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SUR LES INTEGRALES DE L’EQUATION DIFFERENTIELLE DES CONIQUES
ET LEUR INTERPRETATION GEOMETRIQUE;

Par M. Raouvr Perrin.

I. Dans une précédente Communication ('), j’ai démontré que
’équation différentielle des coniques

(1 9y Y — 43y "y 4 foy"r =0

conduit, lorsqu’on y remplace »", ", ... par leurs expressions
en fonction de R, py, p;, ps (rayons de courbure de la conique et
de ses développées successives en des points correspondants,
affectés des signes convenables pour que ce soient aussi les dé-

(*) Voir Bulletin, t. XXXI, p. 54.
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rivées successives de 'arc S de la conique par rapport a I'angle »
que fait la tangente avec une direction fixe), & 'équation différen-
tielle intrinséque

(2) 9R2(p3+ 401) — 5Rpypa+ fop} =

J’ai établi en outre que, si I'on écrit ainsi ’équation générale
finie des coniques

(3) azx?+byr+c+aofy+a2gx+2hay =o
et que 'on pose

= ab — h2,

(;/
2 = abc + 2fgh — af?— bg?*— ch?,

.‘
!

L o
!

les équations (1) et (2) admettent respectivement pour intégrales
premiéres

(5) 3633578 = AT(3)" N — M2,
(6) 3603 R10 = A2(gR2— 3 Rp,-+ 427 ) sinw
(o étant I'angle des axes de coordonnées).

Les parenthéses des seconds membres des équations (5) et (6),
égalées a zéro, fournissent respectivement I’équation différentielle
ordinaire et I’équation différentielle intrinséque des paraboles.

1. J’ai remarqué depuis que 'équation
(7) aR2+ BRps+ypi=o0
comprend comme cas particuliers, non seulement 1'équation des
paraboles (2 = 9, § = — 3, v = 4), comme il vient d’étre dit, mais

aussi les équations générales d’autres familles de courbes bien
connues, savoir :

(8) 18R*—3Rp,+ 5pi =0, hyperboles équilatéres,
(9) 4R2—aRpy+30} =0, chainettes,
(10) 4R2— 4Rpy+5p2=o, courbes de poursuite,

dans le cas ol la vitesse du poursuivant est moitié de celle du
poursuivi.

Il est 3 remarquer que ces quatre familles comprennent des
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courbes dont les branches ont toutes une forme analogue, c’est-
a-dire possédent un sommet & distance finie et deux bras s’éten-
dant & I'infini de part et d’autre du sommet, avec courbure régu-
liérement décroissante.
D’autre part, I’équation (7) admet, comme il est facile de le
vérifier, 'intégrale premiére
2y
o3=/AR B

(11) aR2+ (B +v)

’

ot k est la constante d'intégration, que I'on peut d’ailleurs
. -2
exprimer par R, # | en appelant R, le rayon de courbure au
sommet (point pour le(_[uel g1 =o0).
Par conséquent, pour toutes les courbes dont il s’agit, le rayon
de courbure de la développée est lié a celui de la courbe au point
correspondant par la formule

AN 25
= AT

qui donne en particulier

2
3

IR
o1= .‘;R‘,f (E) —1 pour la parabole,
SRy
s1=3R \/ <R~0) —1 pour I'hyperbole équilatére,
|
2= 2 R‘ R—\" —1 , pour la chainette,

plzzR\,/< R )

R,

[N

pour la courbe de poursuite

-—1 L
particuliére.

HI. Il était & prévoir que I’équation (8) des hyperboles équila-
téres conduirait 4 une intégrale de (2) analogue a celle (6) que
fournit I’équation des paraboles. Et, en effet, si'on pose

(aR?—-i— pRPg —= Yp‘ll)m: kR~

et que I'on cherche a déterminer a, §3, v, m et n de maniére que
I'élimination de & entre celle équation et sa dérivée conduise
précisément a I’équation (2), on trouve deux systémes de solu-
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lions, savoir :

m =3, n = 1o, 2= g9, p=—3, v =4
m==3, n=— 8, 2 =18, B=-—13, v =3,

dont le premier fournit l'intégrale (6) déja connue, et le second,
la nouvelle intégrale que voici :

(13) (18R2- 3Rp,+ 3p3)3 = AR

La parenthése du premier membre de cette équation égalée i
zéro donne bien, comme il élait prévu, I'équation différentielle
intrinséque des hyberboles équilatéres.

A cette nouvelle intégrale de (2) doit évidemment correspondre
une nouvelle intégrale de (1), distincte de celle (5) déja connue :
pour la former explicitement, il suftit de remplacer dans (13) R,
21, p2 par leurs expressions en fonction de y', 17, ¥, 1", ©.

J'ai donné, dans la Note précitée, ces expressions [ for-

mules (18)] quand w = =; dans le cas de » quelconque, les for-
23

mules & employer sont les suivantes :

R = w’:."y"—l
T sinom
oy == R [3(y —+ cosw) —ayp"™2y"|
(afy BT G LT ees Yo

R [9()"—1— cosw 2= 3 — 8wy 23" (¥ + cos (o)]
’

)y = 5 P s .\
sin2w . ".2),11_.( ;_) _)____‘ynbyl\ )

w1+ y' 240y cosw.

En opérant la substitution indiquée, on trouve pour la nouvelle

intégrale cherchée 1'équation

- { Ay"t0sintw = [gy"*— 6y 2y" (y'~+ cosw)
() ! + (=24 a2y’ cosw) (3 "y — (y"2)3.

Mais on apercoit immédiatement que cette équation renferme
non pas seulement une, mais bien deux conslantes arbitraires
indépendantes 'une de l'aulre, savoir Asin*w et cosw, en sorte
qu’elle doit fournir deux intégrales distinctes, chacune & une seule
constante.

Pour dégager ces deux intégrales distinctes et obtenir en méme
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temps leur interprétation géométrique, remplagons dans (1) »”,
X", ¥ par leurs valeurs en fonction des coefficients de I'équation
générale (3), savoir, comme il a été indiqué dans ma Note pré-
citée : ‘

¥ = A2
3, =3

Y=o 5 Ay L2
3 1

YN == Ae (02—,
4

e =—dri-a(fh— bg)x + f2-— be, o' =—a(0x - bg — fh),
¢ =3, 200" — 2= 4D A,

L’équation (15) se transforme alors en la relation suivante :

., 36(a+ b —2hcosw)?
Asintw =— - ,

A

qui donne ’expression de A sin*w en fonction de a, b, & el cosw.
En la reportant dans I’équation (13), celle-ci devient

10
3 "3y o.M

2y"(y'+cosw)
=2y cosw) (3 Yy — 1y,

1
+ A3[ gyt Gy
= (2

o= gla-+b—2hcosw)y”

et, puisque o est arbitraire, on peut égaler 4 zéro séparément l¢
coefficient de cosw et la partie indépendante de w, ce qui fournit
les deux intégrales distinctes cherchées, savoir :

(61 3%(a = DPy"10= A[6y y"2y" - gy =1+ 372) (4" - 3" y"™)|3,
1T 36030 = A(3y ¥y "y — 4y Sy Yy
I.es parenthéses des seconds membres de ces deux équations
1 )
égalées & zéro, fournissent les équations différentielles des deux
systémes de coniques qui sont respectivement caractérisées par

les relations
a+b=o, = o,

entre les coefficients de leur équation en coordonnées carlé-
siennes.

Au point de vue géométrique, la premicére de ces relations
exprime que les directions des points a I'infini de la conique fout
avec 'une ou l'autre bissectrice des axes de coordonnées des
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angles 0, 0,, satisfaisant a la condition

w
(18) tangf, tang0, = — tang? —.
2

La seconde exprime que les directions des axes de coordonnées
sont conjuguées par rapport a la conique.

Siw= ‘; (coordonnées reclangulaires), la condition (18) carac-

térise les hyperboles équilatéres, et la relation & =0 les coniques
dont les axes sont paralleles aux axes de coordonnées.

Appelons coniques pseudo-équilateres celles qui satisfont a la
condition (18) et coniques axiales celles qui admettent les direc-
tions des axes de coordonnées comme direclions conjuguées, et
posons

Hyi=6y'y"2y" — 9p™ (1 -+ y2) (40" — 30" "),
S W=y Sy y"™ — 4y") — 3¥"2y",
(1g) 1D :]”;
( P o=3yy" =5y

Les équations
D=o, P =o, H,=o, Hy=o0

seront respectivement les équations différentielles des droites, des
paraboles, des coniques pseudo-équilatéres ct des coniques axiales,
ct les trois intégrales premiéres que nous avons obtenues pour
I'équation (1), savoir (3), (16) et (17), pourront s’écrire

A

w e

-8
PD 3 =9

(a7

bl

10,
3

f—

(20) H, D% =g(a+b)A"

1o _
| H;D 3 =gl A &,

Puisque ¢ = ab — h?, ces formules permettent de transformer

en une expression différentielle, fonction de D, P, H, et H,, toute

. a O h . iy .
fonction de =, =7, =7 et de former, par conséquent, I'équation

A3 A3 AT
différentielle de tout systéme de coniques défini par une velation
entre ces lrois quantités, c’est-a-dire par une relation ol ne
figurent que la forme ou I'orientation, ou les deux ensemble, mais
non la position absolue dans le plan.
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On tire en effet de (20)

| 1

=

a D3
== (Hy+ YT —{HI—36PD%),
AS 18
[/ D-%‘o \
—~= —ls—(u.-—\/ug—/.u;-- 36PDY),
(21) Al
10
L‘l =1y,
A:{ 9
. 'E.)_ — 1 [)D—"}‘
‘\ A® 9

Proposons-nous, par exemple, de former I’équation dilférenticlle
du systéme des coniques semblables 4 une conique donnée. On

sait que l'expression
ab — h2
(a-+b—ahcosw)?

a la méme valeur pour toutes les coniques semblables. Soit ¢ cetle
valeur pour la conique donnée. On trouvera immédiatement pour
I'équation demandée

(22) 9gPDt— g (H;—2Hscosw)? == o.

Sil'on veut obtenir ’équation différentielle des cercles, il faut
poser
a=20, h = a cosw,

ce qui donne les deux équations

H3 — {112 36PD*= o,

o2, =1, cosw,

dont la premiére représentc le systéme des coniques ayant lears
axes parall¢les aux bissectrices des axes de coordonnécs.

Si, dans ces deux équations, on remplace P, D, H,, H, par
leurs expressions en y’', y", ¥, ", il sufftiva d’éliminer " pour
obtenir ’équation cherchée; mais le résultat ne s’obtiendrait que
par un calcul pénible. Il est beaucoup plus simple de poscr 5, = o,
ce qui équivaut, d’aprés 'une des formules (14), a

00

(23) Syl Yyt —(1+y2)y"+ cosw(3y"t— 2y y") = o;

telle est I’équation des cercles.
XXX, 19
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-

Connaissant trois intégrales premiéres de (1), chacune avec unc
constante arbitraire, il suffit d’éliminer entre elles 3" et 3" pour
obtenir unc intégrale troisiéme 4 trois constantes arbitraires, ¢’est-
d-dire une équation dillérentielle du second ordre, relation entre
', 3" et les constantes

a—+b h ab — h2

[ T

A3 A% A

—
whe

Le calcul donne pour cette équation différentielle
2 % 12
(24) 0= VAT [hhy + (a+ D)1+ y)] Ay |
[+ —y2+[(@a+b)y'+h(1+y']?)

On en tire alors deux expressions

1.
9

Aty

©wne

"y

=-—(ay?+ 2y’ +-b)
= (by2 =2y’ + a),

dont la seconde seule se trouve vérifiée, quand on y reporte la
valeur de 1, savoir

y' = L (—2/( = v_‘ljv')

: 20 - ’
ot ¢ et ¢ ont les significations données précédemment.

Comme d’ailleurs le rayon de courbure R en un point quel-
: 3

L= Y24 2y cosw)? . N .
( Y2y —> On arrive a cette expression

conque est égal 3 -
onq gat 27 sinw
du rayon de courbure an point o le coefficient angulaire de la

tangente est 3’, en fonction des coefficients de I'équaiion géné-
rale et de l'angle w des axes de coordonnées

; (l + y2+2v cosw?
Oy hy u.)

el

(25) R =

Si la conique donnée est un cercle, son rayon sera donc

R Vit g*—ofgcosw —acsin?w
asinw

b

comme il est facile de le vérifier directement.

IV. Des résultats analogues peuvent étre obtenus an moyen des
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équations différentielles intrinséques (6) ct (13), qui sont deux
intégrales premiéres distinctes de (2). La signification géomd-
trique de la constante & qui figure dans (13) a d’ailleurs été don-
née ci-dessus, en sorte que ces deux intégrales premicres de (2)
peuvent s’écrire

(26) 9R?—3Rps+ jp3=90A 3sin”

o

1o
3

_L s
(27) 18R*—3Rgs+35p}=—9(a¢+b—2h cosw) A 3sin” JmR‘

L’élimination de p, est immédiate et donne l'intégralc sc-
conde

o 10 , . . . 8
(28)  R=- ( ') + ——1{ . ""'-’il-Jﬁ."_"s—“R:i—,.o.

+

(Asinw) 3 A3 sin3 o
Si I'on pose
21 R2 R

== u. - = ¢3

3R Asinw

cette équation peut s’écrire

a—-+b6—ohcosw
2 Qe ——— T o= o0.
( 9) sSin w
On en tire I'expression de o, en fonction de R, et aussi celle
de R aux sommets de la courbe pour lesquels p, — o, savoir :

3

\ R — VA [2/: cosw—-(a=b) 2\ (a—by—{l2=-4(a-=b)h ('nsw‘r

(30) == ~
sinw 2.0

L’élimination de p, entre (26) et (27) donne de méme

P2 _ ,u “+b--2hcosw Y
SR= j———————— 0 -50e?
3R sinw

Par des différentiations successives, on pourrait obtenir de

2
méme%‘, P—R‘, 23, ... en fonction de ¢, c’est-a-dire de R?; et, si
1

P1 ’
'on élimine ¢ entre deux de ces relations, on pourra obtenir une
velation o n’entrera plus R et qui, par conséquent, s’appliquera,
en augmentant tous les indices des p d’une unité, aux développées
successives de la conique caractérisée par les valeurs données aux
constantes arbitraires a, b, h.

On peut dooner & ces équations une forme pius élégante en
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remarquant que l'aire S de la conique et celle T' de son cercle
orthoplique ont respectivement pour expressions

) _ wAsinw ~__ mA(a+b-—2hcosw)
(31) §S=""21% p—— - .

-
]

1eleo

Soient alors C, C,, G, les aires des cercles de courbure en un
point arbitraire de la conique et aux points correspondants de la
premiére e’L de. la seconde développée. Les équations (26) et (27)
pourront s’écrire (')

3 1 C, 4G C 3
R R
—_— 1

I 2 5 C C'T; r

(33) VAR R
¢ gh
et I'équation (28)
2 1

, 1 C1 - C\“ /C\3T . _
(34) ":') C"ﬂ <S) —(\—S> ‘S—'—l—~0.

Ces diverses formules permettent de résoudre des problémes tels

(ue celui-ci :

On donne les équations (finies) de deux coniques quel-
conques. Sion les déplace, sans les déformer, de maniére a les
amener & avolr quatre points conscécutifs communs, quelles
seront les valeurs communes de R et de oy au point de contace?
Et quelle condition doit étre remplie pour que le probléme soit
possible?

En se reportant aI'équation (34), il est clair que, aux points qui
doivent venir en contact, C et C, doivent avoir la méme valeur
pour les deux coniques; si S et I' sont les caractéristiques de 'une,
8’ et T celles de Pautre, on aura, avec Péquation (34), celle-ci:

2 1
5 b Gy (O (G) (I
4 bis - G ) — (= V1 =o0
(34 bes) 9 C (Sr \bl b’)—r 1
d’otlt, en retranchant membre & membre,

"‘ A rb 3
(35) o= (rsiorsi)
S28'2 §'% — s:’a’)

2

(') La rclation (32) figurc déja sous le n (20) dans ma Note précitée.
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ou, remplagant S, §', T', T par leurs valeurs (31) et G par =R?,

S— 1 1
(36) R_\/AA’ (@ +b0—ao2hcosw)A3—(a+ b —a2lcosw) )3

H 2 2
sinw aA/;,_ av_\;;‘

Pour que le probléme soit possible, il faut évidemrment que

[

1
NG (@' +b — 20 cosw) A — (a~+b—2hcosw)A'3

>o0

ine

3
cAH—8'Ad

ct que, en outre, R calculé par la formule (36) soit, pour chacune
des deux coniques, compris entre le maximum et le minimum
qui lui conviennent.
Si les cercles orthoptiques des deux coniques sont égaux, la
formule (35) devient
N

1 2
. C\* /1 "
(3 () =) ~(s)"

Pour terminer, je donnerai ’équation différentielle intrinséque

whe

des coniques semblables, correspondant i 1’équation différentielle

. . T . . .
ordinaire (22). Ici 5 doit avoir une valeur constante ; mais

r (a+bh—9olcosw)
S IO
g sinw

Comparant avee (25) et (27), il vient
) ) re .
(38) (1I8R2—3Rp;=35¢3)2=9 s R2(gR2— 3 Rp, - 49037,

ce qu'on peut écrire plus simplement
(39) S:H2— g2 @ = o,

en désignant par §=o0, =0, &' ==o0 les équations difléren-
tielles intrinséques des hyperboles équilatéres, des points (R = o)
et des paraboles. Si ces coniques semblables sont des cercles,
pour lesquels p, = p.= o0, ’équation (38) exige .que I'* =482,
comme cela devait étre.



