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ANALYTIC AND ARITHMETIC THEORY OF POINCARE SERIES
by

Dorian Goldfeld

§l. Define T = SLZ(Z) to be the modular group, and let

) o

f(z) = J a e2w1nz' g(z) = J b e2w1nz,
n n
n=1 n=1
be cusp forms of weight k for T which satisfy the modular rela-
tions
az+b k az+b, _ k
el (cz+d) "f(z), gl3g) = (cz+d)"g(2)
a

for all (c 2) € I'. We are concerned with the general problem of

estimating sums of the type

(1.1) le ab (m€ 2, m fixed),

and shall show that the solution to this problem is invariably based
on the analytic and arithmetic properties of Poincaré series.

The special case, m = 0, of (1.1) has for the past forty years
been the object of rather extensive research and has its origins in
the papers of Rankin and Selberg. In [R] and [S1] it is shown that
the L-function

N
Lf,g(s) = Z ab n

has a meromorphic continuation to the entire complex s-plane and

satisfies the functional equation

R (s)

£,9 Rf’g(Zk-l—s)

where

(Zn)—ZS

—_
9]
]

I’(s)I‘(s-k+l)C(2s—2k+2)Lf g(s)'
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D. GOLDFELD

Moreover, (s) is regular except for poles corresponding to the
complex zeros of z(2s-2k+2) and a simple pole at s = k with resi-
due

o ﬁ()_r <f'g>

where
<f,g> = ” £(z)g(z) ykd_xcziy_
D y
is the usual Petersson inner product (over a fundamental domain D
for T) for forms of weight k.
The functional equation (1.2) was obtained by analyzing the

inner product <f,gE(*,s)> where

E(z,s) = ] (Im oz) %, I = {0 €Tr; o» =}
oE€T \T

is the non-holomorphic Eisenstein series which satisfies the proper-
ties

(1.3) E(oz,s)

E(z,s), for all o €T
2
s(l-s)E(z,s), A= -yz(3 2—3)
ax

(1.5) 75T (s)z(28)E(z,8) = ﬂ_(l-s)r(l-s)c(2-25)E(z,1—s).

(1.4) AE(z,s)

It is of course (1.5) which gives the functional equation (1.2).

In [S2], Selberg returned to the general problem (1.1l) and very
briefly indicated how to obtain the meromorphic continuation of the
function

-]
-s
Z anbn+m n.
n=1
Unfortunately, this function does not satisfy a functional equation
and a suitable generalization of (1.2) to the case m # 0 requires

the use of the non-holomorphic Poincaré series

Pm(z,s) = X (Im 02)315_%(2“|m|1m cz)eZ“im Re 02z
o€T \T
where
I,y = I G 25r G
Lo

is the modified Bessel function of the first kind which grows
exponentially
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POINCARE SERIES

(1.6) lin /¥ I_(y)e ¥ = (2m) 7%,

y-+o

As shown in [NI] and [NE], the Poincaré series Pm(z,s) is similar
in behavior to the Eisenstein series E(z,s), and in fact satisfied

(1.7) Pm(oz,s) = Pm(z,s), for all o €T
(1.8) APm(z,s) = s(l-s)Pm(z.s)
215 |m |5 %o o (m)
(1.9) P _(z,s) - P_(z,1-s) 1-25 _ E(z,1-s)
: m' ' m'“’ (2s-1)T(s)z (2s) !

where

o (m) = ] av.

w d|m

da>0

On the basis of these properties, one obtains the following
generalization of the Rankin-Selberg method. Let

l% -k 2° F(S) 2

s s+l
2 Pnim ZaTm
P(s-—-—k) n=1

z (s) = l’le ) F( ’ Is+°'_kl )
m 2n+m 2" 2 2 (2n+m)2
where bu =0 for u<90, and

1 Ir'(o+m)T(R+m)T'(n) .m
o ™ T(a)T(B)T (n+m)

F(a,B,n;w) = ]}
m=

is the Gauss hypergeometric function which in the special case of
(1.10) is just a Legendre function since Bg-a = %. From the expan-
sion

2 2
PS8 0 d e — D) -1

2 (2n+m)2

s(s+1) m
4s+6-4k (2n+m)2

+ ...

it is easily seen that Zm(s) converges absolutely for Re(s) > k.
We show that the function Zm(s) can be continued to a meromorphic
function in the entire s-plane which is regular in Re(s) > k-%
except for simple poles at the points s = k - ¥ + ir. where

¥ + r§ is an eigenvalue of the Laplace operator for LZ(F\H). The
eigenvalues are discrete and are characterized by the existence of an
orthonormal basis of Maass wave forms {ej(z)} satisfying

2minx

(1.10) ej(z) = 7 cj(n)¢§Ki (2n|n]y)e ,

n#0

r.
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(1.11) Aej(z) = (% + r?)ej(z),
(1.12) ej(oz) = ej(z), for all o €T,
where

k= [ Y (wah -1 g

is the modified Bessel function of the second kind.

THEOREM (1). The function Zm(s) can be continued to a meromorphic

function of order two which is regular in Re(s) > k-%¥ except for

simple poles at the points s = k - ¥ + ir; with corresponding

residues

c. (m) _
%57 2ir, <f'gej>'

Also, s =k is not a pole, and Zm(s) satisfies the functional
equation

k+i 2k-3

2 2 2

™
TZe+1-2k) Cm(S)Rg 4(s)

Zm(s) - Zm(2k—l—s) (257

where

k-%-s
6 (s) = |m| %2g-2k+1 ‘™

m'S) T T(k=s)T(1=k+s) C (2k-28) ¢ (2-2Kk+28)

is invariant for s —> 2k-1-s.

The proof of Theorem (1) is slightly complicated by the fact
that the inner product <f,gF;$ does not converge absolutely for
large m. If we look at the Fourier expansion (see [NI]) of the

non-holomorphic Poincaré series

s s-%
2rimx 2m |m| ol—ZS(m)

1-s
(1.13) Pm(zrs) = /}_7 Is_%(z"T'm'Y)e + (Zs-1)T (s)z (28) y

+ 1 By(sim/y K__, (2m|e]y)e
==c0

27#0

2milx

where
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B (sim) = 2 ] s(2,mic)c L (arc™ L (me) %)

M
c=1 2s-1
c 27i é&%ﬂm
S(%,m;c) = ) e , ad = 1 (mod c)
d=1
(d,c)=1
is the Kloosterman sum, and
3, (y|me | nt > 0
M (ym2) ) =
I (ylme ) mg < 0
it easily follows from (1.6) that
IPm(z,s)! >> eanme (y — ).

Consequently

27 (|m|-2)y

lf(z)g(z)Pm(z,s)l >> e (y —> =)

if albl # 0; and, therefore, the inner product <f,gF;> does not
make sense for |m| > 1.
In order to get around this difficulty, define for every Y > 1

Dy = {z € H; |z| > 1, Im (z) <Y, 0 < Re(z) <1}

a={z€#H; |z|] <1, 0<Re(z) <1}

P;(z,s) = z' (Im cz)%Is_$(2w|m|Im(oz))eZWim Re(o2z)

o€T \T

o

where the prime on the summation symbol means to omit the identity

matrix from the sum. Since

A = u' oD
o€T \T
(o]

it is immediate that

(1.14) IA(S)

JJ £(2) (2 yk+#Is_%(2"|mly)e2wimx gggx
y

A
I £(z)g(z) ykP;(z,s) QE%X .
D

y

But, for 1 < Yl <Y
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1
DY
Hence
(1.15) I,(s) = J ab YY) errenmy, (2n|m|y)y<¥ &
) A L. “n n+m e s-% y'y v
n=1 0 Y,
- IDY (s).
1
Using the transform
VYT (ay)y® &¥ o (2)57k,70 L(2-kt0) pismatp statp o) ?)
0 s_% y y y 2-Y Y r(s+%) 2 r 2 4 %l ,Y 4
and letting Y —> « in (1.15), it follows from (1.14) that
0y = v o [T -2n(2ntm)y k-% dy
(1.16) Z, (s+k-1) n£1 ab o J e Ig_,(2n|my)y 5
—— *
- ” £(2)3(D y*p, (z,8) EI 4 1 (s)
Yy Y
D
v ® _=2m(2n+m)y k-% dy
1 aPm L . Ty (2r|m|y) Y &
and this holds for any fixed Y > 1. Since the second and third
terms on the right side of (1.16) are entire functions and
* -
[P, (z/r8) | << y1 Re(s) . y —> «, it immediately follows that the

right side of (1.16) defines an analytic function and gives the
analytic continuation of Zm(s) to the entire complex s-plane.

To determine the poles of Zm(s), note that if we define

- s-% ,
Pm(z.s) = i%igigs—— (Im oz)se21Tlmoz
GGF“)F
then
%* o~
Pm(z,s) - Pm(z,s)

is regular for Re(s) > 0. The analytic continuation of Em(z,s)
was given by Selberg in [S2] by expanding it in terms of an orthonor-
mal basis of eigenfunctions {ej} satisfying (1.10) - (1.12). The

100



POINCARE SERIES

spectral decomposition of gm(z,s) is

~ 1 Atio
<P_,e.>e.(2z) + — J <P_,E(*,w)>E(z,w) dw.
m' 3§73 4ri oo

e~ 8

P (z,s) =
m 1

b

One easily computes that

~ c.(m)T (s=%=ir.)T (s-%+ir.)

<P_,e.> = 1 J
m° 3 T (2s)

s-1-w s-2+w
Ogw-1 M I )T ()

<Pm,E(*,w)> =

-w w 2
|m] T(s=%)T(w)z(2w)

m
It follows that the only poles of §(z,s) in Re(s) > ¥ are at
s =% + irj with corresponding residues

c.(m)e. (2)
B_:-J_'L.

2ir.
J 3
There is no pole at s = 1 since the inner product of Em with a
constant function is identically zero. Putting this information
back into (1.16) gives

© F(s—%—irj)r(s—$+ir.) _
z, (s+k-1) = j£1 cj(m) 175 <f,ge;> + H (s)

where Hm(s) is regular for Re(s) > %.
The functional equation for Zm(s) can be easily deduced from
(1.9) and the identity

_ 2 sin(¥-s)T
Is_%(2n|m|y) - I%_s(2n|m|y) = = Ks_%(Zwlmly).
One then obtains from (1.16) that

dxdy
(1.17) Z_(s+k-1) - Z_(k-s) = Q_(s) Jj £(z)g(2) ykE(z,l-S) Xz
m m m v
D

where
s s-%
o (o) = 277 |m| 01-pg (M)
m'S) T T2s=DT(s)c(28)

The Rankin-Selberg method gives

w 1
(1.18) IJ £(2)g(2) ykE(z,l-s) QE%X = J J f(z)g(z) Yk-s Q%?z
y 0 ‘0

D
- (4n)s"kr(k-s>Lf,g(k—s).

101



D. GOLDFELD
On cambining (1.17) and (1.18) one immediately obtains the functional
equation for Zm(s).

§2. The arithmetic properties of the classical holomorphic Poincaré
series of weight k

e21rim z a b
P (2) = GGEEAF ?EEIETE.' o= (s g
with Fourier expansion
@ k-1 w
(2.1) p (2) = n£1 {6mn-+2w(%) 2k c£1 s(m,n;c)c-le_l(%}/ﬁﬁ)}e2"inz

lead to some interesting identities similar in spirit to the func-

tional equation in Theorem (l1). Since Pm(z) must be a cusp form,
it can be expanded in terms of a basis fl’f2"'fn
(o] 2 N
£5(2) = ] aj(nle Tinz

n=1

of the space of holomorphic cusp forms of weight k for T. Conse-
quently
h a. (m)

I (k-1) j
<f.,£.> fj(z)'
33

(amm) K71 3521

(2.2) Pm(z)

Equating Fourier coefficients of (2.1) and (2.2)

h a. (m)
I'(k-1) 3
(2.3) — a, (n)
(4wm)k 1 j=1 <fj'fj> 3j
k-1
_ . kon, 2 s (m,n;c) 4m
=8 + 2w (1) (m) czl —— Jk-l(T? /mn) .

Now, using Barnes' representation for the Bessel function

L (orie 1 (E2E8) g
Jk-l(x) = InT f . TS T (5) ds, (1-k < o < 0)
o-i T( > )

and multiplying both sides of (2.3) by al(m)m_w, and then summing
over all positive integers m, it follows that
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nh Lg g, (Wrk-1) a, (n)
T (k-1) 3’72 L _
(2.4) %1 Tt ) - =
(4m) j=1 '3 n
k-1
- . k- 1+s -s/2
_ (i)¥n 2 I“*lm =)
4m —ie (2m)S” l (k+§-s)
. 2midn
s-1 c s+k-1
z c Zl e L, (=5 Z) ds
(d,c)=1
where
2Tiam
a ® (me °©
LR(Sig) = Z S ’ ad = 1 (mod c).
m=1 m

The disadvantage of (2.3) is the appearance of Kloosterman sums on
the right hand side. If in (2.4) we apply the functional equation

k. c k-s

(2.5) () T, (518 = (DXL T (k-8)T, k-5,

then it is easily seen that the Kloosterman sums are transformed into

Ramanujan sums which can be evaluated exactly. Ramanujan's identity

27id (m-n)

® c 0,_o. (m-n)
z c 2w X e c - IC%VZVW)
c=1 a=1
(d,c)=1
can then be applied to give
2midn
) _ c — _ a (m)O _ (m_n)
(2.6) ] <] e ° ny(siTY = d%w) L 12w
c=1 = m=1 m
(d,c)=1
s . . k+1
which is valid for Re(w) > 1 and Re(s) > == == -
On combining (2.4), (2.5), and (2.6) we get
rk-1) B ij'fz(w+k_1)
(2.7) k-1 FoEs M
(4m) j=1 ji'73
k-1
} a, (n) . (zﬂ)Zw 2 ay (m)o, _,  (m=n) L
oY z (2w) me1 ]i'zt-]:--w w'n
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where
atie T —w-sirhes)
(2.8) I (x) =5~ j — x> ds.
v 2m Jymie I‘(w+—-k21+s)1"(——k;1—s)

Since k = 12, the right side of (2.7) converges absolutely for
1l <Re(w) <2 and o < -Re(w), say.
The integral in (2.8) can be computed as follows. If x <1

S 1™ T (k-wtm) —kZl-w“n
(2.9) Iw(x) = z m! T (k+m) T (w-m)
m=0
k+l__W
= F%%%%%%T X 2 F (k-w,1l-w,k;x)
="
since T (z) has poles at z = -m with residue i . Similarly,
for x> 1
-kl
_ _T(k-w) 2 - - o1
(2.10) Iw(x) = FRT M) X F(k-w,1l-w,k;x 7).

Moreover, by continuity, these results are also valid when x = 1;
and, in fact, using Gauss' formula

Fla,8,v:1) = rdllymacty

we have

T'(k=w)T (2w-1)
I (2) °T (k-14+w)

(2.11) Iw(l) =

It, therefore, follows from (2.7), (2.9), (2.10), (2.11) and the
functional equation for the Riemann zeta function that
k-1 h Re, g, (kD)

& rx-1) ) ]
n j=1

I (1-2w) 2 (M)
T(I-w) w1

<E TS aj(n) = T(wtk-1)z(1-2w)

r(2w-1) 3¢
Tw) kW

+ TI'(k-w)z(2w~-1)

o Ltk-1IT ew) g ag (myo,_,, (m-n)

F (k-w, 1-w, k; )

r(k) mn<n nk-w
T (w+k=1)T (k-w) ag(m)o,_, (m-n) o
' F(k-w,1-w,k;=) .
I' k) mwn mk—w m
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L .
THEOREM (2). Let gl(z) = bne21Tlnz be a cusp form of weight k
n=1

for TI'. Define

b
_ I'(s)T(2k-1-2s) 1 m
Bn(s) = Tl Trkme)  ©(2K71728) —
b o _ oy, (m-n)
Y (s) = n_2s+l-2k F(s,s+1-k, k;2)
m nZm e m
b o _op (n-m)
v ] D 2srloZk F (s, s+1-k, k; D)
n>m n
Then
R (s)a. (n)
k-1 h f.,qg Jj _
s j - 1o I (s)T(2k-1-s)
(m) j£1 <fj'fj> Bm(s)-+Bm(2k 1-s) + T )T (k=1) Ym(s).

The functional equation for Rf g(s) immediately implies
1

J
Ym(s) = Ym(2k-l—s),

but this could just as easily have been obtained from the Gauss
transformation

(2.12) Fla,B,yi2z) = (1-2)Y % BF (y-a,v-8,y;2).

Curiously, (2.12) can also be used to give a novel proof of (1.2),
the functional equation of the Rankin-Selberg zeta function.

As an example of a special case of Theorem (2), we put k = 12,
s = 10 and

o

gl(z) = ] 1t(n)e
n=1

2minz

to be the Ramanujan cusp form of weight twelve. It follows that

10!L (13)
9 tm = 2 0+ Ly
(4m) " "<g,g> m
24m n
+ 5= ] t(n)o_,(m-n) (5-62)
11 n<m 3 m
10
24m m n
+ —ll— n;n T(n)d_3 (n-m) (H) (5"65) .
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§3. Using the methods of §1 it is possible to derive explicit
formulae relating partial sums of the type (1.1) with sums going over
the eigenvalues of the Laplacian. For example, we can obtain

THEOREM (3). Let x —> « and € > 0 be fixed. Then

n 1
- k 5“"8

e ¥<< x

t~ 8

a_b
n n+m
n=1

where the <<-symbol depends only on € and m.

The proof of Theorem (3) uses the fact that there are no eigen-
values in (0,%] for the group TI'. This, however, may not be the
case for arbitrary groups; although it is conjectured that there are

no eigenvalues in (0,%) for any congruence subgroup of SL2(Z).

Let TI'' be any fixed congruence subgroup of SLZ(Z), and let
'=i 12 | - ' '
Aj ) + rj (Ao 0 < Al < AZ < ...)
be the eigenvalues of the Laplacian in L2(F'\H). Put

a = max |Re ir.|.
3 J
THEOREM (4). Let x —> @ and ¢ > 0 be fixed. If a , b are
the n"™® Fourier coefficients, respectively, of two cusp forms of

weight k for T', then

0
a
z nbn+m
n=1
X otherwise.

The <<-symbol depends only on e, m and TI'.

In the case that a > 0, it is possible in many cases to re-
place the upper bound in Theorem (4) by an asymptotic relation. We
also remark that all of our Theorems remain valid if the {bn} are
taken to be Fourier coefficients of Eisenstein series.
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