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Spinc-QUANTIZATION AND THE K-MULTIPLICITIES
OF THE DISCRETE SERIES

BY PAUL -ÉMILE PARADAN

ABSTRACT. – In the 70s, W. Schmid has shown that the representations of the discrete series o
semi-simple Lie groupG could be realized as the quantization of elliptic coadjoint orbits. In this p
we show that such orbits, equipped with the Hamiltonian action of a maximal compact subgroupK ⊂ G,
arenon-compactexamples where the philosophy of Guillemin–Sternberg—Quantization commutes wit
reduction—applies. IfHO is a representation of the discrete series ofG associated to a coadjoint orbitO,
we express theK-multiplicities ofHO in terms ofSpinc-index on symplectic reductions ofO.

 2003 Elsevier SAS

RÉSUMÉ. – Dans les années 70, W. Schmid a montré que les représentations de la série
d’un groupe de Lie semi-simple réelG peuvent être réalisées comme le quantifié de certaines o
coadjointes elliptiques deG. Dans cet article, nous montrons que ces orbites coadjointes, mun
l’action hamiltonienne d’un groupe compact maximalK ⊂ G, sont des exemplesnon compactsoù la
philosophie de Guillemin–Sternberg—la quantification commute à la réduction—s’applique. Considéron
une représentationHO de la série discrète deG associée à une orbite coadjointeO. Nous montrons que le
K-multiplicités deHO s’expriment comme indices d’opérateursSpinc sur les réductions symplectiques
O par rapport àK.

 2003 Elsevier SAS

1. Introduction and statement of the results

The purpose of this paper is to show that the ‘quantization commutes with reduction’ principle
of Guillemin–Sternberg [16] holds for the coadjoint orbits that parametrize the discrete se
a real connected semi-simple Lie group.

1.1. Discrete series and K-multiplicities

Let G be a connected, real, semi-simple Lie group with finite center. By definition
discrete seriesof G is the set of isomorphism classes of irreducible, square integrable, u
representations ofG. LetK be a maximal compact subgroup ofG, andT be a maximal torus in
K . Harish-Chandra has shown thatG has a discrete series if and only ifT is a Cartan subgrou
ofG [19]. For the remainder of this paper, we may therefore assume thatT is a Cartan subgrou
of G.

Let us fix some notation. We denote byg, k, t the Lie algebras ofG,K,T , and byg∗, k∗, t∗ their
duals. LetΛ∗ ⊂ t∗ be the set of real weights:α ∈ Λ∗ if

√
−1α is the differential of a characte

of T . LetRc ⊂R⊂ Λ∗ be respectively the set of roots for the action ofT onk⊗C andg⊗C. We
choose a system of positive rootsR+c for Rc. We denote byt∗+ the corresponding Weyl chambe

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

0012-9593/05/ 2003 Elsevier SAS. All rights reserved



806 P.-É. PARADAN

and we letρc be half the sum of the elements ofR+c . The setΛ∗
+ := Λ∗ ∩ t∗+ parametrizes the

unitary dual ofK . Forµ ∈Λ∗
+, letχKµ be the character of the irreducibleK-representation with

highest weightµ.
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Harish-Chandra parametrizes the discrete series by a discrete subsetĜd of regular element
of the Weyl chambert∗+ [19]. He associates to anyλ ∈ Ĝd an invariant eigendistribution onG,
denoted byΘλ, which is shown to be the global trace of an irreducible, square integrable, u
representationHλ ofG. It is a generalized function onG, invariant by conjugation, which admi
a restriction toK denoted byΘλ|K . The distributionΘλ|K corresponds to the global trace
the induced representation ofK onHλ. It admits a decomposition

Θλ|K =
∑
µ∈Λ∗

+

mµ(λ)χKµ ,

where the integersmµ(λ) satisfy certain combinatorial identities called the Blattner form
las [20].

The main goal of the paper is to relate the multiplicitiesmµ(λ) to the geometry of the coadjoi
orbit G · λ⊂ g∗ as predicted by the Guillemin–Sternberg principle evoked above.

Before stating our result we recall how a representation belonging to the discrete series
realized as the quantization of a coadjoint orbit.

1.2. Realisation of the discrete series

In the 60s, Kostant and Langlands conjectured realisations of the discrete series in termL2

cohomology that fit into the general framework of quantization. The proof of this conjectur
given by Schmid some years later [34,35]. Let us recall the procedure for a fixedλ ∈ Ĝd.

The manifoldG · λ carries severalG-invariant complex structures. For convenience we w
with the complex structureJ defined by the following condition: each weightα for theT -action
on the tangent space(Tλ(G · λ), J) satisfies(α,λ)> 0.

Let R+ ⊂R be the set of positive roots defined byλ: α ∈R+⇐⇒ (α,λ)> 0. Let ρ be half
the sum of the elements ofR+. The conditionλ ∈ Ĝd imposes thatλ− ρ is a weight forT , so
we can consider the line bundle

L̃ :=G×T Cλ−ρ

overG · λ
G/T : this line bundle carries a canonical holomorphic structure. LetΩk(L̃) be the
space of̃L-valued(0, k) forms onG · λ, and∂L̃ :Ω

k(L̃)→ Ωk+1(L̃) be the Dolbeault operato
The choice ofG-invariant hermitian metrics onG · λ and onL̃ gives meaning to the forma
adjoint∂

∗
L̃ of the∂L̃ operator, and to the Dolbeault–Dirac operator∂L̃ + ∂

∗
L̃.

TheL2 cohomology ofL̃, which we denote byH∗
(2)(G · λ, L̃), is equal to the kernel of th

differential operator∂L̃ + ∂
∗
L̃ acting on the subspace ofΩ∗(L̃) formed by the square integrab

elements.

THEOREM 1.1 (Schmid). –Letλ ∈ Ĝd.
(i) Hk

(2)(G · λ, L̃) = 0 if k �= dim(G/K)
2 .

(ii) If k = dim(G/K)
2 , thenHk

(2)(G · λ, L̃) is the irreducible representationHλ.

So, the representationHλ is the quantization of the coadjoint orbitG · λ being the index o

the Dolbeault–Dirac operator∂L̃ + ∂
∗
L̃ (in theL2 sense and modulo(−1)

dim(G/K)
2 ). In the next

subsection, we briefly recall the ‘quantization commutes with reduction’ principle of Guille
Sternberg, and in Section 1.4 we state our main result.
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1.3. Quantization commutes with reduction

LetM be a HamiltonianK-manifold with symplectic formω and moment mapΦ:M → k∗.
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The coadjoint orbitsG · λ introduced earlier are the key examples here. Each is equ
with its Kirillov–Kostant–Souriau symplectic formω, and the action ofG is Hamiltonian with
moment mapG · λ ↪→ g∗ equal to the inclusion. LetK be the maximal compact Lie subgro
of G introduced in Section 1.2. The induced action ofK on G · λ is Hamiltonian, and the
corresponding moment mapΦ:G ·λ→ k∗ is equal to the composition of the inclusionG ·λ ↪→ g∗

with the projectiong∗→ k∗.
In the process of quantization one tries to associate a unitary representation ofK to the

data(M,ω,Φ). In this general framework, whenM is compactand under certain integrabilit
conditions, we associate to these data a virtual representation ofK defined as the equivaria
index of aSpinc Dirac operator: it is theSpinc quantization. We need two auxiliary data:

(i) A prequantum line bundleL→M : it is aK-equivariant Hermitian line bundle equipp
with K-invariant connection whose curvature form is−i ω.

(ii) A K-invariant almost complex structureJ on M , compatiblewith the symplectic
structure:(v,w) �→ ω(v, Jw) defines a metric.

One considers then theK-equivariantSpinc Dirac operatorDL corresponding to theSpinc

structure onM defined byJ , and twisted by the line bundleL [25,14]. TheSpinc-quantization
of (M,ω,Φ) is the equivariant index of the differential operatorDL

RRK(M,L) := IndexKM (DL) ∈R(K),

whereR(K) is the representation ring ofK . WhenK is reduced to{e}, theSpinc-quantization
of (M,ω) is just an integer:RR(M,L)∈ Z.

A fundamental result of Marsden and Weinstein asserts that ifξ ∈ k∗ is a regular value of th
moment mapΦ, thereduced space

Mξ := Φ−1(ξ)/Kξ
∼=Φ−1(K · ξ)/K

is an orbifold equipped with a symplectic structureωξ (which one calls also symplectic quotien
For any dominant weightµ ∈ Λ∗

+ which is a regular value ofΦ,

Lµ := (L|Φ−1(µ) ⊗C−µ)/Kµ

is a prequantum orbifold-line bundle over(Mµ, ωµ). The definition ofSpinc-index carries ove
to the orbifold case, henceRR(Mµ,Lµ) ∈ Z is defined. In [29], this is extended further to t
case of singular symplectic quotients, using partial (or shift) desingularization. So the i
RR(Mµ,Lµ) ∈ Z is well defined for everyµ ∈Λ∗

+.
The following theorem was conjectured by Guillemin and Sternberg [16] and is know

“quantization commutes with reduction” [28,29].

THEOREM 1.2 (Meinrenken, Meinrenken–Sjamaar). –Let (M,ω,Φ) be a compact Hamil
tonianK-manifold prequantized byL. LetRRK(M,−) be the equivariant Riemann–Roch ch
acter defined by means of a compatible almost complex structure onM . We have the followin
equality inR(K)

RRK(M,L) =
∑
µ∈Λ∗

+

RR(Mµ,Lµ)χKµ .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Remark1.3. – For a compact HamiltonianK-manifold (M,ω,Φ), the Convexity Theorem
[23] asserts that∆ := Φ(M) ∩ t∗+ is a convex rational polytope. In Theorem 1.2, we have
RR(Mµ,Lµ) = 0 if µ /∈∆.

7,43].
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Other proofs can be found in [33,40]. For an introduction and further references, see [3
A natural question is to extend Theorem 1.2 to thenon-compactHamiltonianK-manifolds

which admit aproper moment map. In this situation, the reduced spaceMξ := Φ−1(ξ)/Kξ is
compact for everyξ ∈ k∗, so the integerRR(Mµ,Lµ) ∈ Z, µ ∈ Λ∗

+, is defined as before.

Conjecture1.4. – Let(M,ω,Φ) be a HamiltonianK-manifold with proper moment map
and prequantized byL. Let ∂L + ∂

∗
L be the Dolbeault–Dirac operator defined by means

K-invariant compatible almost complex structure, andK-invariant metric onM andL. Then

L2-IndexK
(
∂L + ∂

∗
L

)
=

∑
µ∈Λ∗

+

RR(Mµ,Lµ)χKµ .

We present in the next subsection the central result of this paper that shows that Con
1.4 is true for the coadjoint orbits that parametrize the discrete series.

1.4. The result

Consider the Hamiltonian action ofK on the coadjoint orbitG · λ. SinceG · λ is closed in
g∗, the moment mapΦ:G · λ→ k∗ is proper [32]. Our main theorem can be stated roughly
follows.

THEOREM 1.5. – Let mµ(λ), µ ∈ Λ∗
+, be theK-multiplicities of the representationHλ|K .

For µ ∈ Λ∗
+ we have:

(i) If µ+ ρc is a regular value ofΦ, the orbifold(G ·λ)µ+ρc := Φ−1(µ+ ρc)/T , oriented by
its symplectic formωµ+ρc carries aSpinc structure such that

mµ(λ) =Q
(
(G · λ)µ+ρc

)
,

where theRHS is the index of the correspondingSpinc Dirac operator on the reduce
space(G · λ)µ+ρc .

(ii) In general, one can define an integerQ((G · λ)µ+ρc ) ∈ Z, as the index of aSpinc Dirac
operator on a reduced space(G · λ)ξ whereξ is a regular value ofΦ, close enough to
µ+ ρc. We still havemµ(λ) =Q((G · λ)µ+ρc ).

Our theorem states that the decomposition ofΘλ|K into K-irreducible components follow
the philosophy of Guillemin–Sternberg:

Θλ|K =
∑
µ∈Λ∗

+

Q
(
(G · λ)µ+ρc

)
χKµ .(1)

SinceΘλ|K = εL2-IndexK(∂L̃ + ∂
∗
L̃), with ε= (−1)

dim(G/K)
2 , we can write(1) in the form

L2-IndexK
(
∂L̃ + ∂

∗
L̃

)
=

∑
µ∈Λ∗

+

Q̃
(
(G · λ)µ+ρc

)
χKµ ,

whereQ̃((G · λ)µ+ρc ) = εQ((G · λ)µ+ρc ).
The main difference between Conjecture 1.4 and Theorem 1.5 is theρc-shift and the choice

of Spinc structure on the symplectic quotientMµ and(G · λ)µ+ρc .

4e SÉRIE– TOME 36 – 2003 –N◦ 5
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The ρc-shift is due to the fact that the line bundlẽL is not a prequantum line bundle over
(G · λ,ω). The difference on the choice ofSpinc structure comes from the fact that the complex
structureJ onG · λ is not compatible with the symplectic structure (unlessG=K is compact).
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HenceJ does not descend to the symplectic reductions(G · λ)µ+ρc in general: the choice of th
Spinc structure on them requires some care (see Propositions 4.10 and 4.11).

Remark1.6. – For a HamiltonianK-manifoldM with propermoment mapΦ, the Convexity
Theorem [23,26,38] asserts that∆ := Φ(M) ∩ t∗+ is a convex rational polyhedron. I
Theorem 1.5, we haveQ((G · λ)µ+ρc ) = 0 if µ + ρc does not belong to therelative interior
of ∆ (see Proposition 2.4).

1.5. Outline of the proof

We have to face the following difficulties:
(1) The symplectic manifoldG · λ is not compact.
(2) The complex structure onG · λ is not compatible with the symplectic formω. In other

words, the Kirillov–Kostant–Souriau symplectic form does not define a Kähler stru
onG · λ unlessG=K is compact.

(3) The line bundlẽL is not a prequantum line bundle over(G · λ,ω). It is what we call in
the rest of this paper aκ-prequantum1 line bundle over(G · λ,ω, J): if κ denotes the
canonical line bundle of(G · λ,J), the tensor product̃L2 ⊗ κ−1 is a prequantum line
bundle over(G · λ,2ω).

The first step of the proof is to solve the difficulties (2) and (3) in thecompactsituation. In
Section 2, we give a modified version of Theorem 1.2 when(M,ω,Φ) is acompactHamiltonian
K-manifold which is equipped with an almost complex structureJ—not necessarily compatib
with ω—and aκ-prequantum line bundlẽL.

THEOREM 1.7. – Let RRK(M,−) be the Riemann–Roch character defined byJ . If the
infinitesimal stabilizers for the action ofK onM are Abelian, we have

RRK
(
M,L̃

)
= ε

∑
µ∈Λ∗

+

Q(Mµ+ρc)χ
K
µ ,(2)

whereε=±1 is the ‘quotient’ of the orientations induced by the almost complex structure
the symplectic form.

In (2), the integerQ(Mµ+ρc) are computed like in Theorem 1.5 (see Definition 2.4 for a m
precise definition).

In the second step of the proof we deal with the non-compact situation. In Section
extend (2) to the non-compact setting. First we define ageneralized Riemann–Roch charac
RRK

Φ (M,−) when(M,ω,Φ) is a Hamiltonian manifold such that the function‖Φ‖2 :M → R

has acompactset of critical points. For everyK-vector bundleE → M , the distribution
RRK

Φ (M,E) is defined as the index of a transversally elliptic operator onM . When the manifold
is compact, the mapsRRK

Φ (M,−) andRRK(M,−) coincide.
We prove in Section 4 that Theorem 1.7 generalizes to

THEOREM 1.8. –Let (M,ω,Φ) be a HamiltonianK-manifold withpropermoment map an
such that the function‖Φ‖2 :M → R has acompactset of critical points. If the infinitesima
stabilizers are Abelian, and under Assumption3.6, we have

1 Formally,L̃ is the tensor product of a prequantum line bundle over(G · λ,ω) with a square root ofκ.
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RRK
Φ

(
M,L̃

)
= ε

∑
µ∈Λ∗

+

Q(Mµ+ρc)χ
K
µ ,(3)

eeded

e

e

preted

ne
.

for everyκ-prequantum line bundle.

In contrast to (2), the RHS of (3) is in general an infinite sum. The Assumption 3.6 is n
to control the data on the non-compact manifoldM .

In the final section we consider, forλ ∈ Ĝd, the case of the coadjoint orbitG · λ with the
HamiltonianK-action. The moment mapΦ is properand the critical set of‖Φ‖2 coincides with
K · λ, hence is compact. Thus the generalized Riemann–Roch characterRRK

Φ (G · λ,−) is well
defined, and we want to investigate the indexRRK

Φ (M,L̃) for the κ-prequantum line bundl
L̃ :=G×T Cλ−ρ.

On the one hand we are able to computeRRK
Φ (G · λ, L̃) explicitly in term of the holomorphic

induction mapHolKT . Let p be the orthogonal complement ofk in g. It inherits a complex
structure and an action of the torusT . The element∧•

C
p ∈ R(T ) admits a polarized invers

[∧•
C
p]−1λ ∈R−∞(T ) (see [33, Section 5]). In Section 5.2 we prove that

RRK
Φ

(
G · λ, L̃

)
= (−1)

dim(G/K)
2 HolKT

(
tλ−ρc+ρn [∧•

Cp]−1λ

)
,(4)

whereρn = ρ− ρc is half the sum of the non-compact roots.
On the other hand, we show (Lemma 5.4) that the Blattner formulas can be reinter

throughHolKT as follows:

Θλ|K =HolKT
(
tλ−ρc+ρn [∧•

Cp]−1λ

)
.(5)

From(4) and(5) we obtain

RRK
Φ

(
G · λ, L̃

)
= (−1)

dim(G/K)
2 Θλ|K .(6)

Since in this contextε = (−1)
dim(G/K)

2 , the theorem follows from (3) and (6), provided o
verifies that Assumption 3.6 holds forG · λ. This is done in the final subsection of this paper

Notation

Throughout the paper,K will denote a compact, connected Lie group, andk its Lie algebra.
In Sections 2, 3, and 4, we consider aK-Hamiltonian action on a manifoldM . And we use there
the following notation.

T : maximal torus ofK with Lie algebrat,
W : Weyl group of(K,T ),
Λ= ker(exp : t→ T ): integral lattice oft,
Λ∗ =hom(Λ,2πZ): real weight lattice,
t∗+, ρc: Weyl chamber and corresponding half sum of the positive roots,
Λ∗
+ =Λ∗ ∩ t∗+: set of positive weights,
χKµ : character of the irreducibleK-representation with highest weightµ ∈ Λ∗

+,
Tβ : subtorus ofT generated byβ ∈ t,
Mγ : submanifold of points fixed byγ ∈ k,
TM : tangent bundle ofM ,
TKM : set of tangent vectors orthogonal to theK-orbits inM ,
Φ: moment map,
L̃: κ-prequantum line bundle,
C̃[µ] =K ×T Cµ: κ-prequantum line bundle over the coadjoint orbitK · (µ+ ρc),

4e SÉRIE– TOME 36 – 2003 –N◦ 5
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Cr(‖Φ‖2): critical set of the function‖Φ‖2,
∆=Φ(M)∩ t∗+: moment polytope,
H: vector field generated byΦ,

t

an

t
n

tion’

le

g

h

s.
mµ(E): multiplicity of RRK
Φ (M,E) relatively toµ ∈ Λ∗

+.
In the final section, we consider the particular case of theK-action onM := G · λ. HereG

is a connected real semi-simple Lie group with finite center admittingK as a maximal compac
subgroup, andT as a compact Cartan subgroup.

Let us recall the definition of the holomorphic induction mapHolKT . Everyµ ∈ Λ∗ defines
a 1-dimensionalT -representation, denotedCµ, where t = expX acts by tµ := eı〈µ,X〉.
We denote byR(K) (respectivelyR(T )) the ring of characters of finite-dimensionalK-
representations (respectivelyT -representations). We denoteR−∞(K) (respectivelyR−∞(T ))
the set of generalized characters ofK (respectivelyT ). An elementχ ∈R−∞(K) is of the form
χ =

∑
µ∈Λ∗

+
mµχ

K
µ , whereµ �→ mµ, Λ∗

+ → Z has at most polynomial growth. Likewise,

elementχ ∈ R−∞(T ) is of the formχ =
∑

µ∈Λ∗ mµt
µ, whereµ �→mµ, Λ∗ → Z has at mos

polynomial growth. We denotew ◦ µ= w(µ+ ρc)− ρc the affine action of the Weyl group o
Λ∗. The holomorphic induction map

HolKT :R−∞(T )→R−∞(K)

is characterized by the following properties:
(i) HolKT (tµ) = χKµ for everyµ ∈Λ∗

+,

(ii) HolKT (tw◦µ) = (−1)wHolKT (tµ) for everyw ∈W andµ ∈ Λ∗,
(iii) HolKT (tµ) = 0 if W ◦ µ∩Λ∗

+ = ∅.

2. Spinc-quantization of compact Hamiltonian K-manifolds

In this section we give a modified version of the ‘quantization commutes with reduc
principle.

Let M be a compact HamiltonianK-manifold with symplectic formω and moment map
Φ:M → k∗ characterized by the relationd〈Φ,X〉=−ω(XM ,−), whereXM is the vector field
onM generated byX ∈ k :XM (m) := d

dt exp(−tX).m|t=0, form ∈M .
Let J be aK-invariant almost complex structure onM which is not assumed to be compatib

with the symplectic form. We denoteRRK(M,−) the Riemann–Roch character defined byJ .
Let us recall the definition of this map.

Let E → M be a complexK-vector bundle. The almost complex structure onM gives
the decomposition∧T∗M ⊗ C =

⊕
i,j ∧i,jT∗M of the bundle of differential forms. Usin

Hermitian structure in the tangent bundleTM of M , and in the fibers ofE, we define a
Dolbeault–Dirac operator∂E + ∂

∗
E :A0,even(M,E) → A0,odd(M,E), whereAi,j(M,E) :=

Γ(M,∧i,jT∗M ⊗C E) is the space ofE-valued forms of type(i, j). The Riemann–Roc
characterRRK(M,E) is defined as the index of the elliptic operator∂E + ∂

∗
E :

RRK(M,E) = IndexKM
(
∂E + ∂

∗
E

)
∈R(K)

viewed as an element ofR(K), the character ring ofK . An alternative definition goes as follow
The almost complex structure defines a canonical invariantSpinc structure2 . TheSpinc Dirac

2 See Section 4.1 for a short review on the notion ofSpinc structure.
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operator ofM with coefficient inE has the same principal symbol as
√
2(∂E + ∂

∗
E) (see, e.g.,

[14]), and therefore has the same equivariant index.
In the Kostant–Souriau framework,M is prequantized if there is aK-equivariant Hermitian

r
dle

e

x

r
dle

on

a

ake

t

line bundleL with aK-invariant Hermitian connection∇L of curvature−ıω. The line bundle
L is called a prequantum line bundle for the HamiltonianK-manifold(M,ω,Φ). Recall that the
data(∇L,Φ) are related by the Kostant formula

LL(X)−∇L
XM

= ı〈Φ,X〉, X ∈ k.(2.1)

HereLL(X) is the infinitesimal action ofX on the section ofL→M .
The tangent bundleTM endowed withJ is a complex vector bundle overM , and we conside

its complex dualT∗
C
M := homC(TM,C). We suppose first that the canonical line bun

κ := detT∗
C
M admits aK-equivariant square rootκ1/2. If M is prequantized byL, a standard

procedure in the geometric quantization literature is to tensorL by the bundle of half-formsκ1/2

[45]. We consider the indexRRK(M,L⊗ κ1/2) instead ofRRK(M,L). In many contexts, th
tensor product̃L= L⊗ κ1/2 has a meaning even if neitherL norκ1/2 exist.

DEFINITION 2.1. – A HamiltonianK-manifold(M,ω,Φ), equipped with an almost comple
structure, isκ-prequantized by an equivariant line bundleL̃ if L2ω := L̃2⊗κ−1 is a prequantum
line bundle for(M,2ω,2Φ).

The basic examples are the regular coadjoint orbits ofK . For anyµ ∈ Λ∗
+, consider the regula

coadjoint orbitOµ+ρc :=K · (µ+ ρc) with the compatible complex structure. The line bun
C̃[µ] =K ×T Cµ is aκ-prequantum line bundle overOµ+ρc , and we have

RRK
(
Oµ+ρc , C̃[µ]

)
= χKµ(2.2)

for anyµ ∈Λ∗
+.

Definition 2.1 can be rewritten in theSpinc setting (see Section 4.1 for a brief review
Spinc-structures). The almost complex structure induces aSpinc structureP with canonical line
bundledetC TM = κ−1. If (M,ω,J) is κ-prequantized bỹL one can twistP by L̃, and then
define a newSpinc structure with canonical line bundleκ−1 ⊗ L̃2 = L2ω (see Lemma 4.2).

DEFINITION 2.2. – A symplectic manifold(M,ω) is Spinc-prequantized if there exists
Spinc structure with canonical line bundleL2ω which is a prequantum line bundle on(M,2ω).
If a compact Lie group acts onM , theSpinc-structure is required to be equivariant. Here we t
the symplectic orientation onM .

When (M,ω,J) is κ-prequantized bỹL, one wants to compute theK-multiplicities of
RRK(M,L̃) in geometrical terms, like in Theorem 1.2.

DEFINITION 2.3. – An elementξ ∈ k∗ is a quasi-regularvalue ofΦ if all the Kξ-orbits in
Φ−1(ξ) have the same dimension. A quasi-regular value isgenericif the submanifoldΦ−1(ξ) is
of maximal dimension.

For any quasi-regular valueξ ∈ k∗, the reduced spaceMξ := Φ−1(ξ)/Kξ is an orbifold
equipped with a symplectic structureωξ. Let L̃ be aκ-prequantum line bundle overM , and let
L2ω := L̃2 ⊗ κ−1 be the corresponding prequantum line bundle for(M,2ω). For any dominan
weightµ ∈ Λ∗

+ such thatµ+ ρc is a quasi-regular value ofΦ,

(L2ω|Φ−1(µ+ρc) ⊗C−2(µ+ρc))/T

4e SÉRIE– TOME 36 – 2003 –N◦ 5



Spinc-QUANTIZATION AND THE K-MULTIPLICITIES OF THE DISCRETE SERIES 813

is a prequantum orbifold-line bundle over(Mµ+ρc ,2ωµ+ρc).
The following proposition is the main point for computing theK-multiplicities ofRRK(M,L̃)

in terms of the reduced spacesMµ+ρc := Φ−1(µ+ ρc)/T , µ ∈ Λ∗
+. It deals with the coherence

-

, re-

y

le

n
point:

hard

l
tion
s

n

, and

a
on
x

d

of the definition of an integer valued mapµ ∈ Λ∗
+ �→ Q(Mµ+ρc). In the next proposition we sup

pose that(M,ω,Φ) is a HamiltonianK-manifold withpropermoment map. The setΦ(M)∩ t∗+
is denoted by∆. By the Convexity Theorem [23,26,38] it is a convex rational polyhedron
ferred to as themoment polyhedron.

DEFINITION–PROPOSITION 2.4. – Let(M,ω,Φ) be a HamiltonianK-manifold, with proper
moment map. We denote∆o the relative interior of the moment polyhedron∆ := Φ(M) ∩ t∗+.
Let L̃ be aκ-prequantum line bundle relative to an almost complex structureJ . Letµ ∈ Λ∗

+.
• If µ+ ρc /∈∆o, we setQ(Mµ+ρc) = 0.
• If µ+ ρc is a generic quasi-regular value ofΦ, then theSpinc prequantization defined b

the data(J, L̃) induces aSpinc prequantization on the symplectic quotient(Mµ+ρc , ωµ+ρc).
We denoteQ(Mµ+ρc) ∈ Z the index of the correspondingSpinc Dirac operator.

• If µ + ρc ∈ ∆o, we takeξ generic and quasi-regular sufficiently close toµ + ρc. The
reduced spaceMξ := Φ−1(ξ)/T inherits aSpinc-structure with canonical line bund
(L2ω|Φ−1(ξ)⊗C−2(µ+ρc))/T . The indexQ(Mξ) of the correspondingSpinc Dirac operator
onMξ does not depend onξ, whenξ is sufficiently close toµ+ρc: it is denotedQ(Mµ+ρc).

Whenξ = µ+ρc is a generic quasi-regular ofΦ, the line bundle(L2ω|Φ−1(ξ)⊗C−2(µ+ρc))/T
is a prequantum line bundle over(Mµ+ρc ,2ωµ+ρc): so the second point of this ‘definition’ is i
fact a particular case of the third point. But we prefer to keep it since it outlines the main
Spinc prequantization is preserved under symplectic reductions.

The existence ofSpinc-structures on symplectic quotients is proved in Section 4.2. The
part is to show that the indexQ(Mξ) does not depend onξ, for ξ sufficiently close toµ+ ρc: it
is done in Section 4.3.

Note that Definition 2.4 becomes trivial when∆o is not included in the interior of the Wey
chamber:Q(Mµ+ρc) = 0 for all µ ∈ Λ∗

+. However, in this paper we work under the assump
that the infinitesimal stabilizers for theK-action areAbelian. And this assumption impose
∆o ⊂ Interior{Weyl chamber} (see Lemma 4.9).

The following ‘quantization commutes with reduction’ theorem holds for theκ-prequantum
line bundles.

THEOREM 2.5. – Let (M,ω,Φ) be a compact HamiltonianK-manifold equipped with a
almost complex structureJ . Let L̃ be aκ-prequantum line bundle overM , and letRRK(M,−)
be the Riemann–Roch character defined byJ . If the infinitesimal stabilizers for the action ofK
onM are Abelian, we have the following equality inR(K)

RRK
(
M,L̃

)
= ε

∑
µ∈Λ∗

+

Q(Mµ+ρc)χ
K
µ ,(2.3)

whereε= ±1 is the ‘quotient’ of the orientations defined by the almost complex structure
by the symplectic form.

Theorem 2.5 will be proved in a stronger form in Section 4.
Let us now give an example where the stabilizers for the action ofK onM arenot Abelian,

and where (2.3) does not hold. Suppose that the groupK is not Abelian, so we can consider
faceσ �= {0} of the Weyl chamber. Letρc,σ be half the sum of the positive roots which vanish
σ, and consider the coadjoint orbitM :=K · (ρc − ρc,σ) equipped with its compatible comple
structure. Sinceρc−ρc,σ belongs toσ, the trivial line bundleM ×C→M isκ-prequantum, an
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the image of the moment mapΦ:M → k∗ does not intersect the interior of the Weyl chamber.
SoMµ+ρc = ∅ for everyµ, thus the RHS of (2.3) is equal to zero. But the LHS of (2.3) is
RRK(M,C) which is equal to1, the character of the trivial representation.

on the

of

e

ut

m

s (or
erline

l

ct
n

Theorem 2.5 can be extended in two directions. First one can bypass the condition
stabilizers by the following trick. Starting from aκ-prequantum line bundlẽL→M , one can
form the productM × (K · ρc) with the coadjoint orbit throughρc. The Künneth formula gives

RRK
(
M × (K · ρc), L̃� C

)
=RRK

(
M,L̃

)
⊗RRK(K · ρc,C) =RRK

(
M,L̃

)
sinceRRK(K · ρc,C) = 1. Now we can apply Theorem 2.5 to compute the multiplicities
RRK(M × (K · ρc), L̃ � C) sinceL̃ � C is aκ-prequantum line bundle overM × (K · ρc),
and the stabilizers for theK-action onM × (K · ρc) are Abelian. Finally we see that th
multiplicity of the irreducible representation with highest weightµ in RRK(M,L̃) is equal to
εQ((M × (K · ρc))µ+ρc ).

On the other hand, we can extend Theorem 2.5 to theSpinc setting. It will be treated in a
forthcoming paper.

3. Quantization of non-compact Hamiltonian K-manifolds

In this section(M,ω,Φ) denotes a HamiltonianK-manifold, not necessarily compact, b
with proper moment mapΦ. Let J be an almost complex structure onM , and letL̃ be aκ-
prequantum line bundle over(M,ω,J) (see Definition 2.1). By Proposition 2.4 the infinite su

∑
µ∈Λ∗

+

Q(Mµ+ρc)χ
K
µ(3.4)

is a well defined element of̂R(K) := homZ(R(K),Z).
The aim of this section is to realize this sum as the index of atransversally ellipticsymbol

naturally associated to the data(M,Φ, J, L̃).

3.1. Transversally elliptic symbols

Here we give the basic definitions from the theory of transversally elliptic symbol
operators) defined by Atiyah in [1]. For an axiomatic treatment of the index morphism see B
and Vergne [9,10] and for a short introduction see [33].

Let M be a compactK-manifold. Let p :TM → M be the projection, and let(−,−)M
be aK-invariant Riemannian metric. IfE0,E1 areK-equivariant vector bundles overM , a
K-equivariant morphismσ ∈ Γ(TM,hom(p∗E0, p∗E1)) is called asymbol. The subset of al
(m,v) ∈TM whereσ(m,v) :E0m → E1m is not invertible is called thecharacteristic setof σ,
and is denoted byChar(σ).

Let TKM be the following subset ofTM :

TKM =
{
(m,v) ∈TM, (v,XM (m))M = 0 for allX ∈ k

}
.

A symbolσ is elliptic if σ is invertible outside a compact subset ofTM (Char(σ) is compact),
and is transversally ellipticif the restriction ofσ to TKM is invertible outside a compa
subset ofTKM (Char(σ) ∩ TKM is compact). An elliptic symbolσ defines an element i
the equivariantK-theory ofTM with compact support, which is denoted byKK(TM), and the
index ofσ is a virtual finite-dimensional representation ofK [4–7].
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A transversally ellipticsymbolσ defines an element ofKK(TKM), and the index ofσ is
defined as a trace class virtual representation ofK (see [1] for the analytic index and [9,10] for
the cohomological one). Remark that any elliptic symbol ofTM is transversally elliptic, hence

ll

ian
we have a restriction mapKK(TM)→KK(TKM), and a commutative diagram

KK(TM)

IndexK
M

KK(TKM)

IndexK
M

R(K) R−∞(K).

(3.5)

Using theexcision property, one can easily show that the index mapIndexKU :KK(TKU)→
R−∞(K) is still defined whenU is a K-invariant relatively compact open subset of aK-
manifold (see [33, Section 3.1]).

3.2. Thom symbol deformed by the moment map

To aK-invariant almost complex structureJ one associates the Thom symbolThomK(M,J),
and the corresponding Riemann–Roch characterRRK whenM is compact [33]. Let us reca
the definitions.

Consider aK-invariant Riemannian metricq onM such thatJ is orthogonal relatively to
q, and leth be the Hermitian structure onTM defined by:h(v,w) = q(v,w) − ıq(Jv,w) for
v,w ∈TM . The symbol

ThomK (M,J) ∈ Γ
(
M,hom

(
p∗(∧evenC TM), p∗(∧oddC TM)

))
at (m,v) ∈TM is equal to the Clifford map

Clm(v) :∧evenC TmM →∧oddC TmM,(3.6)

whereClm(v).w = v ∧ w − ch(v).w for w ∈ ∧•
C
TxM . Herech(v) :∧•

C
TmM → ∧•−1TmM

denotes the contraction map relative toh. Since the mapClm(v) is invertible for allv �= 0, the
symbolThomK(M,J) is elliptic whenM is compact.

The important point is that for anyK-vector bundleE, ThomK(M,J)⊗ p∗E corresponds
to the principal symbolof the twistedSpinc Dirac operatorDE [14]. So, whenM is a
compactmanifold, the Riemann–Roch characterRRK(M,−) :KK(M)→R(K) is defined by
the following relation

RRK(M,E) = IndexKM
(
ThomK(M,J)⊗ p∗E

)
.(3.7)

Since the class ofThomK(M,J) in KK(TM) is independent of the choice of the Riemann
structure, the Riemann–Roch characterRRK(M,−) also does not depend on this choice.

Consider now the case of anon-compactHamiltonianK-manifold (M,ω,Φ). We choose a
K-invariant scalar product onk∗, and we consider the function‖Φ‖2 :M → R. Let H be the
Hamiltonian vector field for−12 ‖Φ‖2, i.e., the contraction of the symplectic form byH is equal
to the1-form −1

2 d‖Φ‖2. In fact the vector fieldH only depends onΦ. The scalar product onk∗

gives an identificationk∗ 
 k, henceΦ can be consider as a map fromM to k. We have then

Hm = (Φ(m))M |m, m ∈M,(3.8)

where(Φ(m))M is the vector field onM generated byΦ(m) ∈ k.
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DEFINITION 3.1. – The Thom symbol deformed by the moment map, which is denoted by
ThomΦK(M,J), is defined by the relation

l

uced
other
ed by
of an

Here,

ol
he

4

ws
lex
ThomΦK(M,J)(m,v) := ThomK(M,J)(m,v−Hm)

for any (m,v) ∈ TM . Likewise, any equivariant mapS : M → k defines a Thom symbo
ThomS

K(M,J) deformed by the vector fieldSM :m→ S(m)M |m: ThomS
K(M,J)(m,v) :=

ThomK(M,J)(m,v − SM (m)).

Atiyah first proposed to ‘deform’ the symbol of an elliptic operator by the vector field ind
by anS1-action in order to localize its index on the fixed point submanifold, giving then an
proof of the Lefschetz fixed-point theorem [1, Lecture 6]. Afterwards the idea was exploit
Vergne to give a proof of the ‘quantization commutes with reduction’ theorem in the case
S1-action [42]. In [33], we extended this procedure for an action of a compact Lie group.
we use this idea to produce a transversally elliptic symbol on a non-compact manifold.

The characteristic set ofThomΦK(M,J) corresponds to{(m,v) ∈TM, v =Hm}, the graph
of the vector fieldH. SinceH belongs to the set of tangent vectors to theK-orbits, we have

Char
(
ThomΦK(M,J)

)
∩TKM =

{
(m,0) ∈TM, Hm = 0

}
∼=

{
m ∈M, d‖Φ‖2m = 0

}
.

Therefore the symbolThomΦK(M,J) is transversally elliptic if and only if the setCr(‖Φ‖2) of
critical points of the function‖Φ‖2 is compact.

DEFINITION 3.2. – Let(M,ω,Φ) be a HamiltonianK-manifold withCr(‖Φ‖2) compact.
For any invariant almost complex structureJ , the symbolThomΦK(M,J) is transversally
elliptic. For anyK-vector bundleE → M , the tensor productThomΦK(M,J) ⊗ p∗E is
transversally elliptic and we denote by

RRK
Φ (M,E) ∈R−∞(K)

its index3 . In the same way, an equivariant mapS :M → k defines a transversally elliptic symb
ThomS

K(M,J) if and only if {m ∈M, SM (m) = 0} is compact. If this holds one defines t
localized Riemann–Roch characterRRK

S (M,E) := IndexKM (ThomS
K(M)⊗ p∗E).

Remark3.3. – IfM is compact the symbolsThomK(M,J) andThomΦK(M,J) are homo-
topic as elliptic symbols, thus the mapsRRK(M,−) andRRK

Φ (M,−) coincide (see Section
of [33]).

We end up this subsection with some technical remarks about the symbolsThomS
K(M,J)

associated to an equivariant mapS :M → k, and an almost complex structure.
Let U be aK-invariant open subspace ofM . The restriction

ThomS
K(M,J)|U =ThomS

K(U , J)

is transversally elliptic if and only if{m ∈M, SM (m) = 0}∩U is compact. LetjU ,V :U ↪→V be
twoK-invariant open subspaces ofM , wherejU ,V denotes the inclusion. If{m ∈M, SM (m) =

3 Here we take aK-invariant relatively compact open subsetU of M such thatCr(‖Φ‖2) ⊂ U . Then the restriction
of ThomΦ

K(M,J) to U defines a classThomΦ
K(M,J)|U ∈ KK(TKU). Since the index map is well defined onU ,

one setsRRK
Φ (M,E) := IndexK

U (ThomΦ
K(M,J)|U ⊗ p∗E|U ). A simple application of the excision property sho

us that the definition does not depend on the choice ofU . In order to simplify our notation (when the almost comp
structure is understood), we writeRRK

Φ (M,E) := IndexK
M (ThomΦ

K(M)⊗ p∗E).
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0} ∩ U = {m∈M, SM (m) = 0} ∩ V is compact, the excision property tells us that

jU ,V
∗

(
ThomS

K(U , J)
)
=ThomS

K(V , J),

by

x

ur

tic

och

riantly

ute the

t

wherejU ,V
∗ :KK(TKU)→KK(TKV) is the pushforward map (see [33, Section 3]).

LEMMA 3.4. – (1) If {m ∈ M, SM (m) = 0} ∩ U is compact, then the class defined
ThomS

K(U , J) in KK(TKU) does not depend on the choice of a Riemannian metric.
(2) LetS0, S1 :M → k be two equivariant maps. Suppose there exist an open subsetU ⊂M ,

and a vector fieldθ onU such that(S0M , θ)M and(S1M , θ)M are> 0 outside a compact subsetK
ofU . Then, the equivariant symbolsThomS1

K (U , J) andThomS0

K (U , J) are transversally elliptic
and define the same class inKK(TKU).

(3) LetJ0, J1 be two almost complex structures onU , and suppose that{m ∈M, SM (m) =
0} ∩ U is compact. The transversally elliptic symbolsThomS

K(U , J0) and ThomS
K(U , J1)

define the same class if there exists a homotopyJ t, t ∈ [0,1], ofK-equivariant almost comple
structures betweenJ0 andJ1.

Proof. –Two J -invariant Riemannian metricsq0, q1 are connected byqt := (1 − t)q0 + tq1.
Hence the transversally elliptic symbolsThomS

K(U , J, q0) andThomS
K(U , J, q1) are tied by the

homotopyt �→ThomS
K(U , J, qt). The point (1) is then proved. The proof of (2) is similar to o

deformation process in [31]. Here we consider the mapsSt := tS1+(1− t)S0, t ∈ [0,1], and the

corresponding symbolsThomSt

K (U , J). The vector fieldθ, ensures thatChar(ThomSt

K (U , J))∩
TKU ⊂ K is compact. Hencet→ ThomSt

K (U , J) defines a homotopy of transversally ellip
symbols. The proof of (3) is identical to the proof of Lemma 2.2 in [33].✷

COROLLARY 3.5. –When{m ∈M, SM (m) = 0} is compact, the generalized Riemann–R
characterRRK

S (M,−) does not depend on the choice of a Riemannian metric.RRK
S (M,−)

does not change either if the almost complex structure is deformed smoothly and equiva
in a neighborhood of{m ∈M, SM (m) = 0}.

In Sections 3.3 and 3.4, we set up the technical preliminaries that are needed to comp
K-multiplicity of RRK

Φ (M,L̃).
In Section 4, we compute theK-multiplicity of RRK

Φ (M,L̃), when the moment map isproper,
in terms of the symplectic quotientsMµ+ρc , µ ∈ Λ∗

+.

3.3. Counting theK-multiplicities

Let E be aK-vector bundle over a Hamiltonian manifold(M,ω,Φ) and suppose tha
Cr(‖Φ‖2) is compact. One wants to compute theK-multiplicities ofRRK

Φ (M,E) ∈R−∞(K),
i.e., the integersmµ(E) ∈ Z, µ ∈ Λ∗

+, such that

RRK
Φ (M,E) =

∑
µ∈Λ∗

+

mµ(E)χKµ .(3.9)

For this purpose one uses the classical ‘shifting trick’. By definition, one hasmµ(E) =
[RRK

Φ (M,E) ⊗ V ∗
µ ]

K , whereVµ is the irreducibleK-representation with highest weightµ,

andV ∗
µ is its dual. We know from (2.2) that theK-trace ofVµ is χKµ =RRK(Oµ̃, C̃[µ]), where

µ̃= µ+ ρc.(3.10)
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Hence theK-trace of the dualV ∗
µ is equal toRRK(Oµ̃, C̃[−µ]), whereOµ̃ is the coadjoint orbit

Oµ̃ with opposite symplectic structure and opposite complex structure. LetThomK(Oµ̃) be the
equivariant Thom symbol onOµ̃. Then the trace ofV ∗ is equal toIndexK (Thom (Oµ̃) ⊗

cter

t

-

µ Oµ̃ K

C̃[−µ]), and finally the multiplicative property of the index [1, Theorem 3.5] gives

mµ(E) =
[
IndexKM×Oµ̃

((
ThomΦK(M)⊗ p∗E

)
%

(
ThomK(Oµ̃)⊗ C̃[−µ]

))]K
.

See [1,33] for the definition of the exterior product% :KK(TKM) × KK(TOµ̃)→ KK ×
(TK(M ×Oµ̃)).

The moment map relative to the HamiltonianK-action onM ×Oµ̃ is

Φµ̃ :M ×Oµ̃ → k∗,

(m,ξ) �→ Φ(m)− ξ.
(3.11)

For anyt ∈R, we consider the mapΦtµ̃ :M ×Oµ̃→ k∗, Φtµ̃(m,ξ) := Φ(m)− tξ.
Assumption3.6. – There exists acompactsubsetK ⊂M , such that, for everyt ∈ [0,1], the

critical set of the function‖Φtµ̃‖2 :M ×Oµ̃→R is contained inK×Oµ̃.

If M satisfies Assumption 3.6 at̃µ, one has a generalized Riemann–Roch chara
RRK

Φµ̃
(M ×Oµ̃,−) sinceCr(‖Φµ̃‖2) is compact.

PROPOSITION 3.7. – Letmµ(E) be the multiplicity ofRRK
Φ (M,E) relatively to the highes

weightµ ∈ Λ∗
+. IfM satisfies Assumption3.6at µ̃, then

mµ(E) =
[
RRK

Φµ̃

(
M ×Oµ̃,E � C̃[−µ]

)]K
.

Proof. –One has to show that the transversally elliptic symbolsThomΦK(M)%ThomK(Oµ̃)
andThomΦµ̃

K (M×Oµ̃) define the same class inKK(TK(M×Oµ̃)) whenM satisfies Assump
tion 3.6 atµ̃. Letσ1, σ2 be respectively the Thom symbolsThomK(M) andThomK(Oµ̃). The
symbolσI =ThomΦK(M)%ThomK(Oµ̃) is defined by

σI(m,ξ, v,w) = σ1(m,v−Hm)% σ2(ξ,w),

where (m,v) ∈ TM , (ξ,w) ∈ TOµ̃, andH is defined in (3.8). LetHt be the vector field
on M × Oµ̃ generated by the mapΦtµ̃ :M × Oµ̃ → k. For (m,ξ) ∈ M × Oµ̃, we have
Ht
(m,ξ) = (Ha,t

(m,ξ),H
b,t
(m,ξ)) whereHa,t

(m,ξ) ∈ TmM andHb,t
(m,ξ) ∈ TξOµ̃. The symbolσII =

ThomΦµ̃

K (M ×Oµ̃) is defined by

σII(m,ξ, v,w) = σ1
(
m,v−Ha,1

m,ξ

)
% σ2

(
ξ,w−Hb,1

(m,ξ)

)
.

We connectσI andσII through two homotopies. First we consider the symbolA on [0,1] ×
T(M ×Oµ̃) defined by

A(t;m,ξ, v,w) = σ1
(
m,v−Ha,t

m,ξ

)
% σ2

(
ξ,w−Hb,t

(m,ξ)

)
,

for t ∈ [0,1], and (m,ξ, v,w) ∈ T(M × Oµ̃). We haveChar(A) = {(t;m,ξ, v,w) | v =
Ha,t

m,ξ, andw =Hb,t
(m,ξ)} and
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Char(A) ∩ [0,1]×TK

(
M ×Oµ̃

)
=

{
(t;m,ξ,0,0) | (m,ξ) ∈Cr

(
‖Φtµ̃‖2

)}
⊂ [0,1]×K×Oµ̃,

f

f

der

er
iques

tions 4
whereK ⊂ M is the compact subset of Assumption 3.6. ThusA defines a homotopy o
transversally elliptic symbols. The restriction ofA to t = 1 is equal toσII. The restriction of
A to t= 0 defines the following transversally elliptic symbol

σIII(m,ξ, v,w) = σ1(m,v−Hm)% σ2
(
ξ,w−Hb,0

(m,ξ)

)
sinceHa,0

m,ξ = Hm for every (m,ξ) ∈M × Oµ̃. Next, we consider the symbolB on [0,1] ×
T(M ×Oµ̃) defined by

B(t;m,ξ, v,w) = σ1(m,v −Hm)% σ2
(
ξ,w− tHb,0

(m,ξ)

)
.

We haveChar(B) = {(t;m,ξ, v,w) | v =Hm, andw = tHb,0
(m,ξ)} and

Char(B) ∩ [0,1]×TK

(
M ×Oµ̃

)
⊂

{(
t;m,ξ, v=Hm,w= tHb,0

(m,ξ)

)
, ‖Hm‖2 + t

∥∥Hb,0
(m,ξ)

∥∥2 = 0
}
.

In particularChar(B) ∩ [0,1]×TK(M ×Oµ̃) is contained in{(t;m,ξ,0,w= tHb,0
(m,ξ)), m ∈

Cr(‖Φ‖2)} which is compact sinceCr(‖Φ‖2) is compact. So,B defines a homotopy o
transversally elliptic symbols betweenσI = B|t=0 andσIII = B|t=1. We have finally proved
thatσI, σII, σIII define the same class inKK(TK(M ×Oµ̃)). ✷

When E = L̃ is a κ-prequantum line bundle overM , the line bundleL̃ � C̃[−µ] is

a κ-prequantum line bundle overM × Oµ̃. Therefore Proposition 3.7 shows that un
Assumption 3.6 theK-multiplicities ofRRK

Φ (M,L̃) have the form

[
RRK

Φ

(
X , L̃X

)]K
,(3.12)

where (X , ωX ,Φ) is a HamiltonianK-manifold with Cr(‖Φ‖2) compact, andL̃X is a κ-
prequantum line bundle overX relative to aK-invariant almost complex structure. In ord
to compute the quantity (3.12), we exploit in the next subsection the localization techn
developed in [33].

3.4. Localization of the map RRK
Φ

For a detailed account on the procedure of localization that we use here, see Sec
and 6 of [33]. In this section(X , ωX ,Φ) is a HamiltonianK-manifold which is equipped
with aK-invariant almost complex structure, and aκ-prequantum line bundlẽL. We suppose
furthermore thatCr(‖Φ‖2) is compact. We give here a condition under which[RRK

Φ (X , L̃)]K
depends only on the data in the neighborhood ofΦ−1(0).

For anyβ ∈ k, let X β be the symplectic submanifold of points ofX fixed by the torusTβ

generated byβ. Following Kirwan [22], the critical setCr(‖Φ‖2) decomposes as

Cr
(
‖Φ‖2

)
=

⋃
β∈B
CK

β , with CK
β =K.

(
X β ∩Φ−1(β)

)
,(3.13)
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whereB is the subset oft∗+ defined byB := {β ∈ t∗+, X β ∩ Φ−1(β) �= ∅}. SinceCr(‖Φ‖2) is
supposed to be compact,B is finite.

For eachβ ∈ B, let Uβ ↪→X be aK-invariantrelatively compactopen neighborhood ofCK
β

er

hich

e

r

at
or

mber
such thatUβ ∩Cr(‖Φ‖2) =CK
β . The restriction of the transversally elliptic symbolThomΦK(X )

to the subsetUβ definesThomΦK(Uβ) ∈KK(TKUβ).

DEFINITION 3.8. – For everyβ ∈ B, we denote byRRK
β (X ,−) the Riemann–Roch charact

localized nearCK
β , which is defined by

RRK
β (X ,E) = IndexKUβ

(
ThomΦK

(
Uβ

)
⊗ p∗E|Uβ

)
,

for everyK-vector bundleE→X .

Theexcision propertytells us that

RRK
Φ (X ,E) =

∑
β∈B
RRK

β (X ,E)(3.14)

for everyK-vector bundleE → X (see [33, Section 4]). In particular,[RRK
Φ (X , L̃)]K =∑

β [RR
K
β (X , L̃)]K , and our main point here is to find suitable conditions under w

[RRK
β (X , L̃)]K = 0 for β �= 0.

Let β be a non-zero element ink. For every connected componentZ of X β , let NZ be the
normal bundle ofZ in X . LetαZ1 , . . . , α

Z
l be the real infinitesimal weights for the action ofTβ

on the fibers ofNZ ⊗ C. The infinitesimal action ofβ onNZ ⊗ C is a linear map with trac
equal to

√
−1

∑
i〈αZi , β〉.

DEFINITION 3.9. – Let us denote byTrβ |NZ | the following positive number

Trβ |NZ | :=
l∑

i=1

∣∣〈αZi , β〉∣∣,
whereαZ1 , . . . , α

Z
l are the real infinitesimal weights for the action ofTβ on the fibers ofNZ ⊗C.

For anyTβ -equivariant real vector bundleV →Z (respectively realTβ -equivariant real vecto
spaceE), we define in the same wayTrβ|V|� 0 (respectivelyTrβ |E|� 0).

Remark3.10. – If V = V1 ⊕ V2, we haveTrβ|V| = Trβ |V1| + Trβ |V2|, and if V ′ is
an equivariant real subbundle ofV , we getTrβ |V| � Trβ |V ′|. In particular one sees th
Trβ |NZ | = Trβ |TX|Z |, and then, ifEm ⊂ TmX is a Tβ -invariant real vector subspace f
somem ∈Z, we haveTrβ |NZ |� Trβ |Em|.

The following proposition and corollary give us an essential condition under which the nu
[RRK

Φ (X , L̃)]K only depends on data localized in a neighborhood ofΦ−1(0).

PROPOSITION 3.11. – Let L̃ be aκ-prequantum line bundle overX . The multiplicity of the
trivial representation inRRK

β (X , L̃) is equal to zero if

‖β‖2 + 1
2
Trβ |NZ | − 2(ρc, β)> 0(3.15)

for every connected componentZ ofX β which intersectsΦ−1(β). Condition(3.15)always holds
if β ∈ k− {0} isK-invariant or if ‖β‖> ‖ρc‖.
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Since everyβ ∈ B belongs to the Weyl chamber, we have2(ρc, β) =Trβ|k/t|, and then (3.15)
can be rewritten as‖β‖2 + 1

2Trβ |NZ | −Trβ |k/t|> 0. From (3.14), we get

s.

by

e

of

e
s

COROLLARY 3.12. – If condition(3.15)holds for all non-zeroβ ∈ B, we have

[
RRK

Φ

(
X , L̃

)]K =
[
RRK

0

(
X , L̃

)]K
,

whereRRK
0 (X ,−) is the Riemann–Roch character localized nearΦ−1(0) (see Definition3.8).

In particular, [RRK
Φ (X , L̃)]K = 0 if (3.15)holds for all non-zeroβ ∈ B, and0 /∈ Image(Φ).

3.5. Proof of Proposition 3.11

Whenβ ∈ k isK-invariant, the scalar product(ρc, β) vanishes and then (3.15) trivially hold
Let us show that (3.15) holds when‖β‖> ‖ρc‖. LetZ be a connected component ofX β which
intersectsΦ−1(β). Let m ∈ Φ−1(β) ∩ Z, and letEm ⊂ TmX be the subspace spanned
XX (m),X ∈ k. We haveEm 
 k/km, wherekm := {X ∈ k, XX (m) = 0}. SinceΦ(m) = β, and
Φ is equivariantkm ⊂ kβ := {X ∈ k, [X,β] = 0}, soTmX contains aTβ -equivariant subspac
isomorphic tok/kβ . So we haveTrβ|NZ |� Trβ |k/kβ |= 2(ρc, β), and then

‖β‖2 + 1
2
Trβ|NZ | − 2(ρc, β)� ‖β‖2 − (ρc, β)> 0

since‖β‖> ‖ρc‖.
We prove now that condition (3.15) forces[RRK

β (X , L̃)]K to be equal to0. Letmβ,µ(E) ∈ Z

be theK-multiplicities of the localized Riemann–Roch characterRRK
β (X ,E) introduced in

Definition 3.8:RRK
β (X ,E) =

∑
µ∈Λ∗

+
mβ,µ(E)χKµ . We show now thatmβ,0(L̃) = 0, by using

the formulas of localization that we proved in [33] for the mapsRRK
β (X ,−).

First case: β ∈ B is a non-zero K-invariant element of k∗. We show here the following
relation for the multiplicitiesmβ,µ(L̃):

mβ,µ

(
L̃

)
�= 0 =⇒ (µ,β)� ‖β‖2+ 1

2
Trβ |NZ | for someZ ⊂X β ,(3.16)

in particularmβ,0(L̃) = 0.
SinceTβ belongs to the center ofK , X β is a symplecticK-invariant submanifold ofX .

Let N be the normal bundle ofX β in X . TheK-invariant almost complex structure ofX
induces aK-invariant almost complex structure onX β , and a complex structure on the fibers
N →X β . Then we have a Riemann–Roch characterRRK

β (X β ,−) localized alongX β∩Φ−1(β)
with the decompositionRRK

β (X β , F ) =
∑

Z RR
K
β (Z, F |Z), where the sum is taken over th

connected componentsZ ⊂X β which intersectΦ−1(β). The torusTβ acts linearly on the fiber
of the complex vector bundleN , thus we can associate the polarized complexK-vector bundle
N+,β and(N ⊗ C)+,β (see Definition 5.5 in [33]): for any realTβ -weightα onN+,β , or on
(N ⊗C)+,β , we have

(α,β)> 0.(3.17)

We proved the following localization formula in Section 6.2 of [33] which holds inR̂(K) for
anyK-vector bundleE overX :

RRK
β (X ,E) = (−1)rN

∑
k∈N

RRK
β

(
X β ,E|Xβ ⊗ detN+,β ⊗ Sk

(
(N ⊗C)+,β

))
.(3.18)
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HererN is the locally constant function onX β equal to the complex rank ofN+,β , andSk(−)
is thekth symmetric product overC.

Let i : tβ ↪→ t be the inclusion of the Lie algebra ofTβ , and leti∗ : t∗→ t∗β be the canonical

n

that
n the
dual map. Let us recall the basic relationship between theTβ -weight on the fibers of aK-
vector bundleF → X β and theK-multiplicities of RRK

β (X β , F ) ∈ R̂(K): if the irreducible
representationVµ occurs inRRK

β (X β , F ), theni∗(µ) is a Tβ -weight on the fibers ofF (see
Appendix B in [33]).

If one now uses (3.18), one sees thatmµ,β(L̃) �= 0 only if i∗(µ) is aTβ -weight on the fibers
of someL̃|Z ⊗ detN+,β

Z ⊗ Sk((NZ ⊗C)+,β). Since(i∗(µ), β) = (µ,β), (3.16) will be proved
if one shows that eachTβ -weightγZ on L̃|Z ⊗ detN+,β

Z ⊗ Sk((NZ ⊗C)+,β) satisfies

(γZ , β)� ‖β‖2 + 1
2
Trβ |NZ |.(3.19)

LetαZ be theTβ -weight on the fiber of the line bundlẽL|Z ⊗detN+,β
Z . Since anyTβ -weight

onSk((N ⊗C)+,β) satisfies (3.17), (3.19) holds if

(αZ , β)� ‖β‖2+ 1
2
Trβ |NZ |(3.20)

for every Z ⊂ X β which intersectsΦ−1(β). Let L2ω be the prequantum line bundle o
(M,2ω,2Φ) such that L̃2 = L2ω ⊗ κ (where κ is by definition equal todet(T∗

C
X ) ∼=

det(TX )−1). We have

(
L̃|Z ⊗ det

(
N+,β

))2 =L2ω|Z ⊗ det(TX )−1|Z ⊗ det
(
N+,β

)2
.

So 2αZ = α1 + α2 whereα1, α2 are respectivelyTβ -weights onL2ω|Z anddet(TX )−1|Z ⊗
det(N+,β)2. The Kostant formula (2.1) onL2ω|Z gives(α1,X) = 2(β,X) for everyX ∈ tβ , in
particular

(α1, β) = 2‖β‖2.(3.21)

On Z, the complex vector bundleTX has the following decomposition,TX|Z = TZ ⊕
N−,β ⊕ N+,β , whereN−,β is the orthogonal complement ofN+,β in N : everyTβ -weight
δ onN−,β verifies (δ, β) < 0. So we get the decompositiondet(TX )−1|Z ⊗ det(N+,β)2 =
det(TZ)⊗ det(N−,β)−1 ⊗ det(N+,β), which gives

(α2, β) =Trβ|NZ |(3.22)

sinceTβ acts trivially onTZ. Finally (3.20) follows trivially from (3.21) and (3.22).

Second case: β ∈ B such thatKβ �=K . Consider the induced Hamiltonian action ofKβ on
X , with moment mapΦKβ

:X → k∗β . LetB′ be the indexing set for the critical point of‖ΦKβ
‖2

(see (3.13)). Following Definition 3.8, for eachβ′ ∈ B′ we consider theKβ-Riemann–Roch

characterRRKβ

β′ (X ,−) localized alongCKβ

β′ =Kβ.(X β′ ∩Φ−1
Kβ

(β′)). Hereβ is aKβ-invariant

element ofB′ with CKβ

β =X β ∩Φ−1(β).

Let HolKT :R−∞(T )→ R−∞(K), HolKβ

T :R−∞(T )→ R−∞(Kβ), andHolKKβ
: R−∞(Kβ)

→ R−∞(K) be the holomorphic induction maps (see Appendix B in [33]). Recall
HolKT =HolKKβ

◦HolKβ

T . The choice of a Weyl chamber determines a complex structure o
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real vector spacek/kβ . We denote byk/kβ the vector space endowed with the opposite complex
structure.

The induction formula that we proved in [33, Section 6] states that

e

d

f

er by

e

RRK
β (X ,E) = HolKKβ

(
RR

Kβ

β (X ,E)∧•
C k/kβ

)
(3.23)

for every equivariant vector bundleE. Let us first write the decompositionRRKβ

β (X , L̃) =∑
µ∈Λ+

β
mβ,µ(L̃)χ

Kβ
µ into irreducible characters ofKβ . Sinceβ is Kβ-invariant we can us

the result of the First case. In particular (3.16) tells us that

mβ,µ

(
L̃

)
�= 0 =⇒ (µ,β)� ‖β‖2 + 1

2
Trβ |NZ |(3.24)

for some connected componentZ ⊂X β which intersectsΦ−1(β).
Each irreducible characterχ

Kβ
µ is equal toHolKβ

T (tµ), so from (3.23) we get

RRK
β (M,L̃) = HolKT

((∑
µ

mβ,µ(L̃)tµ
) ∏

α∈R+(k/kβ)

(1− t−α)
)

whereR+(k/kβ) is the set of positiveT -weights onk/kβ : so 〈α,β〉 > 0 for all α ∈R+(k/kβ).
Finally, we see thatRRK

β (M,L̃) is a sum of terms of the formmβ,µ(L̃)HolKT (tµ−αI) where

αI =
∑

α∈I α and I is a subset ofR+(k/kβ). We know thatHolKT (tµ
′
) is either 0 or the

character of an irreducible representation (times±1); in particularHolKT (tµ
′
) is equal to±1

only if (µ′,X)� 0 for everyX ∈ t+ (see Appendix B in [33]). So[RRK
β (M,L̃)]K �= 0 only if

there exists a weightµ such thatmβ,µ(L̃) �= 0 and thatHolKT (tµ−αI) =±1. The first condition
imposes(µ,β) � ‖β‖2 + 1

2Trβ|NZ | for some connected componentZ ⊂ X β , and the secon
one gives(µ,β)� (αI, β). Combining the two we end up with

‖β‖2 + 1
2
Trβ|NZ |� (αI, β)�

∑
α∈R+(k/kβ)

(α,β) = 2(ρc, β),

for some connected componentZ ⊂ X β which intersectsΦ−1(β). This completes the proo
that [RRK

β (M,L̃)]K = 0 if ‖β‖2 + 1
2Trβ |NZ |> 2(ρc, β) for every componentZ ⊂ X β which

intersectsΦ−1(β).

4. Quantization commutes with reduction

Let (M,ω,Φ) be a HamiltonianK-manifold equipped with an almost complex structureJ . In
this section, we assume that the moment mapΦ is proper and that the setCr(‖Φ‖2) of critical
points of‖Φ‖2 :M →R is compact. We denote the corresponding Riemann–Roch charact
RRK

Φ (M,−) (see Definition 3.2). Let∆ := Φ(M)∩ t∗+ be the moment polyhedron.
The main result of this section is the following

THEOREM 4.1. – Suppose thatM satisfies Assumption3.6 at everyµ̃ ∈ t∗, and that the
infinitesimal stabilizers for theK-action onM are Abelian. If L̃ is aκ-prequantum line bundl
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over(M,ω,Φ, J), we have

RRK
(
M,L̃

)
= ε

∑
Q(Mµ+ρ )χK ,(4.25)

re

r

-

al

t

e

g the
Φ

µ∈Λ∗
+

c µ

whereε= ±1 is the ‘quotient’ of the orientationo(J) defined by the almost complex structu
and the orientationo(ω) defined by the symplectic form. Here the integerQ(Mµ+ρc) is computed
by Proposition2.4. In particular,Q(Mµ+ρc) = 0 if µ+ρc does not belong to the relative interio
of∆.

The same result holds in the traditional ‘prequantum’ case. Suppose thatM satisfies Assump
tion 3.6 at everyµ ∈ t∗, and that the almost complex structureJ is compatible withω. If L is
a prequantum line bundle over(M,ω,Φ), we haveRRK

Φ (M,L) =
∑

µ∈Λ∗
+
RR(Mµ,Lµ)χKµ .

The next lemma is the first step in computing theK-multiplicities mµ(L̃) of RRK
Φ (M,L̃).

Since(M,Φ) satisfies Assumption 3.6 at everyµ̃, we know from Proposition 3.7 thatmµ(L̃) =
[RRK

Φµ̃
(M ×Oµ̃, L̃� C̃[−µ])]K for everyµ ∈ Λ∗

+.

LetRRK
0 (M×Oµ̃,−) be the Riemann–Roch character localized nearΦ−1

µ̃ (0)
Φ−1(µ+ρc)
(see Definition 3.8). This map is thezero mapif Φ−1(µ+ ρc) = ∅.

LEMMA 4.2. – Let L̃ be aκ-prequantum line bundle overM . Suppose that the infinitesim
stabilizers for theK-action areAbelianand that Assumption3.6 is satisfied at̃µ. We have then

mµ(L̃) =
[
RRK

0 (M ×Oµ̃, L̃� C̃[−µ])
]K
.(4.26)

In particularmµ(L̃) = 0 if µ+ ρc does not belong to the moment polyhedron∆.

Proof. –The lemma follows from Corollary 3.12, applied to the Hamiltonian manifoldX :=
M ×Oµ̃, with moment mapΦµ̃ andκ-prequantum line bundlẽL� C̃[−µ]. Let β �= 0 such that
X β ∩ Φ−1

µ̃ (β) �= ∅. LetN be the normal bundle ofX β in X , and letx ∈ X β ∩ Φ−1
µ̃ (β). From

the criterion of Proposition 3.11, it is sufficient to show that

‖β‖2+ 1
2
Trβ |Nx| − 2(ρc, β)> 0.(4.27)

Write x = (m,ξ) with m ∈ Mβ and ξ ∈ (Oµ̃)β . We know thatTrβ |Nx| = Trβ|TxX| =
Trβ |TmM |+Trβ |TξOµ̃|.

Since the stabilizerkξ 
 t is Abelian andβ ∈ kξ we have kξ ⊂ kβ . Then the tangen
spaceTξOµ̃ 
 k/kξ contains a copy ofk/kβ , so Trβ |TξOµ̃| � Trβ |k/kβ | = 2(ρc, β). On
the other hand,TmM contains the vector spaceEm 
 k/km spanned byXM (m),X ∈ k.
We have assume that the stabilizer subalgebrakm is Abelian, and sinceβ ∈ km, we get
km ⊂ kβ . Thusk/kβ ⊂ Em ⊂TmM andTrβ |TmM |� 2(ρc, β). Finally (4.27) is proved sinc
1
2 (Trβ|TmM |+Trβ |TξOµ̃|)� 2(ρc, β). ✷

The remaining part of this section is devoted to the proof of Theorem 4.1. Followin
preceding lemma we have to show that

[
RRK

0

(
M ×Oµ̃, L̃� C̃[−µ]

)]K = εQ(Mµ+ρc),(4.28)

whereQ(Mµ+ρc) is defined in Proposition 2.4.
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In Section 4.1, we recall the basic notions aboutSpinc-structures. The existence of induced
Spinc-structures on symplectic quotient is proved in Section 4.2. The proof of (4.28) is settled in
Section 4.3. We give in the same time the proof of the ‘hard part’ of Proposition 2.4: the fact that

p

g

t
ure,
the indexQ(Mξ) does not depend onξ, for ξ sufficiently close toµ+ ρc.

4.1. Spinc structures and symbols

We refer to Lawson and Michelson [25] for background onSpinc-structures, and to
Duistermaat [14] for a discussion of the symplectic case.

The groupSpinn is the connected double cover of the groupSOn. Let η : Spinn → SOn

be the covering map, and letε be the element which generates the kernel. The groupSpincn
is the quotientSpinn ×Z2 U1, where Z2 acts by (ε,−1). There are two canonical grou
homomorphisms

η : Spincn→ SOn, Det : Spincn→U1.

Note thatηc = (η,Det) : Spincn→ SOn ×U1 is a double covering map.
Let p :E → M be an oriented Euclidean vector bundle of rankn, and letPSO(E) be its

bundle of oriented orthonormal frames. ASpinc-structure onE is a Spincn principal bundle
PSpinc(E)→M , together with aSpinc-equivariant mapPSpinc(E)→ PSO(E). The line bundle

L := PSpinc(E)×Det C(4.29)

is called thecanonical line bundleassociated toPSpinc(E). We have then a double coverin
map4

ηcE :PSpinc(E)→ PSO(E)×PU(L),(4.30)

wherePU(L) := PSpinc(E)×Det U1 is the associatedU1-principal bundle overM .
A Spinc-structure on an oriented Riemannian manifold is aSpinc-structure on its tangen

bundle. If a groupK acts on the bundleE, preserving the orientation and the Euclidean struct
we define aK-equivariantSpinc-structure by requiringPSpinc(E) to be aK-equivariant
principal bundle, and (4.30) to be(K × Spincn)-equivariant.

Let ∆2m be the complex Spin representation ofSpinc2m. Recall that∆2m = ∆+2m ⊕ ∆−
2m

inherits a canonical Clifford actionc : R
2m → EndC(∆2m) which isSpinc2m-equivariant, and

which interchanges the grading:c(v) :∆±
2m→∆∓

2m, for everyv ∈R2m. Let

S(E) := PSpinc(E)×Spinc
2m

∆2m(4.31)

be the spinor bundle overM , with the gradingS(E) := S(E)+ ⊕ S(E)−. Since E =
PSpinc(E)×Spinc

2m
R2m, the bundlep∗S(E) is isomorphic toPSpinc(E)×Spinc

2m
(R2m⊕∆2m).

LetE be the bundleE with opposite orientation. ASpinc structure onE induces aSpinc on
E, with the same canonical line bundle, and such thatS(E)± = S(E)∓.

DEFINITION 4.3. – LetS-Thom(E) :p∗S(E)+→ p∗S(E)− be the symbol defined by

PSpinc(E)×Spinc
2m

(
R
2m ⊕∆+2m

)
→PSpinc(E)×Spinc

2m

(
R
2m ⊕∆−

2m

)
,

[p;v,w] �→ [p, v,c(v)w].

4 If P,Q are principal bundle overM respectively for the groupsG andH , we denote simply byP ×Q their fibering
product overM which is aG× H principal bundle overM .
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When E is the tangent bundle of a manifoldM , the symbolS-Thom(E) is denoted
by S-Thom(M). If a group K acts equivariantly on theSpinc-structure, we denote by
S-ThomK(E) the equivariant symbol.

s

r
at

l

n
e

l

a

l

The characteristic set ofS-Thom(E) is M 
 {zero section of E}, hence it defines a clas
in K(E) if M is compact (this class is a free generator of theK(M)-moduleK(E) [3]).
WhenE = TM , the symbolS-Thom(M) corresponds to theprincipal symbolof the Spinc

Dirac operator associated to theSpinc-structure [14]. If moreoverM is compact, the numbe
Q(M) ∈ Z is defined as the index ofS-Thom(M). If we change the orientation, note th
Q(M) =−Q(M).

Remark4.4. – It should be noted that the choice of the metric on the fibers ofE is not essentia
in the construction. Letg0, g1 be two metrics on the fibers ofE, and suppose that(E,g0) admits
aSpinc-structure denoted byPSpinc(E,g0). The trivial homotopygt = (1− t).g0+ t.g1 between
the metrics, induces a homotopy between the principal bundlesPSO(E,g0), PSO(E,g1) which
can be lifted to a homotopy betweenPSpinc(E,g0) and aSpinc-bundle over(E,g1). When the
baseM is compact, the corresponding symbolsS-Thom(E,g0) andS-Thom(E,g1) define the
same class inK(E).

These notions extend to the orbifold case. LetM be a manifold with a locally free actio
of a compact Lie groupH . The quotientX := M/H is an orbifold, a space with finit
quotient singularities. ASpinc structure onX is by definition aH-equivariantSpinc structure
on the bundleTHM → M , where THM is identified with the pullback ofTX via the
quotient mapπ :M → X . We define in the same wayS-Thom(X ) ∈ Korb(TX ), such that
π∗S-Thom(X ) = S-ThomH(THM). HereKorb denotes theK-theory ofpropervector bundles
[21]. The pullback byπ induces an isomorphismπ∗ :Korb(TX ) 
KH(THM). The number
Q(X ) ∈ Z is defined as the index ofS-Thom(X ), or equivalently as the multiplicity of the trivia
representation inIndexHM (S-ThomH(THM)).

Consider now the case of aHermitian vector bundleE → M , of complex rankm. The
orientation on the fibers ofE is given by the complex structureJ . Let PU(E) be the bundle
of unitary frames onE. We denote byi :Um ↪→ SO2m the canonical inclusion map. We have
morphismj :Um→ Spinc2m which makes the diagram

Um
j

i×det

Spinc2m

ηc

SO2m ×U1

(4.32)

commutative [25]. Then

PSpinc(E) := Spinc2m ×j PU(E)(4.33)

defines aSpinc-structure overE, with canonical line bundle equal todetCE.

LEMMA 4.5. –LetM be a manifold equipped with an almost complex structureJ . The symbo
S-Thom(M) defined by theSpinc-structure(4.33), and the Thom symbolThom(M,J) defined
in Section3.2coincide.

Proof. –The spinor bundleS is of the formPSpinc(TM) ×Spinc
2m

∆2m = PU(TM) ×Um

∆2m. The mapc :R2m→ EndC(∆2m), when restricted to theUm-equivariant action throughj,
is equivalent to the Clifford mapCl :R2m→ EndC(∧Cm) (with the canonical action ofUm on
R2m and∧Cm). ThenS = ∧CTM endowed with the Clifford action. ✷
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LEMMA 4.6. – LetP be aSpinc-structure overM , with bundle of spinorsS, and canonical
line bundleL. For every Hermitian line bundleL→M , there exists a uniqueSpinc-structurePL
with bundle of spinorsS⊗L, and canonical line bundleL⊗L2 (PL is called theSpinc-structure

.

p

t

y

ix B]
Lie

re
section

e

m

P twisted byL).

Proof. –TakePL = P ×U1 PU(L). ✷
We finish this subsection with the following definitions. Let(M,o) be an oriented manifold

Suppose that
• a connected compact LieK acts onM ,
• (M,o,K) carries aK-equivariantSpinc-structure,
• one has an equivariant mapΨ:M → k.
Suppose first thatM is compact. The symbolS-ThomK(M) is then elliptic and defines a ma

QK(M,−) :KK(M)→R(K)

by the relationQK(M,V ) := IndexKM (S-ThomK(M)⊗V ). ThusQK(M,V ) is the equivarian
index of theSpinc Dirac operator onM twisted byV .

LetΨM be the equivariant vector field onM defined byΨM (m) := Ψ(m)M |m.

DEFINITION 4.7. – The symbolS-ThomK(M) deformed by the mapΨ, which is denoted b
S-ThomΨK(M), is defined by the relation

S-ThomΨK(M)(m,v) := S-ThomK(M)
(
m,v−ΨM (m)

)
for any (m,v) ∈TM . The symbolS-ThomΨK(M) is transversally elliptic if and only if{m ∈
M,ΨM(m) = 0} is compact. When this holds one defines the localized mapQK

Ψ (M,V ) :=
IndexKM (S-ThomΨK(M)⊗ V ).

We finish this section with an adaptation of Lemma 9.4 and Corollary 9.5 of [33, Append
to the localized mapQK

Ψ (M,−). Let β ∈ t∗+ be a non-zero element in the center of the
algebrak ∼= k∗ of K . We suppose here that the subtorusi :Tβ ↪→ K , which is equal to the
closure of{exp(t.β), t ∈ R}, acts trivially onM . Let mµ(V ), µ ∈ Λ∗

+ be theK-multiplicities
ofQK

Ψ (M,V ).

LEMMA 4.8. – If mµ(V ) �= 0, i∗(µ) is a weight for the action ofTβ on V ⊗ L
1
2 . If each

weightα for the action ofTβ onV ⊗L
1
2 satisfies(α,β)> 0, then[QK

Ψ (M,V )]
K = 0.

4.2. Spinc structures on symplectic reductions

Let (M,ω,Φ) be a HamiltonianK-manifold, such thatΦ is proper. LetJ be aK-invariant
almost complex structure onM . And let L̃ be aκ-prequantum line bundle over(M,ω,J). Since
we do not impose a compatibility condition betweenJ andω, the almost complex structu
does not descend to the symplectic quotients in general. Nevertheless we prove in this
that theSpinc prequantization defined by the data(L̃, J) induces aSpinc prequantization on th
symplectic quotientsMµ+ρc .

Let Y be the subsetΦ−1(interior(t∗+)). WhenY �= ∅, the Principal-cross-section Theore
tells us thatY is a HamiltonianT -submanifold ofM , with moment map the restriction ofΦ to
Y [26].

LEMMA 4.9. – If the infinitesimal stabilizers for theK-action onM are Abelian, the
symplectic cross-sectionY is not empty.
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Proof. –There exists a unique relatively open faceτ of the Weyl chambert∗+ such that
Φ(M) ∩ τ is dense inΦ(M) ∩ t∗+. The faceτ is called the principal face of(M,Φ) [26]. All
points in the open faceτ have the same connected centralizerKτ . The Principal-cross-section

te
one

l
ed
ture
ctic

.

g

Theorem tells us thatYτ := Φ−1(τ) is a HamiltonianKτ -manifold, where[Kτ ,Kτ ] acts trivially
[26]. Here we have assumed that the subalgebraskm := {X ∈ k, XM (m) = 0}, m ∈M , are
Abelian. Hence[kτ , kτ ] ⊂ km for everym ∈ Yτ , and this imposes[kτ , kτ ] = 0. Therefore the
subgroupKτ is Abelian, and this is the case only ifτ is the interior of the Weyl chamber.✷

For the remaining of this section, we assume thatY �= ∅, so that the relative interior∆o of the
moment polyhedron is a dense subset ofΦ(Y). OnM , we have the orientationo(J) defined by
the almost complex structure and the orientationo(ω) defined by the symplectic form. We deno
their ‘quotient’ byε=±1. On the symplectic quotients we will also have two orientations,
induced byω, and the other induced byJ , with the same ‘quotient’ε.

PROPOSITION 4.10. – The almost complex structureJ induces
(i) an orientationo(Y) onY , and
(ii) a T -equivariantSpinc structure on(Y, o(Y)) with canonical line bundledetC(TM |Y)⊗

C−2ρc .

Proof. –OnY , we have the decompositionTM |Y =TY⊕ [k/t], where[k/t] denotes the trivia
bundleY × k/t corresponding to the subspace ofTM |Y formed by the vector fields generat
by the infinitesimal action ofk/t. The choice of the Weyl chamber induces a complex struc
on k/t, and hence an orientationo([k/t]). This orientation can also be defined by a symple
form of the typeωk/t(X,Y ) = 〈ξ, [X,Y ]〉, whereξ belongs to the interiort∗+. Let o(Y) be the
orientation onY defined byo(J)|Y = o(Y)o([k/t]). OnY , we also have the orientationo(ωY)
defined by the symplectic formωY . Note that ifo(J) = εo(ω), we have alsoo(Y) = εo(ωY).

Let P := Spinc2n ×Un PU(TM) be theSpinc structure onM induced byJ (see (4.33))
When restricted toY , P|Y defines aSpinc structure on the bundleTY ⊕ [k/t]. Let q be a
T -invariant Riemannian structure onTY ⊕ [k/t] such thatTY is orthogonal with[k/t], and
q equals the Killing form on[k/t]. Following Remark 4.4,P|Y induces aSpinc structure
P′ on (TY ⊕ [k/t], q), with the same canonical line bundleL = detC(TM |Y). Since the
SO2k ×Ul-principal bundlePSO(TY) ×U(k/t) is a reduction5 of theSO2n principal bundle
PSO(TY ⊕ [k/t]), we have the commutative diagram

Q PSO(TY)×U(k/t)×PU(L)

P′ PSO(TY ⊕ [k/t])×PU(L),

(4.34)

whereQ is a(ηc)−1(SO2k×Ul)
 Spinc2k×Ul-principal bundle. Finally we see thatQ′ =Q/Ul

is aSpinc structure onTY . Since(U(k/t)× PU(L))/Ul 
 PU(L⊗C−2ρc), the correspondin
canonical line bundle isL′ = L⊗C−2ρc . ✷

Let Aff(∆) be the affine subspace generated by moment polyhedron∆, and let
−→∆ be the

subspace oft∗ generated by{m− n |m,n ∈∆}. Let T∆ be the subtorus ofT with Lie algebra
t∆ equal to the orthogonal (for the duality) of

−→∆ . It is not difficult to see thatT∆ corresponds to
the connected component of the principal stabilizer for theT -action onY .

5 Here2n = dimM , 2k = dimY and2l = dim(k/t), son = k + l.
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Here we consider the symplectic quotientMξ := Φ−1(ξ)/T for generic quasi-regular values
ξ ∈∆o (see Definition 2.3). For suchξ, the fiberΦ−1(ξ) is a smooth submanifold ofM , with
a locally free action ofT/T∆, and with a tubular neighborhood equivariantly diffeomorphic to

r

t

f
l

dle
Φ−1(ξ)×−→∆ . Recall thatMξ inherits a canonical symplectic formωξ.

PROPOSITION 4.11. – Let µ ∈ Λ∗
+ such thatµ̃ = µ + ρc belongs to∆. Let L̃ be a κ-

prequantum line bundle. For every generic quasi-regular valueξ ∈ ∆o, the Spinc structure
on Y , when twisted bỹL|Y ⊗ C−µ, induces aSpinc structure on the reduced spaceMξ :=
Φ−1(ξ)/T with canonical line bundle(L2ω|Φ−1(ξ) ⊗ C−2µ̃)/T . Here we have two choices fo
the orientations: o(Mξ) induced byo(Y), ando(ωξ) defined by the symplectic formωξ. They are
related byo(Mξ) = εo(ωξ).

Remark4.12. – The preceding proposition will be used
(i) when ξ = µ + ρc is a generic quasi-regular value ofΦ: the symplectic quotien

(Mµ+ρc , ωµ+ρc) is thenSpinc prequantized. Or
(ii) for generalµ+ ρc ∈∆. One takes thenξ generic quasi-regular close enough toµ+ ρc.

Proof of Proposition4.11. – Let ξ ∈ ∆o be a generic quasi-regular value ofΦ, andZ :=
Φ−1(ξ). This is a submanifold ofY with a trivial action ofT∆ and a locally free action o
T/T∆. We denote the quotient map byπ :Z →Mξ. We identifyπ∗(TMξ) with the orthogona
complement (with respect to a Riemannian metric) of the trivial bundle[t/t∆] formed by the
vector fields generated by the infinitesimal action oft/t∆. On the other hand the tangent bun
TY , when restricted toZ, decomposes asTY|Z =TZ ⊕ [−→∆], so we have

TY|Z = π∗(TMξ)⊕ [t/t∆]⊕
[−→∆]

= π∗(TMξ)⊕ [t/t∆ ⊗C],(4.35)

with the conventiont/t∆ = t/t∆⊗ iR and
−→∆ = t/t∆⊗R. Sincet/t∆⊗C is canonically oriented

by the complex multiplication byi, the orientationo(Y) determines an orientationo(Mξ) on
TMξ through (4.35).

Now we proceed like the proof of Proposition 4.11. LetQ′ be theSpinc structure onY
introduced in Proposition 4.11, and letQµ be Q′ twisted by the line bundlẽL|Y ⊗ C−µ:
its canonical line bundle isdetC(TM)|Y ⊗ C−2ρc ⊗ (L̃|Y ⊗ C−µ)2 = L2ω|Y ⊗ C−2µ̃. The
SO2k′ × Ul′ -principal bundlePSO(π∗(TMξ)) × U(t/t∆ ⊗ C) is a reduction6 of the SO2k
principal bundlePSO(π∗(TMξ)⊕ [t/t∆ ⊗C]); we have the commutative diagram

Q′′ PSO(π∗(TMξ))×U(t/t∆ ⊗C)×PU(L|Z )

Qµ|Z PSO(π∗(TMξ)⊕ [t/t∆ ⊗C])×PU(L|Z ),

(4.36)

whereL= L2ω|Y ⊗C−2µ̃. HereQ′′ is a(ηc)−1(SO2k′ ×Ul′)
 Spinc2k′ ×Ul′ -principal bundle.
The Kostant formula (2.1) tells us that the action ofT∆ is trivial onL|Z , sinceξ − µ̃ ∈−→∆ . Thus
the action ofT∆ is trivial onQ′′. Finally we see thatQξ =Q′′/(Ul′ × T ) is aSpinc structure on
Mξ with canonical line bundleLξ = (L2ω|Z ⊗C−2µ̃)/T . ✷

6 Here2k = dimY , 2k′ = dimMξ andl′ = dim(t/t∆), sok = k′ + l′.
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4.3. Definition of Q(Mµ+ρc)

First we give three different ways to define the quantityQ(Mµ+ρc) ∈ Z for any µ ∈ Λ∗
+.

rt’ of

f
d

.

e
e

n

f

l

maps

r

The compatibility of these different definitions proves Theorem 4.1 and the ‘hard pa
Proposition 2.4 simultaneously. First of allQ(Mµ+ρc) = 0 if µ+ ρc /∈∆.

First definition. If µ + ρc ∈∆o is a generic quasi regularvalue ofΦ, Mµ+ρc := Φ−1(µ +
ρc)/T is a symplectic orbifold. We know from Proposition 4.11 thatMµ+ρc inheritsSpinc-
structures, with the same canonical line bundle(L2ω|Φ−1(µ̃) ⊗C−2µ̃)/T , for the two choices o
orientationo(Mµ+ρc) ando(ωµ+ρc). We denote the index of theSpinc Dirac operator associate
to theSpinc structure on(Mµ+ρc , o(ωµ+ρc)) byQ(Mµ+ρc) ∈ Z and the index of theSpinc Dirac
operator associated to theSpinc structure on(Mµ+ρc , o(Mµ+ρc)) by Q(Mµ+ρc , o(Mµ+ρc)).
Sinceo(Mµ+ρc) = εo(ωµ+ρc), we haveQ(Mµ+ρc) = εQ(Mµ+ρc , o(Mµ+ρc)).

Second definition. We can also defineQ(Mµ+ρc) by shift ‘desingularization’ as follows
If µ + ρc ∈ ∆, one considers generic quasi regular valuesξ ∈ ∆o, close enough toµ + ρc.
Following Proposition 4.11,Mξ = Φ−1(ξ)/T inherits aSpinc structure, with canonical lin
bundle(L2ω|Φ−1(ξ) ⊗ C−2µ̃)/T . Then we setQ(Mµ+ρc) := Q(Mξ), where the RHS is th
index of theSpinc Dirac operator associated to theSpinc structure on(Mξ, o(ωξ)). If we take
the orientationo(Mξ) induced byo(Y) we have another indexQ(Mξ, o(Mξ)) = εQ(Mξ). Here
one has to show that these quantities do not depend on the choice ofξ whenξ is close enough to
µ+ ρc. We will see thatQ(Mµ+ρc) = 0 whenµ+ ρc /∈∆o.

Third definition. We can use the characterization of the multiplicitymµ(L̃) given in
Lemma 4.2. The numberQ(Mµ+ρc) is the multiplicity of the trivial representation i
εRRK

0 (M ×Oµ̃, L̃⊗ C̃[−µ]).
We have to show the compatibility of these definitions, that is

if µ+ ρc ∈∆o:
[
RRK

0

(
M ×Oµ̃, L̃⊗ C̃[−µ]

)]K =Q
(
Mξ, o(Mξ)

)
(4.37)

for any generic quasi regular valueξ ∈∆o close enough toµ+ ρc. And

if µ+ ρc /∈∆o:
[
RRK

0 (M ×Oµ̃, L̃⊗ C̃[−µ])
]K = 0.(4.38)

We have proved already (Lemma 4.2) that[RRK
0 (M ×Oµ̃, L̃⊗ C̃[−µ])]K = 0 if µ+ ρc /∈∆.

We work now with a fixed elementµ ∈ Λ∗
+ such thatµ̃ = µ + ρc belongs to∆. During

the remaining part of this section,Y will denote a smallT -invariant open neighborhood o
Φ−1(µ+ ρc) in the symplectic sliceΦ−1(interior(t∗+)).

We will check in Section 4.5, that the functions‖Φ− µ̃‖2 and‖Φ− ξ‖2 have compact critica
set onY when ξ ∈ Aff(∆) is close enough tõµ. Since the manifold(Y, o(Y)) carries aT -
invariantSpinc-structure, we consider the localized mapsQT

Φ−µ̃(Y,−) andQT
Φ−ξ(Y,−) (see

Definition 4.7). The proof of (4.37) and (4.38) is divided into two steps. We first relate the
RRK

0 (M ×Oµ̃,−) andQT
Φ−µ̃(Y,−) through the induction map

IndKT :C−∞(T )→C−∞(K)K .(4.39)

HereC−∞(T ), C−∞(K) denote respectively the set of generalized functions onT andK , and
theK invariants are taken with the conjugation action. The mapIndKT is defined as follows: fo
φ∈ C−∞(T ), we have∫

K

IndKT (φ)(k)f(k)dk =
vol(K,dk)
vol(T, dt)

∫
T

φ(t)f |T (t)dt,
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for everyf ∈ C∞(K)K .

PROPOSITION 4.13. – Let E andF be respectivelyK-equivariant complex vector bundles
µ̃

d

[33].
le with

f

d

two

ne

y

overM andO . We have the following equality

RRK
0

(
M ×Oµ̃,E � F

)
= IndKT

(
QT
Φ−µ̃

(
Y,E|Y ⊗ F |ē

))
in R−∞(K). It gives in particular that

[
RRK

0

(
M ×Oµ̃,E � F

)]K =
[
QT
Φ−µ̃

(
Y,E|Y ⊗ F |ē

)]T
.

After we compute the mapQT
Φ−µ̃(Y,−) by making the shift̃µ→ ξ.

PROPOSITION 4.14. – Supposeξ ∈Aff(∆) is close enough tõµ. Then
(i) the mapsQT

Φ−µ̃(Y,−) andQT
Φ−ξ(Y,−) are equal,

(ii) if furthermoreξ ∈∆o is a generic quasi-regular value ofΦ we get

[
QT
Φ−ξ

(
Y, L̃|Y ⊗C−µ

)]T =Q(Mξ, o(Mξ)),

(iii) and if ξ /∈∆, [QT
Φ−ξ(Y, L̃|Y ⊗C−µ)]T = 0.

Finally, if ξ ∈Aff(∆) is close enough tõµ, Propositions 4.13 and 4.14 give[
RRK

0

(
M ×Oµ̃, L̃⊗ C̃[−µ]

)]K =
[
QT
Φ−µ̃

(
Y, L̃|Y ⊗C−µ

)]T
(4.40)

=
[
QT
Φ−ξ

(
Y, L̃|Y ⊗C−µ

)]T
.

If µ+ ρc ∈∆o, we chooseξ ∈∆o close toµ+ ρc: in this case (4.37) follows from (4.40) an
the point (ii) of Proposition 4.14. Ifµ+ ρc /∈∆o, we chooseξ close toµ+ ρc and not in∆: in
this case (4.38) follows from (4.40) and the point (iii) of Proposition 4.14.

Propositions 4.13 and 4.14 are proved in the next subsections.

4.4. Proof of Proposition 4.13

The induction formula of Proposition 4.13 is essentially identical to the one we proved in
The main difference is that the almost complex structure is not assumed to be compatib
the symplectic structure.

We identify the coadjoint orbitOµ̃ with K/T . Let Hµ̃ be the Hamiltonian vector field o
the function−1

2 ‖Φµ̃‖2 :M ×K/T → R. HereY denotes a small neighborhood ofΦ−1(µ̃) in

the symplectic sliceΦ−1(interior(t∗+)) such that the open subsetU := (K ×T Y)×K/T is a
neighborhood ofΦ−1

µ̃ (0) =K · (Φ−1(µ̃)×{ē}) which verifiesU ∩ {Hµ̃ = 0}=Φ−1
µ̃ (0).

From Definition 3.8, the localized Riemann–Roch characterRRK
0 (M×K/T,−) is computed

by means of the Thom classThomΦµ̃

K (U) ∈ KK(TKU). On the other hand, the localize
map QT

Φ−µ̃(Y,−) is computed by means of the classS-ThomΦ−µ̃
T (Y) ∈ KT (TTY) (see

Definition 4.7). Proposition 4.13 will follow from a simple relation between these
transversally elliptic symbols.

First, we consider the isomorphismφ :U → U ′, φ([k;y], [h]) = [k; [k−1h], y], whereU ′ :=
K ×T (K/T ×Y). Let φ∗ :KK(TKU ′)→KK(TKU) be the induced isomorphism. Then o
considers the inclusioni : T ↪→K which induces an isomorphismi∗ :KT (TT (K/T × Y))→
KK(TKU ′) (see [1,33]). Letj :Y ↪→ K/T × Y be theT -invariant inclusion map defined b
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j(y) := (ē, y). We have then a pushforward mapj! :KT (TTY)→KT (TT (K/T ×Y)). Finally
we get a map

∗

.

om

hat

s

Θ := φ ◦ i∗ ◦ j! :KT (TTY)→KK(TKU),

such thatIndexKU (Θ(σ)) = IndKT (IndexTY(σ)) for everyσ ∈KT (TTY) (see Section 3 in [33])
Proposition 4.13 is an immediate consequence of the following

LEMMA 4.15. –We have the equality

Θ
(
S-ThomΦ−µ̃

T (Y)
)
=ThomΦµ̃

K (U).

Proof. –Let S be the bundle of spinors onK ×T Y : S = P ×Spinc
2k

∆2k, whereP →
PSO(T(K ×T Y)) × PU(L) is the Spinc structure induced by the complex structure. Fr
Proposition 4.10, we have the reductions

Q PSO(TY)×U(k/t)×PU(L|Y)

P|Y PSO(TY ⊕ [k/t])×PU(L|Y)

P PSO(T(K ×T Y))×PU(L).

(4.41)

HereQ/Ul is the inducedSpinc-structure onY . Let us denote byp :T(K ×T Y)→K ×T Y ,
pY :TY →Y andpK/T :T(K/T )→K/T the canonical projections. Using (4.41), we see t

p∗S =
(
K ×T p

∗
YS(Y)

)
⊗ p∗K/T ∧C T(K/T ),

whereS(Y) is the spinor bundle onY . Hence we get the decomposition

S-ThomK(K ×T Y) = ThomK(K/T )%K ×T S-ThomT (Y).

The transversally elliptic symbolThomΦµ̃

K (U) is equal to

[
ThomK(K/T )%ThomK

(
K/T

)
%K ×T S-ThomT (Y)

]
deformed by Hµ̃ ,

henceσ1 := (φ−1)∗ThomΦµ̃

K (U) is equal to

[
ThomK(K/T )%K ×T

(
ThomT

(
K/T

)
% S-ThomT (Y)

)]
deformed by H′ ,

whereH′
= φ∗(Hµ̃).

Using the decompositionTU ′ 
K ×T (k/t⊕K ×T (k/t)⊕TY), a small computation give
H′(m) = prk/t(hµ̃) + R(m) + Hµ̃(y) + S(m) for m = [k; [h], y] ∈ U ′, where7 R(m) ∈ k/t
andS(m) ∈ TyY vanishes whenm ∈ K ×T ({ē} × Y), i.e., when[h] = ē. HereHµ̃ is the
Hamiltonian vector field of the function−12 ‖Φ− µ̃‖2 :Y →R.

7 A small computation shows thatR(m) = prk/t(h
−1(prt(hµ̃)−Φ(y))), andS(m) = [µ̃− prt(hµ̃)]Y (y).
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The transversally elliptic symbolσ1 is equal to the exterior product

σ1(m,ξ1 + ξ2 + v) = c
(
ξ1 − prk/t(hµ̃)

)
% c

(
ξ2 −R(m)

)
% c

(
v−Hµ̃ − S(m)

)
,

f
s

t
t

ts

6].

ite
with ξ1 ∈ k/t, ξ2 ∈ k/t, andv ∈TY .
Now, we simplify the symbolσ1 without changing itsK-theoretic class. SinceChar(σ1) ∩

TKU ′ =K ×T ({ē} × Y), we transformσ1 through theK-invariant diffeomorphismh = eX

from a neighborhood of0 in k/t to a neighborhood of̄e inK/T . That givesσ2 ∈KK(TK(K×T

(k/t×Y))) defined by

σ2([k;X,y], ξ1+ ξ2 + v) = c
(
ξ1 − prk/t

(
eX µ̃

))
% c

(
ξ2 −R(m)

)
% c

(
v −Hµ̃ − S(m)

)
.

Now trivial homotopies linkσ2 with the symbol

σ3
(
[k,X, y], ξ1+ ξ2 + v

)
= c

(
ξ1 − [X, µ̃]

)
% c(ξ2)% c(v −Hµ̃),

where we have removed the termsR(m) andS(m), and where we have replacedprk/t(e
X µ̃) =

[X, µ̃] + o([X, µ̃]) by the term[X, µ̃]. Now we see thatσ3 = i∗(σ4) where the symbolσ4 ∈
KT (TT (k/t×Y)) is defined by

σ4(X,y; ξ2+ v) = c
(
−[X, µ̃]

)
% c(ξ2)% c(v −Hµ̃).

Soσ4 is equal to the exterior product of(y, v)→ c(v−Hµ̃), which isS-ThomΦ−µ̃
T (Y), with the

transversally elliptic symbol onk/t: (X,ξ2)→ c(−[X, µ̃])% c(ξ2). But theK-theoretic class o
this former symbol is equal tok!(C), wherek :{0} ↪→ k/t (see Section 5.1 in [33]). This show
that

σ4 = k!(C)% S-ThomΦ−µ̃
T (Y) = j!

(
S-ThomΦ−µ̃

T (Y)
)
. ✷

4.5. Proof of Proposition 4.14

In this subsection,̃µ= µ+ ρc is fixed, and is assumed to belong to∆. The induced momen
map on the symplectic sliceΦ−1(Interior(t∗+)) is still denoted byΦ. Let r > 0 be the smalles
non zero critical value of‖Φ− µ̃‖, and letY =Φ−1{ξ ∈Aff(∆), ‖ξ − µ̃‖< r

2}.
For ξ ∈ Aff(∆), we considerξt = tξ + (1 − t)µ̃, 0 � t � 1. If one shows that there exis

a compact subsetK ⊂ Y such thatCr(‖Φ − ξt‖2) ∩ Y ⊂ K, the family S-ThomΦ−ξt

T (Y),
0 � t � 1, defines then a homotopy of transversally elliptic symbols betweenS-ThomΦ−µ̃

T (Y)
andS-ThomΦ−ξ

T (Y). It shows thatQT
Φ−µ̃(Y,−) andQT

Φ−ξ(Y,−) are equal.
We describe nowCr(‖Φ− ξt‖2) ∩ Y using a parameterization introduced in [30, Section

LetB be the collection of affine subspaces oft∗ generated by the image underΦ of submanifolds
Z of the following type:Z is a connected component ofYH which intersectsΦ−1(µ̃), H
being a subgroup ofT . The setB is finite sinceΦ−1(µ̃) is compact and thus has a fin
number of stabilizers for theT action. Note thatB is reduced toAff(∆) if µ̃ is a generic
quasi regular value ofΦ. For A ∈ B, we denote byβ(−,A) the orthogonal projection onA.
LetBξ = {β(ξ,A)− ξ |A ∈ B}. Like in [31, Section 4.3], we see that

Cr
(
‖Φ− ξ‖2

)
∩Y =

⋃
β∈Bξ

(
Yβ ∩Φ−1(β + ξ)

)
(4.42)

if ‖ξ− µ̃‖< r
2 . If we takeK := Φ−1{ξ ∈Aff∆, ‖ξ− µ̃‖� r

3}, we haveCr(‖Φ− ξ‖2)∩Y ⊂K
for ‖ξ − µ̃‖� r

3 . Thus point (i) of Proposition 4.14 is proved.
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Now we fix ξ ∈Aff(∆) close enough tõµ. And for eachβ ∈ Bξ, we denote byQT
β (Y,−) the

map localized nearYβ ∩Φ−1(β + ξ). The excision property tells us, like in (3.14), that

lex

-
et

e

the
QT
Φ−ξ(Y,−) =

∑
β∈Bξ

QT
β (Y,−).

Note that0 ∈ Bξ if and only if Φ−1(ξ) �= ∅. Point (iii) of Proposition 4.14 will follow from the
following

LEMMA 4.16. – Let ξ ∈ Aff(∆) close enough tõµ, and letβ be a non-zero element ofBξ.
Then[QT

β (Y, L̃|Y ⊗C)]T = 0. Hence[QT
Φ−ξ(Y, L̃|Y ⊗C−µ)]T = 0, if ξ /∈∆.

For the point (ii) of Proposition 4.14, we also need the

LEMMA 4.17. – If ξ ∈ ∆o is a generic quasi regular value ofΦ, we have[QT
0 (Y, L̃|Y ⊗

C−µ)]T =Q(Mξ, o(Mξ)).

Other versions of Lemmas 4.17 and 4.16 are already known: in theSpin-case for anS1-action
by Vergne [42], and by the author [33] when theSpinc-structure comes from an almost comp
structure.

We review briefly the arguments, since they work in the same way. We consider theSpinc

structure onY defined in Proposition 4.10, that we twist by the line bundleL̃|Y ⊗ C−µ: it
defines aSpinc structureQµ onY with canonical line bundleLµ := L2ω ⊗C−2µ̃. We consider
then the symbolS-ThomΦ−ξ

T,µ (Y) constructed withQµ (see Definition 4.7). Forβ ∈ Bξ, the

termQT
β (Y, L̃|Y ⊗ C−µ) is by definition theT -index of S-ThomΦ−ξ

T,µ (Y)|Uβ , whereUβ is a
sufficiently small open neighborhood ofYβ ∩Φ−1(β + ξ) in Y .

Proof of Lemma4.17. – A neighborhoodU0 of Z := Φ−1(ξ) is diffeomorphic to a neighbor
hood ofZ in Z × −→∆ , whereΦ − ξ :Z × −→∆ →−→∆ is the projection to the second factor. L
pr :Z ×−→∆ →Z be the projection to the first factor. We still denote byQµ theSpinc-structure
onZ ×−→∆ equal topr∗(Qµ|Z). We easily show thatQT

β (Y, L̃|Y ⊗C−µ) is equal to theT -index

of σZ = S-ThomΦ−ξ
T,µ (Z × −→∆). Let Q′′ be the reduction ofQµ|Z introduced in (4.36). Sinc

Qµ|Z = Spinc2k ×(Spinc
2k′×U2l′)

Q′′, the bundle of spinorsS overZ ×−→∆ decomposes as

S = pr∗
(
π∗S(Mξ)⊗Z ×∧(t/t∆ ⊗C)

)
.

Here S(Mξ) is the bundle of spinors onMξ induced by theSpinc-structureQ′′/U2l′ , and
π :Z →Mξ is the quotient map. Inside the trivial bundleZ × (t/t∆ ⊗ C), we have identified
Z × (t/t∆ ⊗ iR) with the subspace ofTZ formed by the vector fields generated by
infinitesimal action oft/t∆, andZ × (t/t∆ ⊗ R) with Z × −→∆ ⊂ T(Z × −→∆)|Z . For (z, f) ∈
Z ×−→∆ , let us decomposev ∈T(z,f)(Z ×

−→∆) asv = v1 +X + ıY , wherev1 ∈ π∗(TMξ), and
X + ıY ∈ t/t∆ ⊗ C. The mapσZ(z, f ;v1 +X + ıY ) acts onS(Mξ)z ⊗ ∧(t/t∆ ⊗ C) as the
product

cz(v1)% c
(
X + i(Y − f)

)
,

which is homotopic8 to the transversally elliptic symbol

cz(v1)% c(f + iX).

8 See [33, Section 6.1].
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So we have proved thatσZ = j! ◦π∗(S-Thom(Mξ)), wherej! :KT (TTZ)→KT (TT (Z×
−→∆))

is induced by the inclusionj :Z ↪→ Z × −→∆ . The last equality finishes the proof (see [33,
Section 6.1]).

n

ne

.8.

,

series
ect

s

ion
Proof of Lemma4.16. – The equality[QT
β (Y, L̃|Y ⊗ C−µ)]T = 0 comes from a localizatio

formula on the submanifoldYβ for the mapQT
β (Y,−) (see [33,42]). The normal bundleN of

Yβ in Y carries a complex structureJN on the fibers such that eachTβ -weightα on (N , JN )
satisfies(α,β)> 0. The principal bundleQµ, when restricted toYβ admits the reduction

Q′ PSO(TYβ)×PU(N )×PU(L|Yβ )

Qµ|Yβ PSO(TYβ ⊕N )×PU(Lµ|Yβ ).

(4.43)

HenceQβ := Q′/U(l) is a Spinc-structure onYβ with canonical line bundle equal toLβ :=
Lµ|Yβ ⊗ (detN )−1 = L2ω|Yβ ⊗C−2µ̃⊗ (detN )−1. LetQT

β (Yβ ,−) be the map defined byQβ

and localized nearΦ−1(β + ξ) ∩ Yβ by Φ− ξ. Following the argument of [33, Section 6] o
obtains

QT
β

(
Y, L̃|Y ⊗C−µ

)
= (−1)l

∑
k∈N

QT
β

(
Yβ ,detN ⊗ Sk(N )

)
,

whereSk(N ) is thekth symmetric product ofN , andl= rankCN . Thus, it is sufficient to prove
that [QT

β (Yβ ,detN ⊗ Sk(N ))]T = 0 for everyk ∈ N. For this purpose, we use Lemma 4
Let α be theTβ -weight ondetN . From the Kostant formula (2.1), theTβ -weight onL2ω|Yβ is
equal to2(β + ξ). Hence anyTβ -weightγ ondetN ⊗ Sk(N )⊗ (Lβ)1/2 is of the form

γ = β + ξ − µ̃+ 1
2
α+ δ,

whereδ is a Tβ -weight onSk(N ). So (γ,β) = (β + ξ − µ̃, β) + 1
2 (α,β) + (δ, β). But the

Tβ -weights onN are ‘positive’ for β, so (α,β) > 0 and (δ, β) � 0. On the other hand
β + ξ = β(ξ,A) is the orthogonal projection ofξ on some affine subspaceA ⊂ t∗+ which
contains̃µ, hence(β + ξ − µ̃, β) = 0. This proves that(γ,β)> 0. ✷

5. Quantization and the discrete series

In this section we apply Theorem 4.1 to the coadjoint orbits that parametrize the discrete
of a real, connected, semi-simple Lie groupG, with finite center. Nice references on the subj
of ‘the discrete series’ are [36,12].

Let K be a maximal compact subgroup ofG, and T be a maximal torus inK . For the
remainder of this section, we assume thatT is a Cartan subgroup ofG. The discrete serie
of G is then non-empty and is parametrized by a subsetĜd in the dualt∗ of the Lie algebra ofT
[19].

Let us fix some notation. LetRc ⊂R⊂ Λ∗ be respectively the set of (real) roots for the act
of T on k⊗ C andg⊗ C. We choose a system of positive rootsR+c for Rc, we denote byt∗+
the corresponding Weyl chamber, and we letρc be half the sum of the elements ofR+c . We
denote byB the Killing form on g. It induces a scalar product (denoted by(−,−)) on t, and
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then ont∗. An elementλ ∈ t∗ is calledregular if (λ,α) �= 0 for everyα ∈R, or equivalently, if
the stabilizer subgroup ofλ in G is T . Given a system of positive rootsR+ for R, consider the
subsetΛ∗ + 1

2

∑
α∈R+ α of t∗. This does not depend on the choice ofR+, and we denote it by

le

n
able,

n

Λ∗
ρ [12].
The discrete series ofG are parametrized by

Ĝd := {λ∈ t∗, λ regular} ∩Λ∗
ρ ∩ t∗+.(5.44)

WhenG=K is compact, the set̂Gd equalsΛ∗
+ + ρc, and it parametrizes the set of irreducib

representations ofK . Harish-Chandra has associated to anyλ∈ Ĝd an invariant eigendistributio
onG, denoted byΘλ, which is shown to be the global trace of an irreducible, square integr
unitary representation ofG.

On the other hand we associate toλ ∈ Ĝd, the regular coadjoint orbitM := G · λ. It is a
symplectic manifold with a Hamiltonian action ofK . Since the vectorsXM ,X ∈ g, span the
tangent space at everyξ ∈M , the symplectic2-form is determined by

ω(XM , YM )ξ = 〈ξ, [X,Y ]〉.

The corresponding moment mapΦ:M → k∗ for theK-action is the composition of the inclusio
i :M ↪→ g∗ with the projectiong∗→ k∗. The vectorλ determines a choiceR+,λ of positive roots
for theT -action ong⊗ C :α ∈R+,λ ⇐⇒ (α,λ) > 0. We recall now how the choice ofR+,λ

determines a complex structure onM . First take the decompositiong⊗C = t⊗C⊕
∑

α∈R
gα

wheregα := {v ∈ g ⊗ C | exp(X).v = eı〈α,X〉v for any X ∈ t}. It gives the following T -
equivariant decomposition of the complexified tangent space ofM atλ:

TλM ⊗C=
∑
α∈R

gα = n⊕ n,

with n =
∑

α∈R+,λ gα. We have then aT -equivariant isomorphismI :TλM → n equal to
the composition of the inclusionTλM ↪→ TλM ⊗ C with the projectionn ⊕ n → n. The
T -equivariant complex structureJλ on TλM is determined by the relationI(Jλv) = ıI(v).
Hence, the set of real infinitesimal weights for theT -action on(TλM,Jλ) is R+,λ. SinceM is
a homogeneous space,Jλ defines an invariant almost complex structureJ onM , which is in fact
integrable. Through the isomorphismM ∼=G/T , the canonical line bundleκ= detC(TM)−1 is
equal toκ=G×T C−2ρ with ρ= 1

2

∑
α∈R+,λ α.

If λ ∈ Ĝd, thenλ− ρ is a weight, and

L̃ :=G×T Cλ−ρ→G/T(5.45)

is aκ-prequantum line bundle over(M,ω,J). We have shown in [32], thatCr(‖Φ‖2) is compact,
equal to theK-orbitK · λ. Then the generalized Riemann–Roch characterRRK

Φ (M,−) is well
defined (see Definition 3.2). The main result of this section is the following

THEOREM 5.1. – We have the following equality of tempered distributions onK

Θλ|K = (−1)
dim(G/K)

2 RRK
Φ

(
G · λ, L̃

)
,

whereΘλ|K is the restriction of the eigendistributionΘλ to the subgroupK .
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The proof of Theorem 5.1 is given in Section 5.2. It uses the Blattner formulas in an essential
way (see Section 5.1).

With Theorem 5.1 at our disposal we can exploit the result of Theorem 4.1 to compute the

s

the

ent

ed
e

].

p

K-multiplicities,mµ(λ) ∈N, of Θλ|K in term of the reduced spaces. By definition we have

Θλ|K =
∑
µ∈Λ∗

+

mµ(λ)χKµ in R−∞(K).(5.46)

The moment mapΦ:G · λ→ k∗ is proper since theG · λ is closed ing∗ [32]. We show
(Lemma 5.5) that the moment polyhedron∆= Φ(G · λ) ∩ t∗+ is of dimensiondimT . Thus on
the relative interior∆o of the moment polyhedron, the notions ofgeneric quasi-regular value
and regular valuescoincide: they concern the elementsξ ∈ ∆o such thatΦ−1(ξ) is a smooth
submanifold with a locally free action ofT . We have shown (Section 4.3) how to define
quantityQ((G · λ)µ+ρc) ∈ Z as the index of a suitableSpinc Dirac operator onΦ−1(ξ)/T ,
whereξ ∈∆o is a regular value ofΦ close enough toµ+ ρc.

PROPOSITION 5.2. – For everyµ ∈Λ∗
+, we have

mµ(λ) =Q
(
(G · λ)µ+ρc

)
.

In particular mµ(λ) = 0 if µ + ρc does not belong to the relative interior of the mom
polyhedron∆.

Proof. –A small check of orientations shows thatε = (−1)
dim(G/K)

2 , thus this proposition
follows from Theorems 4.1 and 5.1 if one checks that the following holds:(G · λ,Φ) satisfies
Assumption 3.6, and the infinitesimalK-stabilizers are Abelian. The first point will be handl
in Section 5.3. The second point is obvious sinceM ∼=G/T : all theG-stabilizers are conjugat
to T , so all theK-stabilizers are Abelian. ✷
5.1. Blattner formulas

In this section, we fixλ ∈ Ĝd. Let R+,λ be the system of positive roots definedλ: α ∈
R+,λ ⇐⇒ (α,λ) > 0. ThenR+c ⊂ R+,λ, andρ = 1

2

∑
α∈R+,λ α decomposes inρ = ρc + ρn

whereρn = 1
2

∑
α∈R

+
n
α andR+n =R+,λ −R+c .

Let P :Λ∗ �→ N be the partition function associated to the setR+n : for µ ∈ Λ∗, P(µ) is the
number of distinct ways we can writeµ =

∑
α∈R

+
n
kαα with kα ∈ N for all α. The following

theorem is known as the Blattner formulas and was first proved by Hecht and Schmid [20

THEOREM 5.3. – For µ ∈ Λ∗
+, we have

mµ(λ) =
∑
w∈W

(−1)wP
(
w(µ+ ρc)− (µλ + ρc)

)
,

where9 µλ := λ− ρc + ρn. HereW is the Weyl group of(K,T ).

Using Theorem 5.3, we can describeΘλ|K through the holomorphic induction ma
HolKT :R−∞(T )→R−∞(K). Recall thatHolKT is characterized by the following properties:

(i) HolKT (tµ) = χKµ for every dominant weightµ ∈Λ∗
+;

9 We shall note thatµλ ∈ Λ∗
+ (see [12, Section 5]).
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(ii) HolKT (tw◦µ) = (−1)wHolKT (tµ) for everyw ∈W andµ ∈ Λ∗;

(iii) HolKT (tµ) = 0 if W ◦ µ∩Λ∗
+ = ∅.

Using these properties we have

l

ave
e

∑
µ∈Λ∗

R(µ)HolKT (tµ) =
∑
µ∈Λ∗

+

[ ∑
w∈W

(−1)wR(w ◦ µ)
]
χKµ ,(5.47)

for every mapR :Λ∗→ Z.
For a weightα ∈ Λ∗, with (λ,α) �= 0, let us denote the oriented inverse of(1 − tα) in the

following way

[1− tα]−1λ =




∑
k∈N
tkα, if (λ,α)> 0,

−t−α ∑
k∈N
t−kα, if (λ,α)< 0.

Let A = {α1, . . . , αl} be a set of weights with(λ,αi) �= 0, ∀i. We denote byA+ =
{ε1α1, . . . , εlαl} the corresponding set of polarized weights:εi =±1 and(λ, εiαi)> 0 for all i.
The product

∏
α∈A[1− tα]

−1
λ is well defined inR−∞(T ), and is denoted by[

∏
α∈A(1− tα)]

−1
λ .

A small computation shows that[ ∏
α∈A

(1− tα)
]−1

λ

= (−1)rt−γ

[ ∏
α∈A+

(1− tα)
]−1

λ

(5.48)

= (−1)rt−γ
∑
µ∈Λ∗

PA+(µ)tµ.

HerePA+ :Λ∗ �→N is the partition function associated toA+, γ =
∑
(λ,α)<0α, andr = F{α ∈

A, (λ,α) < 0}. This notation is compatible with the one we used in [33, Section 5]. IfV is a
complexT -vector space where the subspace fixed byλ is reduced to{0}, then∧•

C
V ∈ R(T )

admits a polarized inverse[∧•
C
V ]−1λ = [

∏
α∈R(V )(1 − tα)]

−1
λ , whereR(V ) is the set of rea

infinitesimalT -weights onV .

LEMMA 5.4. – We have the following equality inR−∞(K)

Θλ|K =HolKT

(
tµλ

[ ∏
α∈R

+
n

(1− tα)
]−1

λ

)
.

Proof. –Let Θ ∈ R−∞(K) be the RHS in the equality of the lemma. From (5.48), we h
Θ =

∑
µ∈Λ∗ P(µ)HolKT (tµ+µλ) =

∑
µ∈Λ∗ P(µ− µλ)HolKT (tµ). If we use now (5.47), we se

that multiplicity of Θ relative to the highest weightµ ∈ Λ∗
+ is

∑
w∈W (−1)wP(w(µ + ρc) −

(µλ + ρc)). From Theorem 5.3 we conclude thatΘλ|K =Θ. ✷
5.2. Proof of Theorem 5.1

In Lemma 5.4 we have used the Blattner formulas to writeΘλ|K in term of the holomorphic
induction mapHolKT . Theorem 5.1 is then proved if one shows thatRRK

Φ (G · λ, L̃) =
(−1)rHolKT (tµλ [

∏
α∈R

+
n
(1 − tα)]−1λ ), with µλ = λ − ρc + ρn, and r = 1

2 dim(G/K). More
generally, we show in this section that for anyK-equivariant vector bundleV →G · λ

RRK
Φ (G · λ,V ) = (−1)rHolKT

(
Vλ.t

2ρn .

[ ∏
α∈R

+
n

(1− tα)
]−1

λ

)
,(5.49)
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whereVλ ∈R(T ) is the fiber ofV atλ.
First we recall whyCr(‖Φ‖2) =K · λ inM :=G · λ (see [32] for the general case of closed

coadjoint orbits). One can work with an adjoint orbitM := G · λ̃ through theG-identification
)
s

e

vexity

of

e

g∗ 
 g given by the Killing form; thenΦ:M → k is just the restriction onM of the (orthogonal
projectiong→ k. Let p be the orthogonal complement ofk in g. Everym ∈M decompose
asm = xm + ym, with xm = Φ(m) andym ∈ p. The Hamiltonian vector field of−12 ‖Φ‖2 is
Hm = [xm,m] = [xm, ym] (see 3.8). Thus

Cr
(
‖Φ‖2

)
= {H= 0}= {m ∈M, [xm, ym] = 0}.

Now, sinceλ̃ is elliptic, everym ∈M is also elliptic. Ifm ∈Cr(‖Φ‖2), [m,xm] = 0 andm,xm
are elliptic, henceym =m− xm is elliptic and so is equal to0. FinallyCr(‖Φ‖2) =G · λ̃∩ k=
K · λ̃.

According to Definition 3.2, the computation ofRRK
Φ (G · λ, L̃) holds on a smallK-invariant

neighborhood ofK · λ of G · λ. Our model for the computation will be

M̃ :=K ×T p

endowed with the canonicalK-action. The tangent bundleTM̃ is isomorphic toK×T (r⊕Tp)
wherer is theT -invariant complement oft in k. One has a symplectic form̃Ω on M̃ defined
by Ω̃m(V,V ′) = 〈λ, [X,X ′] + [v, v′]〉. Herem = [k,x] ∈ K ×T p, and V = [k,x;X + v],
X ′ = [k,x;X ′ + v′] are two tangent vectors, withX,X ′ ∈ r andv, v′ ∈ p. A small computation
shows that theK-action on(K ×T p, Ω̃) is Hamiltonian with moment map̃Φ:M̃ → k∗ defined
by

Φ̃([k,x]) = k ·
(
λ− 1

2
prt∗

(
λ ◦ ad(x) ◦ ad(x)

))
.

Heread(x) is the adjoint action ofx, andprt∗ : g∗ → t∗ is the projection. Note first that th
tangent spacesTλM andT[1,0]M̃ are canonically isomorphic tor⊕ p.

LEMMA 5.5. – There exists aK-Hamiltonian isomorphismΥ:U 
 Ũ , whereU is a K-
invariant neighborhood ofK · λ in M , Ũ is aK-invariant neighborhood ofK/T in M̃ , and
Υ(λ) = [1,0]. We impose furthermore that the differential ofΥ at λ is the identity.

COROLLARY 5.6. – The coneλ +
∑

α∈R
+
n

R+α coincides with∆ = Φ(G · λ) ∩ t∗+ in a
neighborhood ofλ. The polyhedral set∆ is of dimensiondimT .

Proof. –The first assertion is an immediate consequence of Lemma 5.5 and of the con
theorem [26]. LetXo ∈ t such thatξ(Xo) = 0 for all ξ ∈ −→∆ , that is α(Xo) = 0 for all
α ∈ R+n : Xo commutes with all elements inp. Let a be a maximal Abelian subalgebra
p, and letΣ be the set of weights for the adjoint action ofa on g: g =

∑
α∈Σ gα, where

gα = {Z ∈ g, [X,Z] = α(X)Z for all X ∈ a}. Since[Xo,a] = 0, we have[Xo,gα] ⊂ gα for
all α ∈ Σ. But since[Xo,p] = 0 andgα ∩ k = 0 for all α �= 0, we see that[Xo,gα] = 0 for all
α �= 0. But Xo belongs to the Abelian subalgebrag0, so [Xo,gα] = 0. We see finally thatXo
belongs to the center ofg, and that impliesXo = 0 sinceG has afinite center. We have proved

that
−→∆⊥

= 0, or equivalently
−→∆ = t. ✷

Proof of Lemma5.5. – The symplectic cross-section theorem[17] asserts that the pre-imag
Y := Φ−1(interior(t∗+)) is a symplectic submanifold provided with a Hamiltonian action ofT .
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The restrictionΦ|Y is the moment map for theT -action onY . Moreover, the setK.Y is aK-
invariant neighborhood ofK · λ in M diffeomorphic toK ×T Y . Sinceλ is a fixedT -point of
Y , a Hamiltonian model for(Y, ω|Y ,Φ|Y) in a neighborhood ofλ is (TλY, ωλ,Φλ) whereωλ

e

ed by

s

,

e

in
is the linear symplectic form of the tangent spaceTλM restricted toTλY , andΦλ :TλY → t∗

is the unique moment map withΦλ(0) = λ. A small computation shows thatx→ λ ◦ ad(x) is
an isomorphism fromp to TλY , andΦλ(x) = λ− 1

2prt∗(λ ◦ ad(x) ◦ ad(x)). ✷
We still denote the almost complex structure transported onŨ ⊂ K ×T p throughΥ by J .

SincedΥ(λ) is the identity,J[1,0] : r ⊕ p→ r⊕ p is equal toJλ. Let π :K ×T p→K/T , and

πŨ : Ũ →K/T be the fibering maps. Remark that for any equivariant vector bundleV overM

the vector bundle(Υ−1)∗(V |U )→ Ũ is isomorphic toπ∗
Ũ
(K ×T Vλ). At this stage, we hav

according to Definition 3.2

RRK
Φ (G · λ,V ) = IndexKŨ

(
ThomΦ̃K

(
Ũ , J

)
⊗ π∗

Ũ
(K ×T Vλ)

)
.(5.50)

With the help of Lemma 3.4, we define now a simpler representative of the class defin

ThomΦ̃K(Ũ , J) in KK(TK Ũ). Consider the map

λ :K ×T p→ k∗,

(k,x) �→ k · λ,

and letλ
M̃

be the vector field oñM generatedλ (see (3.8)). Note thatλ
M̃

never vanishe

outside the zero section ofK ×T p. Let (−,−)
M̃

be the Riemannian metric oñM defined by
(V,V ′)

M̃
= (X,X ′) + (v, v′) for V = [k,x;X + v], V = [k,x;X ′ + v′]. A small computation

shows that (
H̃, λ

M̃

)
M̃

= ‖λ
M̃
‖2 +o(‖λ

M̃
‖2)

in the neighborhood of the zero section inK ×T p. Hence, if we takeŨ small enough

(H̃, λ
M̃
)
M̃
> 0 on Ũ − {zero section}, henceThomΦ̃K(Ũ , J) = Thomλ

K(Ũ , J) in KK(TK Ũ)
(see Lemma 3.4).

Let J̃ be theK-invariant almost complex structure oñM , constant on the fibers of̃M →
K/T , and equal toJλ at [1,0] so that for[k,x] ∈ K ×T p, J̃[k,x](V ) = [k,x, Jλ(X + v)] for
V = [k,x,X + v]. Since the set{λ

M̃
= 0} = K/T is compact, using̃J and the mapλ, one

defines the localized Thom symbol

Thomλ
K

(
M̃, J̃

)
∈KK

(
TKM̃

)
.

Through the canonical identification of the tangent spaces at[k,x] and [k,0], one can write
J̃[k,x] = J̃[k,0] = J[k,0] for any[k,x] ∈ Ũ . We note thatJ andJ̃ are related oñU by the homotopy

J t of almost complex structures:J t[k,x] := J[k,tx] for [k,x] ∈ Ũ . From Lemma 3.4, we conclud

that the localized Thom symbolsThomλ
K(Ũ , J) andThomλ

K(M̃, J̃)|Ũ define the same class

KK(TK Ũ), thus (5.50) becomes

RRK
Φ (G · λ,V ) = IndexK

M̃

(
Thomλ

K

(
M̃, J̃

)
⊗ π∗(K ×T Vλ)

)
.(5.51)
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In order to compute (5.51), we use the induction morphism

i∗ :KT (TT p)→KK

(
TK(K ×T p)

)

)).
e

defined by Atiyah in [1] (see [33, Section 3]). The mapi∗ enjoys two properties: first,i∗ is an
isomorphism and theK-index ofσ ∈KK(TK(K ×T p)) can be computed with theT -index of
(i∗)−1(σ).

Letσ :p∗(E+)→ p∗(E−) be aK-transversally elliptic symbol onK×T p, wherep :T(K×T

p)→K ×T p is the projection, andE+,E− are equivariant vector bundles overK ×T p. So
for any [k,x] ∈K ×T p, we have a collection of linear mapsσ([k,x,X + v]) :E+[k,x]→ E

−
[k,x]

depending on the tangent vectorsX + v. The symbol(i∗)−1(σ) is defined by

(i∗)−1(σ)(x, v) = σ
(
[1, x,0+ v]

)
:E+[1,x]→E

−
[1,x] for any(x, v) ∈Tp.(5.52)

For σ = ThomΦ̃K(M̃, J̃), the vector bundleE+ (respectivelyE−) is ∧odd
C

TM̃ (respectively
∧even

C
TM̃ ). Since the complex structure leavesr∼= k/t andp invariant one gets

(i∗)−1
(
Thomλ

K

(
M̃, J̃

))
=Thomλ

T (p, Jλ) ∧•
C k/t,

and

(i∗)−1
(
Thomλ

K

(
M̃, J̃

)
⊗ π∗(K ×T Vλ)

)
=Thomλ

T (p, Jλ)Vλ ∧•
C k/t,(5.53)

whereThomλ
T (p, Jλ) is theT -equivariant Thom symbol on the complex vector space(p, Jλ)

deformed by the constant mapp→ t, x �→ λ. In (5.53), our notation uses the structure ofR(T )-
module forKT (TT p), hence we can multiplyThomλ

T (p, Jλ) by Vλ ∧•
C

k/t.
Theorem 4.1 of Atiyah in [1] tells us that

KT (TT p)
i∗

IndexT
p

KK(TKM̃)

IndexK

M̃

C−∞(T )
IndK

T

C−∞(K)K

(5.54)

is a commutative diagram, with̃M =K×T p, and whereIndKT is the induction map (see (4.39
In other words,IndexK

M̃
(σ) = IndKT (IndexTp ((i∗)−1(σ))). With (5.51), (5.53), and (5.54), w

find

RRK
Φ (G · λ,V ) = IndKT

(
IndexTp

(
Thomλ

T (p, Jλ)
)
Vλ ∧•

C k/t
)

=HolKT
(
IndexTp

(
Thomλ

T (p, Jλ)
)
Vλ

)
.

(See the Appendix in [33] for the relationHolKT (−) = IndKT (− ∧•
C

k/t).) But the index
IndexTp (Thom

λ
T (p, Jλ)) is computed in Section 5 of [33]:

IndexTp
(
Thomλ

T (p, Jλ)
)
=

[ ∏
α∈R

+
n

(1− t−α)
]−1

λ

= (−1)rt2ρn

[ ∏
α∈R

+
n

(1− tα)
]−1

λ

,

with r = 1
2 dim(G/K). Equality (5.49) is then proved.
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5.3. (G · λ,Φ) satisfies Assumption 3.6

LetM be a regular elliptic coadjoint orbit forG, with the canonical HamiltonianK-action.

t
n

f

on the

t

The goal of this section is to show thatM satisfies Assumption 3.6 at everyµ.
Let g= k⊕ p be the Cartan decomposition ofg. The Killing formB provides aG-equivariant

identificationg 
 g∗ andK-equivariant identificationsk 
 k∗, p 
 p∗. The Killing form B
provides also aK-invariant Euclidean structure ong such thatB(X,X) = −‖X1‖2 + ‖X2‖2
and‖X‖2 = ‖X1‖2 + ‖X2‖2, forX =X1 +X2, withX1 ∈ k, X2 ∈ p.

Hence we can and we shall considerM as an adjoint orbit ofG: M =G · λ whereλ ∈ k is
a regular element, i.e.,Gλ = Kλ is a maximal torus inK (in this section· means the adjoin
action). The moment mapΦ:M → k is then the restriction toM of the orthogonal projectio
k⊕ p→ k. Forµ ∈ k, we consider the mapΦµ :M ×K · µ→ k, (m,n) �→Φ(m)− n.

This section is devoted to the proof of the following

PROPOSITION 5.7. – The setCr(‖Φµ‖2) of critical points of‖Φµ‖2 is a compact subset o
M ×K · µ. More precisely, for anyr � 0, there existsc(r)> 0 such that

Cr
(
‖Φµ‖2

)
⊂

(
M ∩

{
ξ ∈ g, ‖ξ‖� c(r)

})
×K · µ,

whenever‖µ‖� r.

Note thatM ∩ {ξ ∈ g,‖ξ‖ � c(r)} is compact, thus Proposition 5.7 shows thatM satisfies
Assumption 3.6 at everyµ. Let a be a maximal Abelian subalgebra ofp, and consider the map

Fµ : (K · λ)× (K · µ)× a→R

defined byFµ(m,n,X) = 1
2‖eX ·m‖2 − 2〈eX ·m,n〉.

PROPOSITION 5.8. – For anyr � 0, there existsc(r)> 0 such that

(m,n,X)∈Cr(Fµ) =⇒
∥∥eX ·m∥∥ � c(r),

whenever‖µ‖� r.

We first show that Proposition 5.8 implies Proposition 5.7, and then we concentrate
proof of Proposition 5.8.

Proposition 5.8 =⇒ Proposition 5.7. Consider the mapΦ−µ :M→ k. One easily sees tha
Cr(‖Φµ‖2) =K · (Cr(‖Φµ‖2)∩ (M ×{µ})), andCr(‖Φµ‖2)∩ (M ×{µ})⊂Cr(‖Φ−µ‖2)×
{µ}. Thus Proposition 5.7 is proved if one shows that for anyr � 0, there existsc(r) > 0 such
that

Cr
(
‖Φ− µ‖2

)
⊂M ∩

{
ξ ∈ g, ‖ξ‖� c(r)

}
,

whenever‖µ‖� r. Since the bilinear formB isG-invariant, the mapm→B(m,m) is constant
onM , equal to−‖λ‖2, and thus‖Φ(m)‖2 = 1

2‖m‖2+
1
2‖λ‖2 for anym ∈M . Finally we have

onM the equality

‖Φ(m)− µ‖2 = 1
2
‖m‖2 − 2〈m,µ〉+ cst,

wherecst = 1
2‖λ‖2 + ‖µ‖2. If we use now the Cartan decompositionG=K · exp(p), and the

fact thatp =
⋃

k∈K k · a, we see that every elementM is of the formm= (k−11 e
Xk2) · λ with
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k1, k2 ∈ K andX ∈ a. It follows that ‖Φ((k−11 eXk2) · λ) − µ‖2 = Fµ(m′, n,X) + cst with
m′ = k2 · λ, n = k1 · µ. It is now obvious that ifm = (k−11 e

Xk2) · λ ∈ Cr(‖Φ − µ‖2) then
(k2 · λ, k1 · µ,X)∈Cr(Fµ). Finally, if Proposition 5.8 holds we get‖m‖= ‖eX ·m′‖� c(r).

n

Proof of Proposition5.8. – Let (m,n,X) ∈ Cr(Fµ). Then, the identity ddtF
µ(m,n,X +

tX)|t=0 = 0 gives 〈
eX ·m,eX · [X,m]

〉
= 2

〈
eX · [X,m], n

〉
.(5.55)

The proof of Proposition 5.8 is then reduced to

LEMMA 5.9. – (i) For any r � 0, there existsd(r) > 0 such that‖eX · [X,m]‖ � d(r)‖X‖
holds for every(m,n,X)∈K · λ× k× a satisfying(5.55)and‖n‖� r.

(ii) For any d > 0 there existsc > 0, such that for every(m,X) ∈ K · λ × a, we have
‖eX · [X,m]‖� d‖X‖ =⇒ ‖eX ·m‖� c.

Proof of (i). – Let Σ be the set of weights for the adjoint action ofa on g: g =
∑

α∈Σ gα,
wheregα = {Z ∈ g, [X,Z] = α(X)Z for all X ∈ a}. Eachm ∈ g admits a decompositio
m=

∑
αmα, withmα ∈ gα, which is stable relatively to the Cartan involution:

θ(mα) =m−α, for everym ∈ g.(5.56)

Suppose now thatv := (m,n,X) ∈K · λ× k× a satisfies (5.55). We decomposem ∈K · λ
intom=

∑
αmα with mα ∈ gα. Let Σ±

v := {α ∈ Σ, mα �= 0 and ± α(X)> 0}. The LHS of
(5.55) decomposes inLHS=

∑
α e
2α(X)α(X)‖mα‖2, and

LHS=
∑

α∈Σ+
v

e2α(X)α(X)‖mα‖2 +
∑

α∈Σ−
v

e2α(X)α(X)‖mα‖2(∗)

�
∑

α∈Σ+
v

e2α(X)
α(X)2

R‖X‖ ‖mα‖2 −R‖X‖
∑

α∈Σ−
v

‖mα‖2

with R := supα,‖X‖�1 |α(X)|. But∑
α∈Σ+

v

e2α(X)α(X)2‖mα‖2 =
∥∥eX · [X,m]∥∥2 − ∑

α∈Σ−
v

e2α(X)α(X)2‖mα‖2(∗∗)

�
∥∥eX · [X,m]∥∥2 −R2‖X‖2 ∑

α∈Σ−
v

‖mα‖2.

Sinceα ∈ Σ+v ⇔−α ∈ Σ−
v , we have2

∑
α∈Σ−

v
‖mα‖2 �

∑
α∈Σ ‖mα‖2 = ‖m‖2 = ‖λ‖2. So,

the inequalities(∗) and(∗∗) give

LHS� ‖eX · [X,m]‖2
R‖X‖ −R‖X‖.‖λ‖2.(5.57)

Since the RHS of (5.55) satisfies obviouslyRHS� 2‖eX · [X,m]‖.‖n‖, (5.55) and (5.57) yield

2
∥∥eX · [X,m]∥∥.‖n‖� ‖eX · [X,m]‖2

R‖X‖ −R‖X‖.‖λ‖2.

In other wordsE := ‖eX · [X,m]‖ satisfies the polynomial inequalityE2 − 2aE − b2 � 0, with
b=R‖X‖.‖λ‖ anda=R‖X‖.‖n‖. A direct computation gives∥∥eX · [X,m]∥∥ � d‖X‖,
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with d=R(‖n‖+
√
‖n‖2+ ‖λ‖2 ).

Proof of (ii) . – Suppose that (ii) does not hold. So there is a sequence(mi,Xi)i∈N inK ·λ×a

.
.

ath.

riant

nd

ourbaki

e

.

ions,

d.),
t,

.

such that‖eXi · [Xi,mi]‖� d‖Xi‖ but limi→∞ ‖eXi ·mi‖=∞. We writeXi = tivi with ti � 0
and‖vi‖= 1. We can assume moreover thatvi→ v∞ ∈ a with ‖v∞‖= 1, andmi→m∞ ∈K ·λ
wheni→∞.

But m∞ ∈ K · λ is a regular element ofG, and rank(G) =rank(K), thus [v∞,m∞] =∑
α∈Σα(v∞)m∞,α �= 0: there existsα0 ∈ Σ such thatα0(v∞)m∞,α0 �= 0, and then also

α0(v∞)m∞,−α0 �= 0 (see (5.56)).
On the one hand the sequenceetivi .mi =

∑
α e

tiα(vi)mi,α diverges. Hence(ti)i∈N is
not bounded and so can be assumed to be divergent. On the other handetivi · [vi,mi] =∑

α e
tiα(vi)α(vi)mi,α is bounded, so the sequenceseti±α0(vi)α(vi)mi,±α0 are also bounded

But limi→∞α(vi)mi,±α0 = α0(v∞)m∞,±α0 �= 0, hence the sequenceseti±α0(vi) are bounded
This contradicts the fact thatlimi→∞ ti =+∞ andlimi→∞ α0(vi) �= 0. ✷

REFERENCES

[1] ATIYAH M.F., Elliptic Operators and Compact Groups, in: Lecture Notes in Math., vol.401, Springer-
Verlag, Berlin/New York, 1974.

[2] ATIYAH M.F., Convexity and commuting Hamiltonians,Bull. London Math. Soc.14 (1982) 1–15.
[3] ATIYAH M.F., BOTT R., SHAPIRO A., Clifford modules,Topology3 (Suppl. 1) (1964) 3–38.
[4] ATIYAH M.F., SEGAL G.B., The index of elliptic operators II,Ann. of Math.87 (1968) 531–545.
[5] ATIYAH M.F., SINGER I.M., The index of elliptic operators I,Ann. of Math.87 (1968) 484–530.
[6] ATIYAH M.F., SINGER I.M., The index of elliptic operators III,Ann. of Math.87 (1968) 546–604.
[7] ATIYAH M.F., SINGER I.M., The index of elliptic operators IV,Ann. of Math.93 (1971) 139–141.
[8] BERLINE N., GETZLER E., VERGNE M., Heat Kernels and Dirac Operators, in: Grundlehren M

Wiss., vol.298, Springer-Verlag, Berlin, 1991.
[9] BERLINE N., VERGNEM., The Chern character of a transversally elliptic symbol and the equiva

index,Invent. Math.124 (1996) 11–49.
[10] BERLINE N., VERGNE M., L’indice équivariant des opérateurs transversalement elliptiques,Invent.

Math.124 (1996) 51–101.
[11] CANNAS DA SILVA A., KARSHON Y., TOLMAN S., Quantization of presymplectic manifolds a

circle actions,Trans. Amer. Math. Soc.352 (2000) 525–552.
[12] DUFLO M., Représentations de carré intégrable des groupes semi-simples réels, in: Sém. B

(1977/78), Exp. no 508,Lecture Notes in Math.710 (1979) 22–40.
[13] DUFLO M., HECKMAN G., VERGNE M., Projection d’orbites, formule de Kirillov et formule d

Blattner,Mém. Soc. Math. Fr.15 (1984) 65–128.
[14] DUISTERMAAT J.J., The Heat Lefschetz Fixed Point Formula for the Spinc-Dirac Operator, in: Progr

Nonlinear Differential Equation Appl., vol.18, Birkhäuser, Boston, 1996.
[15] GUILLEMIN V., STERNBERG S., Convexity properties of the moment mapping,Invent. Math.67

(1982) 491–513.
[16] GUILLEMIN V., STERNBERGS., Geometric quantization and multiplicities of group representat

Invent. Math.67 (1982) 515–538.
[17] GUILLEMIN V., STERNBERG S., A normal form for the moment map, in: S. Sternberg (E

Differential Geometric Methods in Mathematical Physics, Reidel Publishing Company, Dordrech
1984.

[18] JEFFREYL., KIRWAN F., Localization and quantization conjecture,Topology36 (1997) 647–693.
[19] HARISH-CHANDRA H., Discrete series for semi-simple Lie group, I and II,Acta Math.113 (1965)

242–318,Acta Math.116 (1966) 1–111.
[20] HECHT H., SCHMID W., A proof of Blattner’s conjecture,Invent. Math.31 (1975) 129–154.
[21] KAWASAKI T., The index of elliptic operators over V-manifolds,Nagoya Math. J.84 (1981) 135–157

4e SÉRIE– TOME 36 – 2003 –N◦ 5



Spinc-QUANTIZATION AND THE K-MULTIPLICITIES OF THE DISCRETE SERIES 845

[22] KIRWAN F., Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton Univ. Press,
Princeton, 1984.

[23] KIRWAN F., Convexity properties of the moment mapping III,Invent. Math.77 (1984) 547–552.
tions,

c

.

cient,

in–

n

001),

don,
[24] KOSTANT B., Quantization and unitary representations, in: Modern Analysis and Applica
Lecture Notes in Math., vol.170, Springer-Verlag, Berlin/New York, 1970, pp. 87–207.

[25] LAWSON H., MICHELSOHNM.-L., Spin Geometry, in: Princeton Math. Ser., vol.38, Princeton Univ.
Press, Princeton, 1989.

[26] LERMAN E., MEINRENKEN E., TOLMAN S., WOODWARD C., Non-Abelian convexity by symplecti
cuts,Topology37 (1998) 245–259.

[27] MEINRENKEN E., On Riemann–Roch formulas for multiplicities,J. Amer. Math. Soc.9 (1996) 373–
389.

[28] MEINRENKEN E., Symplectic surgery and the Spinc-Dirac operator,Adv. Math.134 (1998) 240–277
[29] MEINRENKEN E., SJAMAAR S., Singular reduction and quantization,Topology38 (1999) 699–762.
[30] PARADAN P.-É., Formules de localisation en cohomologie équivariante,Compositio Math.117 (1999)

243–293.
[31] PARADAN P.-É., The moment map and equivariant cohomology with generalized coeffi

Topology39 (2000) 401–444.
[32] PARADAN P.-É., The Fourier transform of semi-simple coadjoint orbits,J. Funct. Anal.163 (1999)

152–179.
[33] PARADAN P.-É., Localization of the Riemann–Roch character,J. Funct. Anal.187 (2001) 442–509.
[34] SCHMID W., On a conjecture of Langlands,Ann. of Math.93 (1971) 1–42.
[35] SCHMID W., L2-cohomology and the discrete series,Ann. of Math.103 (1976) 375–394.
[36] SCHMID W., Discrete series, in: Proc. Symp. Pure Math., vol.61, 1997, pp. 83–113.
[37] SJAMAAR R., Symplectic reduction and Riemann–Roch formulas for multiplicities,Bull. Amer. Math.

Soc.33 (1996) 327–338.
[38] SJAMAAR R., Convexity properties of the moment mapping re-examined,Adv. Math.138 (1998) 46–

91.
[39] SEGAL G., Equivariant K-theory,Inst. Hautes Études Sci. Publ. Math.34 (1968) 129–151.
[40] TIAN Y., ZHANG W., An analytic proof of the geometric quantization conjecture of Guillem

Sternberg,Invent. Math.132 (1998) 229–259.
[41] VERGNE M., Geometric quantization and equivariant cohomology, in:First European Congress i

Mathematics, vol. 1, in: Progr. Math., vol.119, Birkhäuser, Boston, 1994, pp. 249–295.
[42] VERGNEM., Multiplicity formula for geometric quantization, Part I, Part II, and Part III,Duke Math.

J. 82 (1996) 143–179, 181–194, 637–652.
[43] VERGNE M., Quantification géométrique et réduction symplectique, Sém. Bourbaki (2000/2

Exp. no 888,Astérisque282 (2002) 249–278.
[44] WITTEN E., Two dimensional gauge theories revisited,J. Geom. Phys.9 (1992) 303–368.
[45] WOODHOUSEN.M.J., Geometric Quantization, 2nd Edition, in: Oxford Math. Monogr., Claren

Oxford, 1997.

(Manuscrit reçu le 29 novembre 2002 ;
accepté le 11 mars 2003.)

Paul-Émile PARADAN

Université de Grenoble I,
Institut Fourier, UMR 5582,

B.P. 74,
38402 Saint-Martin-d’Hères cedex, France

E-mail: paul-emile.paradan@ujf-grenoble.fr
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE


