + 1 qui fournissent pour G le méme type, il y a

exactement pour G P! types distincts.
2

Dans la liste des gpe (Thése, p. 164) il faut donc supprimer dans
p—1
2

les types (27) celui qui correspond & f'=o0 et ajouter les
types pour lesquels les seconds membres des équations sont

1, 1, bBna, BBi, 1, 1, ¢, ca, cb, dbN, da, e,

(') DE SEGUIER, Eléments de la théorie des groupes abstraits, n° 44.
(H)Ilya %(p + & —2) non carrés # o suivis d’'un carré # o (DE SEGUIER,
loc. cit.).
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p:l les é(p-—l) sys-

B et B, parcourant pour k=1, 2, ...,
témes de valeurs telles que I’on ait
(B2NP2 + N2)2— 4N28’2 non carré,
N(B 87— PABL) + (N2 — £, 8) (Bi—B)) Zopour k= k

(h, k=1,2,...,2 :‘)




