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Spirf-QUANTIZATION AND THE K-MULTIPLICITIES
OF THE DISCRETE SERIES

By PauL-EmILE PARADAN

ABSTRACT. — In the 70s, W. Schmid has shown that the representations of the discrete series of a real
semi-simple Lie group could be realized as the quantization of elliptic coadjoint orbits. In this paper
we show that such orbits, equipped with the Hamiltonian action of a maximal compact suligraug,
are non-compaciexamples where the philosophy of Guillemin—Sternbe@uantization commutes with
reduction—applies. IfHo is a representation of the discrete serieg:aissociated to a coadjoint orldit,
we express thé -multiplicities of Ho in terms ofSpin®-index on symplectic reductions @1.
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RESUME. — Dans les années 70, W. Schmid a montré que les représentations de la série discrete
d’un groupe de Lie semi-simple réél peuvent étre réalisées comme le quantifié de certaines orbites
coadjointes elliptiques dé&. Dans cet article, nous montrons que ces orbites coadjointes, munies de
I'action hamiltonienne d’un groupe compact maxinfélC G, sont des exempleson compactu la
philosophie de Guillemin—Sternberda-quantification commute a la réductiers’applique. Considérons
une représentatiogi o de la série discrete d& associée a une orbite coadjoiidbe Nous montrons que les
K-multiplicités deH o s'expriment comme indices d’opérateisin® sur les réductions symplectiques de
O par rapport ..
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1. Introduction and statement of theresults

The purpose of this paper is to show that theantization commutes with reductigminciple
of Guillemin—Sternberg [16] holds for the coadjoint orbits that parametrize the discrete series of
a real connected semi-simple Lie group.

1.1. Discreteseriesand K-multiplicities

Let G be a connected, real, semi-simple Lie group with finite center. By definition, the
discrete serie®f G is the set of isomorphism classes of irreducible, square integrable, unitary
representations a@f. Let K be a maximal compact subgroup@f and7" be a maximal torus in
K. Harish-Chandra has shown ti@thas a discrete series if and onlyZifis a Cartan subgroup
of G [19]. For the remainder of this paper, we may therefore assumé&tisaa Cartan subgroup
of G.

Let us fix some notation. We denote fpyt, t the Lie algebras of?, K, T, and byg*, ¢*, t* their
duals. LetA* C t* be the set of real weights: € A* if /—1a is the differential of a character
of T'. LetR. C R C A* be respectively the set of roots for the actioTadn ¢ C andg @ C. We
choose a system of positive rodts™ for 3. We denote by’ the corresponding Weyl chamber,
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and we letp. be half the sum of the elements Bf. The setA? := A* Nt parametrizes the
unitary dual of K. Forp € A%, let xff be the character of the irreducibié-representation with
highest weighj.. R

Harish-Chandra parametrizes the discrete series by a discrete éibsetegular elements
of the Weyl chambet? [19]. He associates to anyec G4 an invariant eigendistribution o,
denoted byO ,, which is shown to be the global trace of an irreducible, square integrable, unitary
representatiofi(, of G. Itis a generalized function 0@, invariant by conjugation, which admits
a restriction toK denoted byO, |k . The distribution©,|x corresponds to the global trace of
the induced representation Af on M. It admits a decomposition

Oxlr = D mu (W),

uGAi

where the integersn, (\) satisfy certain combinatorial identities called the Blattner formu-
las [20].
The main goal of the paper is to relate the multiplicitieg(\) to the geometry of the coadjoint
orbit G - A C g* as predicted by the Guillemin—Sternberg principle evoked above.
Before stating our result we recall how a representation belonging to the discrete series can be
realized as the quantization of a coadjoint orbit.

1.2. Realisation of thediscrete series

In the 60s, Kostant and Langlands conjectured realisations of the discrete series in tBfms of
cohomology that fit into the general framework of quantization. The proof of this conjecture was
given by Schmid some years later [34,35]. Let us recall the procedure for aXfixe®;.

The manifoldG - X carries several-invariant complex structures. For convenience we work
with the complex structurg defined by the following condition: each weighfor the T-action
on the tangent spad&', (G - A), J) satisfiega, A) > 0.

Let R+ C R be the set of positive roots defined hya € R < (a, \) > 0. Let p be half
the sum of the elements 6f+. The condition\ € G, imposes thak — p is a weight forT", so
we can consider the line bundle

L:=Gx7Cy_,

overG - A~ G/T: this line bundle carries a canonical holomorphic structure(Y¢t.) be the
space ofL-valued(0, k) forms onG - \, andd; : Q*(L) — Q¥+1(L) be the Dolbeault operator.
The choice ofG-invariant hermitian metrics o - A and onL gives meaning to the formal
adjointd; of thed; operator, and to the Dolbeault-Dirac operalgr+ d; .

The L2 cohomology ofL, which we denote b)H’(*2)(G -\, L), is equal to the kernel of the

differential operatod; + 52 acting on the subspace Qf‘(i) formed by the square integrable
elements.

THEOREM 1.1 (Schmid). tet )\ € Ga.

() Hpy) (G- ML) =0if k£ SO,

(i) If k= w, thenH’é)(G -\, L) is the irreducible representatioH .

So, the representatidt, is the quantization of the coadjoint orlgit- A being the index of

the Dolbeault-Dirac operat@ri + 52 (in theL? sense and modul@—l)w). In the next
subsection, we briefly recall the ‘quantization commutes with reduction’ principle of Guillemin—

Sternberg, and in Section 1.4 we state our main result.
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1.3. Quantization commutes with reduction

Let M be a Hamiltoniank -manifold with symplectic formw and moment ma@ : M — ¢*.
The coadjoint orbits7 - A introduced earlier are the key examples here. Each is equipped
with its Kirillov—Kostant—Souriau symplectic form, and the action ofy is Hamiltonian with
moment map’ - A — g* equal to the inclusion. LeK be the maximal compact Lie subgroup
of GG introduced in Section 1.2. The induced action/fon G - A is Hamiltonian, and the
corresponding moment map: G- A — £* is equal to the composition of the inclusiéh A — g*
with the projectiong* — £*.

In the process of quantization one tries to associate a unitary representatiortmthe
data(M,w, ®). In this general framework, whek/ is compactand under certain integrability
conditions, we associate to these data a virtual representatiihdefined as the equivariant
index of aSpin® Dirac operator: it is th&pin® quantization. We need two auxiliary data:

(i) A prequantum line bundlé — M: it is a K-equivariant Hermitian line bundle equipped

with K -invariant connection whose curvature form-sw.

(i) A K-invariant almost complex structuré on M, compatiblewith the symplectic

structure(v, w) — w(v, Jw) defines a metric.

One considers then th&-equivariantSpin® Dirac operatorD;, corresponding to th8pin®
structure onM defined by.J, and twisted by the line bundle [25,14]. TheSpin°-quantization
of (M,w, ®) is the equivariant index of the differential operafor,

RR¥(M, L) :=Index’, (D) € R(K),

whereR(K) is the representation ring @f. WhenK is reduced td e}, the Spin°-quantization
of (M,w) is just an integerRR(M, L) € Z.

A fundamental result of Marsden and Weinstein asserts tljat if* is a regular value of the
moment mapb, thereduced space

M =071 (&) /K =07 (K - §)/K

is an orbifold equipped with a symplectic structurg(which one calls also symplectic quotient).
For any dominant weight € A7 which is a regular value ob,

Ly = (Llg-1(y) ®C_p)/ Ky,

is a prequantum orbifold-line bundle ovgV/,,,w,,). The definition ofSpin°-index carries over
to the orbifold case, hencRR(M,,, L,,) € Z is defined. In [29], this is extended further to the
case of singular symplectic quotients, using partial (or shift) desingularization. So the integer
RR(M,, L,) € Z is well defined for every, € A% .

The following theorem was conjectured by Guillemin and Sternberg [16] and is known as
“quantization commutes with reduction” [28,29].

THEOREM 1.2 (Meinrenken, Meinrenken—Sjamaar)Let (M,w, ®) be a compact Hamil-
tonian K -manifold prequantized b¥. Let RR™ (M, —) be the equivariant Riemann—-Roch char-
acter defined by means of a compatible almost complex structuié .oie have the following
equality inR(K)

RR¥(M,L)= Y RR(M,, L)X/

HEAT
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Remark1.3. — For a compact Hamiltonial -manifold (M, w, ®), the Convexity Theorem
[23] asserts that\ := (M) Nt} is a convex rational polytope. In Theorem 1.2, we have
RR(M,,,L,)=0if p¢ A.
Other proofs can be found in [33,40]. For an introduction and further references, see [37,43].
A natural question is to extend Theorem 1.2 to tie-compactHamiltonian K -manifolds

which admit aproper moment map. In this situation, the reduced spate:= ®~1(¢)/ K¢ is
compact for every < ¢*, so the integeRR(M,,, L,) € Z, € A, is defined as before.

Conjecture1.4. — Let(M,w,®) be a HamiltonianK -manifold with proper moment map,
and prequantized by.. Let 9;, + 52 be the Dolbeault—Dirac operator defined by means of a
K -invariant compatible almost complex structure, dadnvariant metric onM andL. Then

L2-Index™ (0L + 3L Z RR(M, XH .
MEA*

We present in the next subsection the central result of this paper that shows that Conjecture
1.4 is true for the coadjoint orbits that parametrize the discrete series.

1.4. Theresult

Consider the Hamiltonian action @€ on the coadjoint orbitz - A. SinceG - \ is closed in
g*, the moment ma@: G - A — £* is proper[32]. Our main theorem can be stated roughly as
follows.

THEOREM 1.5.— Letm,()), p € A%, be theK-multiplicities of the representatiof, |k .
For u € A% we have
(i) If p+ p.is aregular value ofp, the orbifold(G - \) 1+,. := @~ (1 + p.) /T, oriented by
its symplectic fornw,, 1, carries aSpin® structure such that

In#(/\) = Q((G : /\);Hrpc)v

where theRHS is the index of the correspondirfipin® Dirac operator on the reduced
space(G - ) uip, -

(if) In general, one can define an integ@ (G - A),.+,.) € Z, as the index of &pin® Dirac
operator on a reduced spadé& - \). where¢ is a regular value of®, close enough to
i+ pe. We still haven,, (A) = Q((G - A) u+p. )

Our theorem states that the decompositioi®gf x into K-irreducible components follows
the philosophy of Guillemin—Sternberg:

1) Oxk = Z Q((G'/\)u-&-pc)x,lf
uGAi

d,m(c/ )

SinceO, |k = eL?-IndexX (9; + 37 ), with e = (—1) , we can write(1) in the form

L%-IndeX* (9}, 2 Z Q((G- A pitpe) X s

HEAT

whereQ((G - Ny, ) = £Q((G - N yitp.)-
The main difference between Conjecture 1.4 and Theorem 1.5 js.thlift and the choices
of Spin® structure on the symplectic quotiehf, and(G - \) .. -
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The p.-shift is due to the fact that the line bundieis not a prequantum line bundle over
(G - \,w). The difference on the choice 8pin° structure comes from the fact that the complex
structureJ on G - A is not compatible with the symplectic structure (unléss: K is compact).
HenceJ does not descend to the symplectic reducti@#s\),,,. in general: the choice of the
Spin® structure on them requires some care (see Propositions 4.10 and 4.11).

Remark1.6. — For a Hamiltonia -manifold M/ with propermoment mapb, the Convexity
Theorem [23,26,38] asserts thaf := ®(A/) N 7 is a convex rational polyhedron. In
Theorem 1.5, we hav@((G - A)+,.) = 0 if 1+ p. does not belong to theelative interior
of A (see Proposition 2.4).

1.5. Outline of the proof

We have to face the following difficulties:

(1) The symplectic manifold - A is not compact.

(2) The complex structure off - A is not compatible with the symplectic form. In other
words, the Kirillov—Kostant—Souriau symplectic form does not define a Kahler structure
onG - A unlessG = K is compact.

(3) The line bundlel. is not a prequantum line bundle OVEF - \,w). It is what we call in
the rest of this paper a-prequantunt line bundle overG - \,w, J): if x denotes the
canonical line bundle ofG - ), .J), the tensor product? ® ! is a prequantum line
bundle over(G - A, 2w).

The first step of the proof is to solve the difficulties (2) and (3) in¢benpactsituation. In
Section 2, we give a modified version of Theorem 1.2 whehw, ) is acompactHamiltonian
K -manifold which is equipped with an almost complex structiirenot necessarily compatible
with w—and ax-prequantum line bundI&.

THEOREM 1.7.— Let RRX (M, —) be the Riemann-Roch character defined.oyif the
infinitesimal stabilizers for the action & on M are Abelian, we have

2 RRE(M,L)=¢ Y QM ,)x5,
uGAi

wheree = +1 is the ‘quotient’ of the orientations induced by the almost complex structure, and
the symplectic form.

In (2), the intege) (M., ) are computed like in Theorem 1.5 (see Definition 2.4 for a more
precise definition).

In the second step of the proof we deal with the non-compact situation. In Section 3, we
extend (2) to the non-compact setting. First we defigemeralized Riemann—Roch character
RRE(M,—) when(M,w, ®) is a Hamiltonian manifold such that the functi¢®||?: M — R
has acompactset of critical points. For every<-vector bundleE — M, the distribution
RRE (M, E) is defined as the index of a transversally elliptic operatakbrwhen the manifold
is compact, the mapBRE (M, —) and RR¥ (M, —) coincide.

We prove in Section 4 that Theorem 1.7 generalizes to

THEOREM 1.8. —Let (M,w, ®) be a Hamiltoniank -manifold withpropermoment map and
such that the functiofi®||?: M — R has acompactset of critical points. If the infinitesimal
stabilizers are Abelian, and under Assumpt®6, we have

1 Formally, L is the tensor product of a prequantum line bundle @¢er A, w) with a square root ok.
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3) RRE (M, L)=¢ Y Q(Mui,.)xp,
uGAi

for everyk-prequantum line bundle.

In contrast to (2), the RHS of (3) is in general an infinite sum. The Assumption 3.6 is needed
to control the data on the non-compact manifofd

In the final section we consider, for€ G4, the case of the coadjoint orhit - \ with the
HamiltonianK -action. The moment ma is properand the critical set of ®||> coincides with
K -\, hence is compact. Thus the generalized Riemann—Roch chaRR{E(G - A, —) is well
defined, and we want to investigate the indeRX (M, i) for the k-prequantum line bundle
fj =G X (C)\,p.

On the one hand we are able to compREL (G - \, L) explicitly in term of the holomorphic
induction mapHolﬁf. Let p be the orthogonal complement &fin g. It inherits a complex
structure and an action of the torfs The element\p € R(T') admits a polarized inverse
[A&p]y ' € R=>(T) (see [33, Section 5]). In Section 5.2 we prove that
4) RRE(G- A L) = (1) ™27 Holl{ (A —peten [asp] 1),
wherep,, = p — p. is half the sum of the non-compact roots.

On the other hand, we show (Lemma 5.4) that the Blattner formulas can be reinterpreted
throughHol% as follows:

(5) Oxlx = Holff (AP tre[a2p] ).

From(4) and(5) we obtain

dim(G/K)

(6) RRg (G-A\L)=(-1)" = 6ilx.

dim(G/K)

Since in this context = (—1)— =, the theorem follows from (3) and (6), provided one
verifies that Assumption 3.6 holds f6f- A. This is done in the final subsection of this paper.

Notation

Throughout the papefS will denote a compact, connected Lie group, &rits Lie algebra.
In Sections 2, 3, and 4, we consideKaHamiltonian action on a manifold/. And we use there
the following notation.

T maximal torus ofK" with Lie algebrat,

W: Weyl group of(K,T),

A =ker(exp: t — T): integral lattice oft,

A* =hom(A,27Z): real weight lattice,

t, p.: Weyl chamber and corresponding half sum of the positive roots,
A = A* N t': set of positive weights,

xff: character of the irreducibl& -representation with highest weighte A* ,
Ts: subtorus ofl" generated bys € ¢,

M7: submanifold of points fixed by € ¢,

TM: tangent bundle o/,

T M: set of tangent vectors orthogonal to tReorbits in M,

®: moment map,

L: r-prequantum line bundle,

C = K xr C,: s-prequantum line bundle over the coadjoint oufgit (. 4 p.),
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Cr(||®]?): critical set of the functiod| ®||2,

A = ®(M) Nt moment polytope,

‘H: vector field generated by,

m,, (E): multiplicity of RRE (M, E) relatively top € A%

In the final section, we consider the particular case ofihaction onM := G - \. HereG
is a connected real semi-simple Lie group with finite center admifiings a maximal compact
subgroup, and” as a compact Cartan subgroup.

Let us recall the definition of the holomorphic induction rriapli,ff. Every u € A* defines
a 1-dimensionall-representation, denote@,, wheret = exp X acts by t* := et X,
We denote byR(K) (respectivelyR(T)) the ring of characters of finite-dimensional-
representations (respectivelytrepresentations). We denale >°(K) (respectivelyR~>°(T"))
the set of generalized charactersgofrespectivelyl’). An elementy € R~°°(K) is of the form
X = ZueAj muxff, wherey — m,, A — Z has at most polynomial growth. Likewise, an

elementy € R~>°(T') is of the formx = 3_ . m,t", wherey — m,, A* — Z has at most
polynomial growth. We denote o u = w(p + p.) — p. the affine action of the Weyl group on
A*. The holomorphic induction map

Hol¥ : R=°(T) — R™°(K)

is characterized by the following properties:
(i) Holj (t*) = xX for everyu € A,
(i) Hol¥ (twor) = (—1)“Hol% (t*) for everyw € W andy € A*,
(iiy Holp (t*) =0if WopunA* =0.

2. Spin®-quantization of compact Hamiltonian K-manifolds

In this section we give a modified version of the ‘quantization commutes with reduction
principle.

Let M be a compact Hamiltonia®-manifold with symplectic formv and moment map
®: M — t* characterized by the relatieH®, X) = —w(X s, —), whereX, is the vector field
on M generated byX € €: X/ (m) := & exp(—tX).m|—o, form € M.

Let J be aK -invariant almost complex structure d which is not assumed to be compatible
with the symplectic form. We denot@R* (M, —) the Riemann—Roch character defined.hy
Let us recall the definition of this map.

Let E — M be a complexK-vector bundle. The almost complex structure bh gives
the decompositiomT*M @ C = @M ASIT* M of the bundle of differential forms. Using
Hermitian structure in the tangent bundleM of M, and in the fibers ofF, we define a
Dolbeault-Dirac operatoby + 0, : A%V™(M, E) — A%°44(M, E), where A% (M, E) :=
I'(M,AN"T*M ®¢ E) is the space ofE-valued forms of type(i,j). The Riemann—-Roch
characteRRX (M, E) is defined as the index of the elliptic operafs + 9:

RR™ (M, E) = Index}; (95 + 05) € R(K)

viewed as an element &f( K'), the character ring ok . An alternative definition goes as follows.
The almost complex structure defines a canonical invafait® structure€ . The Spin® Dirac

2 See Section 4.1 for a short review on the notio$pfn® structure.
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operator ofM with coefficient inE has the same principal symbol @@(Jx +5*E) (see, e.g.,
[14]), and therefore has the same equivariant index.

In the Kostant—Souriau frameworl{ is prequantized if there is A -equivariant Hermitian
line bundleL with a K-invariant Hermitian connectioR’* of curvature—w. The line bundle
L is called a prequantum line bundle for the Hamiltoniérmanifold (M, w, ®). Recall that the
data(VE, @) are related by the Kostant formula

(2.1) LUX)-V%, =(®,X), Xet

Here£L(X) is the infinitesimal action ok on the section of. — M.

The tangent bundI® M/ endowed with/ is a complex vector bundle ovér, and we consider
its complex dualT{M := home(TM,C). We suppose first that the canonical line bundle
k= det T¢ M admits ak -equivariant square roat'/2. If M is prequantized by, a standard
procedure in the geometric quantization literature is to tefidny the bundle of half-forms!/2
[45]. We consider the indeRRY (M, L ® x'/?) instead ofRRX (M, L). In many contexts, the
tensor producL = L ® x!/2 has a meaning even if neithémor x'/2 exist.

DEFINITION 2.1.— A Hamiltoniank -manifold ()M, w, ®), equipped with an almost complex
structure, iss-prequantized by an equivariant line bundléf Lo, := L? ® x~! is a prequantum
line bundle for(M, 2w, 2P).

The basic examples are the regular coadjoint orbifs ofFor anyu € A%, consider the regular
coadjoint orbitO#**< := K - (u + p.) with the compatible complex structure. The line bundle
C = K xr C, is as-prequantum line bundle ov&“**, and we have

(2.2) RR" (047, Cppy) = Xt

foranyu e A%.

Definition 2.1 can be rewritten in th&pin® setting (see Section 4.1 for a brief review on
Spin®-structures). The almost complex structure inducgsia® structureP with canonical line
bundledetc TM = x~1. If (M,w,J) is k-prequantized byl one can twistP by L, and then
define a nevBpin® structure with canonical line bundie* @ L2 = Lo, (see Lemma 4.2).

DEFINITION 2.2.— A symplectic manifold M, w) is Spin“-prequantized if there exists a
Spin® structure with canonical line bundle,,, which is a prequantum line bundle §i7, 2w).
If a compact Lie group acts al/, theSpin°©-structure is required to be equivariant. Here we take
the symplectic orientation ol .

When (M,w, J) is x-prequantized byL, one wants to compute th& -multiplicities of
RR¥ (M, L) in geometrical terms, like in Theorem 1.2.

DEFINITION 2.3.— An element € ¢ is aquasi-regularvalue of ® if all the K-orbits in
®~1(¢) have the same dimension. A quasi-regular valugeisericif the submanifoldd—1(¢) is
of maximal dimension.

For any quasi-regular valug € ¢*, the reduced spac#/, := ®~'(¢)/K, is an orbifold
equipped with a symplectic structuze. Let L be ax-prequantum line bundle ové, and let
Ls, := L2 @ k! be the corresponding prequantum line bundle(faf, 2w). For any dominant
weighty € A% such thay: + p. is a quasi-regular value d@f,

(L2w|¢*1(u+pc) ® C72(u+pc))/T
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is a prequantum orbifold-line bundle ov&¥/,. ¢, , 2w+, )-

The following proposition is the main point for computing thiemultiplicities of RR* (M, L)
in terms of the reduced spac#$,, , := ®~'(u+ p.)/T, p € A%. It deals with the coherence
of the definition of an integer valued mape A* — Q(M,,, ). In the next proposition we sup-
pose that M, w, ®) is a Hamiltoniank -manifold withpropermoment map. The sdt(M) Nt'.
is denoted byA. By the Convexity Theorem [23,26,38] it is a convex rational polyhedron, re-
ferred to as thenoment polyhedran

DEFINITION—PROPOSITION 2.4. — Let(M,w, ®) be a Hamiltoniark -manifold, with proper
moment map. We denot&° the relative interior of the moment polyhedran:= & (M) N 7.
Let L be ax-prequantum line bundle relative to an almost complex structuteet ;. A7

o If p+p. ¢ A°, wesetQ(M,,. )=0.

e If 4+ p. is a generic quasi-regular value ®f then theSpin® prequantization defined by
the datgJ, Ji) induces &pin® prequantization on the symplectic quoti€ht,,  ,_, w1, )-
We denoteQ(M,.+,, ) € Z the index of the correspondirtgpin® Dirac operator.

o If u+ p. € A°, we take¢ generic and quasi-regular sufficiently close tet p.. The
reduced spacé/l; := ®~1(£)/T inherits aSpin®-structure with canonical line bundle
(Lowl|o-1(e) ®C_o(u1p,))/T. The indexQ (M) of the correspondingpin® Dirac operator
on M, does not depend afy when is sufficiently close tq:+ p.: itis denotedQ(M,,1,. ).

When¢ = i+ p is a generic quasi-regular &, the line bundlé Lo, [¢-1(¢) @ C_g(u4p.)) /T
is a prequantum line bundle ove¥!,, . ,2w,+,.): SO the second point of this ‘definition’ is in
fact a particular case of the third point. But we prefer to keep it since it outlines the main point:
Spin® prequantization is preserved under symplectic reductions.

The existence ofpin°-structures on symplectic quotients is proved in Section 4.2. The hard
part is to show that the inde@(M,) does not depend of for £ sufficiently close tqu + p.: it
is done in Section 4.3.

Note that Definition 2.4 becomes trivial wheéxf is not included in the interior of the Weyl
chamberQ (M, ,.) =0 for all € A% . However, in this paper we work under the assumption
that the infinitesimal stabilizers for th& -action areAbelian And this assumption imposes
A° C Interior{ Weyl chamber} (see Lemma 4.9).

The following ‘quantization commutes with reductidgheorem holds for the:-prequantum
line bundles.

THEOREM 2.5. — Let (M, w, ®) be a compact Hamiltoniad-manifold equipped with an
almost complex structuré. Let L be ax-prequantum line bundle ovéil, and letRR* (M, —)
be the Riemann—Roch character defined/b¥f the infinitesimal stabilizers for the action &f
on M are Abelian we have the following equality iR(K)

(2.3) RRK(M,E) =€ Z Q(Muﬂ)c)Xffv
uGAi

wheree = +1 is the ‘quotient’ of the orientations defined by the almost complex structure, and
by the symplectic form.

Theorem 2.5 will be proved in a stronger form in Section 4.

Let us now give an example where the stabilizers for the actiad oh A arenot Abelian
and where (2.3) does not hold. Suppose that the gFoup not Abelian, so we can consider a
faceo # {0} of the Weyl chamber. Let,  be half the sum of the positive roots which vanish on
o, and consider the coadjoint orliif := K - (p. — pc,») equipped with its compatible complex
structure. Since. — p.,» belongs tar, the trivial line bundlelM x C — M is k-prequantum, and
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the image of the moment map: M — £* does not intersect the interior of the Weyl chamber.
So M4, =0 for every u, thus the RHS of (2.3) is equal to zero. But the LHS of (2.3) is
RRX(M,C) which is equal ta, the character of the trivial representation.

Theorem 2.5 can be extended in two directions. First one can bypass the condition on the
stabilizers by the following trick. Starting from &prequantum line bundlé — A, one can
form the produci\/ x (K - p.) with the coadjoint orbit through,. The Kiinneth formula gives

RR® (M x (K - p.),LKC) = RR" (M,L) ® RR¥ (K - p.,C) = RR® (M, L)

since RR¥(K - p.,C) = 1. Now we can apply Theorem 2.5 to compute the multiplicities of
RR¥(M x (K - p.), LK C) sinceL X C is ax-prequantum line bundle ove¥ x (K - p.),
and the stabilizers for thé&-action onM x (K - p.) are Abelian. Finally we see that the
multiplicity of the irreducible representation with highest weighin RR* (M, L) is equal to
eQ((M % (K - pe))tp.)-

On the other hand, we can extend Theorem 2.5 toSisia“ setting. It will be treated in a
forthcoming paper.

3. Quantization of non-compact Hamiltonian K-manifolds

In this section(M,w, ®) denotes a Hamiltonia& -manifold, not necessarily compact, but
with proper moment mapd. Let J be an almost complex structure éd, and letL be ax-
prequantum line bundle ovéi/, w, J) (see Definition 2.1). By Proposition 2.4 the infinite sum

(3.4) Z Q(M,uﬂ%)Xff

uEAi

is a well defined element d@(K) :=homy(R(K),Z).
The aim of this section is to realize this sum as the index wéasversally ellipticsymbol
naturally associated to the ddt&/, @, J, L).

3.1. Transversally elliptic symbols

Here we give the basic definitions from the theory of transversally elliptic symbols (or
operators) defined by Atiyah in [1]. For an axiomatic treatment of the index morphism see Berline
and Vergne [9,10] and for a short introduction see [33].

Let M be acompactK-manifold. Letp: TM — M be the projection, and let—, —),
be aK-invariant Riemannian metric. IE°, E! are K-equivariant vector bundles ovéld, a
K-equivariant morphisna € T'(TM, hom(p*E°, p* E')) is called asymbol The subset of all
(m,v) € TM wheres(m,v): E9, — E! is not invertible is called theharacteristic sebf o,
and is denoted b@har(o).

Let T x M be the following subset of' M :

TrgM = {(m,v) eTM, (’U,XM(m))]u =0forall X EE}

A symbolo iselliptic if o is invertible outside a compact subseflbi/ (Char(c) is compact),
and istransversally ellipticif the restriction ofc to Tx M is invertible outside a compact
subset of T x M (Char(o) N'Tx M is compact). An elliptic symbok defines an element in
the equivarianf-theory of T M with compact support, which is denoted Ky, (T M), and the
index of o is a virtual finite-dimensional representationfof[4—7].
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A transversally ellipticsymbolo defines an element & x (Tx M), and the index ob is
defined as a trace class virtual representatioR d¢see [1] for the analytic index and [9,10] for
the cohomological one). Remark that any elliptic symbol@ff is transversally elliptic, hence
we have a restriction mali x (TM) — K g (Tx M), and a commutative diagram

Krg(TM) ——Kg(TkM)

(35) Indexﬁ l \Llndexﬁ
R(K) R(K).

Using theexcision propertyone can easily show that the index niaﬁex{f Ky (Trl) —
R~ >°(K) is still defined wher{ is a K-invariant relatively compact open subset ofia
manifold (see [33, Section 3.1]).

3.2. Thom symbol deformed by the moment map

To a K -invariant almost complex structugeone associates the Thom symftlom x (M, J),
and the corresponding Riemann—Roch charaBt®f when M is compact [33]. Let us recall
the definitions.

Consider aK -invariant Riemannian metrig on M such thatJ is orthogonal relatively to
g, and leth be the Hermitian structure oM defined by:h(v, w) = g(v,w) — 1g(Jv,w) for
v,w € TM. The symbol

Thomg (M, J) € T'(M, hom (p* (A& TM),p* (A2TM)))
at(m,v) € TM is equal to the Clifford map
(3.6) Cly (v) : AZO T, M — AZYT,, M,

whereCl,, (v).w = v A w — cp(v).w for w € ALT, M. Herecy (v) : AL T, M — A*IT,, M
denotes the contraction map relativeitoSince the mag’l,, (v) is invertible for allv # 0, the
symbolThomg (M, J) is elliptic whenM is compact

The important point is that for ani -vector bundleE, Thomg (M, J) ® p*E corresponds
to the principal symbolof the twisted Spin® Dirac operatorDg [14]. So, whenM is a
compactmanifold, the Riemann—Roch characfeR” (M, —) : K (M) — R(K) is defined by
the following relation

(3.7) RR® (M, E) = Index}; (Thom (M, J) ® p*E).

Since the class dfhomg (M, J) in Kk (TM) is independent of the choice of the Riemannian

structure, the Riemann—Roch charad®t (M, —) also does not depend on this choice.
Consider now the case ofreon-compactiamiltonian K -manifold (M, w, ®). We choose a

K-invariant scalar product o, and we consider the function®||?: M — R. Let H be the

Hamiltonian vector field forst || @2, i.e., the contraction of the symplectic form byis equal

to the1-form 1 d||®||2. In fact the vector field{ only depends o. The scalar product off

gives an identificatiot* ~ ¢, henced can be consider as a map frav to £. We have then

(3.8) H, = (®P(m)M|m, mE M,
where(®(m)),, is the vector field on\/ generated byp(m) € .
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DEFINITION 3.1.— The Thom symbol deformed by the moment map, which is denoted by
Thomf. (M, .J), is defined by the relation

Thom$ (M, J)(m,v) := Thomg (M, J)(m,v — Hp,)

for any (m,v) € TM. Likewise, any equivariant map : M — ¢ defines a Thom symbol
Thom3, (M, .J) deformed by the vector fieldy :m — S(m)as|m: Thomy, (M, J)(m,v) :=
Thompg (M, J)(m,v — Sp(m)).

Atiyah first proposed to ‘deform’ the symbol of an elliptic operator by the vector field induced
by anS!-action in order to localize its index on the fixed point submanifold, giving then another
proof of the Lefschetz fixed-point theorem [1, Lecture 6]. Afterwards the idea was exploited by
Vergne to give a proof of the ‘quantization commutes with reduction’ theorem in the case of an
Sl-action [42]. In [33], we extended this procedure for an action of a compact Lie group. Here,
we use this idea to produce a transversally elliptic symbol on a non-compact manifold.

The characteristic set Gfhom, (M, .J) corresponds té(m,v) € TM, v =H,,}, the graph
of the vector fieldH. SinceH belongs to the set of tangent vectors to fieorbits, we have

Char(Thomy (M, J)) N TgM = {(m,0) € TM, H,, =0}
={me M, d|®|7,=0}.

Therefore the symbdlhom{ (M, J) is transversally elliptic if and only if the sétr(||®||?) of
critical points of the functior{®||? is compact

DEFINITION 3.2.— Let(M,w,®) be a Hamiltoniank -manifold with Cr(||®||?) compact.
For any invariant almost complex structuse the symboIThom}I’}(M, J) is transversally
elliptic. For any K-vector bundleE — M, the tensor produc‘tfhom}*}(M, J) ® p*E is
transversally elliptic and we denote by

RRYX(M,E) € R™>°(K)

its index® . In the same way, an equivariant mép)M — ¢ defines a transversally elliptic symbol
Thom?, (M, .J) if and only if {m € M, Sy;(m) =0} is compact. If this holds one defines the
localized Riemann—Roch characieR% (M, E) := Index}; (Thom%, (M) @ p*E).

Remark3.3. — If M is compact the symbol§hom (M, J) and Thom$% (M, .J) are homo-
topic as elliptic symbols, thus the map’ (M, —) and RRE (M, —) coincide (see Section 4
of [33]).

We end up this subsection with some technical remarks about the syffibols?- (M, .J)
associated to an equivariant mapM — ¢, and an almost complex structure.
Letl be aK-invariant open subspace 8f. The restriction

Thomj, (M, J)|ys = Thom3 (U, J)

is transversally elliptic if and only ifm € M, Sy (m) = 0}NU is compact. Le§*"V :U — V be
two K -invariant open subspacesf, wherej*V denotes the inclusion. {fm € M, Sy;(m) =

3 Here we take & -invariant relatively compact open subgeéof M such thatCr(||®||?) C U. Then the restriction
of Thom. (M, J) to U defines a clasThom - (M, J)|y, € Kk (T k). Since the index map is well defined dh
one sets‘%Rf}f (M, E):= Index{j(Thom‘}’}(M, I)u ® p*Elyy). A simple application of the excision property shows
us that the definition does not depend on the choicd.dh order to simplify our notation (when the almost complex
structure is understood), we wrifeR% (M, E) := Index; (Thom$ (M) ® p*E).
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0}NU={me M, Sy (m)=0}NYV is compact, the excision property tells us that
74V (Thom? (U, J)) = Thom? (V, J),

wherej“"Y K (TxU) — K (T V) is the pushforward map (see [33, Section 3]).

LEMMA 3.4.— (1)If {m e M, Sy(m) =0} NU is compact, then the class defined by
Thomj, (U, J) in K (TxU) does not depend on the choice of a Riemannian metric.

(2) Let SV, S*: M — ¢ be two equivariant maps. Suppose there exist an open sWbset/,
and a vector field oni/ such that(S%,, ), and(S},,0) s are > 0 outside a compact subskt

of{. Then, the equivariant symb(5[§1om§<1 U,J) andThomi0 (U, J) are transversally elliptic
and define the same classiy (T xU).

(3) Let JO, J! be two almost complex structures @nand suppose thatm € M, Sy (m) =
0} N U is compact. The transversally elliptic symbdli$iom?, (2/,.J°) and Thom?- (U, J")
define the same class if there exists a homottpy < [0, 1], of K-equivariant almost complex
structures betweerd® and J*!.

Proof. —Two J-invariant Riemannian metriag, ¢; are connected by, := (1 — t)qo + tq:.
Hence the transversally elliptic symbal$ioms; (U4, J, go) andThom?, (U, J, ¢, ) are tied by the
homotopyt — Thomf( (U, J,q:). The point (1) is then proved. The proof of (2) is similar to our
deformation process in [31]. Here we consider the n#fps- tS* + (1 —)S°, ¢ € [0, 1], and the
corresponding symbo[Ehomf; (U, J). The vector field, ensures thaﬁ}har(Thomf; U,n))n
TxrU C K is compact. Hence — Thomfg (U, J) defines a homotopy of transversally elliptic
symbols. The proof of (3) is identical to the proof of Lemma 2.2 in [33)1

COROLLARY 3.5.-When{m € M, Sy;(m) = 0} is compact, the generalized Riemann—Roch
character RRE (M, —) does not depend on the choice of a Riemannian mefief (M, —)
does not change either if the almost complex structure is deformed smoothly and equivariantly
in a neighborhood of m € M, Sy (m) = 0}.

In Sections 3.3 and 3.4, we set up the technical preliminaries that are needed to compute the
K-multiplicity of RRE (M, L).

In Section 4, we compute thi€-multiplicity of RRE (M, L), when the moment map jsoper,
in terms of the symplectic quotiendd,, | ,., u € A%

3.3. Counting the K-multiplicities
Let F be a K-vector bundle over a Hamiltonian manifold/,w,®) and suppose that

Cr(||®||?) is compact. One wants to compute tiemultiplicities of RRE (M, E) € R~>°(K),
i.e., the integersa, (E) € Z, n € A%, such that

(3.9) RRE (M, E)= > m,(E)x\.
uEAi

For this purpose one uses the classical ‘shifting trick’. By definition, one thagF) =
[RRE(M,E) ® VJ]K, whereV,, is the irreduciblekX -representation with highest weigpt

andV,* is its dual. We know from (2.2) that thi-trace ofV), is x = RR* (OF, @[N]), where

(3.10) A=+ pe.
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Hence thei -trace of the dual/* is equal toRR™ (OF, ((Ni[,#]), whereQF is the coadjoint orbit

OF with opposite symplectic > structure and opposite complex structurél'het ;- (W)ie the
equivariant Thom symbol o®#. Then the trace oV’ is equal tolndex gy (Thom g (OF) ©

Ci—,), and finally the multiplicative property of the index [1, Theorem 3.5] gives
m,(E) = [Indexﬁxoﬂ ((Thom% (M) ® p*E) @ (ThomK(W) ® @[*M)ﬂ K

See [1,33] for the definition of the exterior product K (Tx M) x K (TO?) — Kg x
(T (M x OR)). o
The moment map relative to the HamiltoniaRraction onM x OF is

Dy M x OF — ¢*,
For anyt € R, we consider the map;; : M x OF — ¢*, &,;(m, &) := &(m) — t€.

(3.11)

Assumption3.6. — There exists @ompactsubset C M, such that, for every € [0,1], the
critical set of the functiori ®;;||?: M x O — R is contained inC x OF.

If M satisfies Assumption 3.6 gi, one has a generalized Riemann—Roch character
RRg (M x O#, ) sinceCr([|®z]*) is compact.

PROPOSITION 3.7. — Letm,, (E) be the multiplicity ofRRE (M, E) relatively to the highest
weighty € A% . If M satisfies Assumptidh6at /i, then

m,(E) = [RRE (M x O, ERC_,)]".

Proof. —One has to show that the transversally elliptic symHBdism% (M) ® Thom g (OF)
andThomf;ﬂ (M x OF) define the same classKix (T x (M x OF)) whenM satisfies Assump-
tion 3.6 atfi. Let oy, 09 be respectively the Thom symbd&iom g (M) andThom g (W). The
symboloy = Thom$ (M) ® Thomg (OF) is defined by

O'I(m,g,'l),'lU) = Ul(mav - H’m) 602(6511)),

where (m,v) € TM, (£,w) € TO!, andH is defined in (3.8). Let{! be the vector field
on M x O" generated by the ma@,;: M x OF — ¢. For (m,£) € M x OF, we have

Hfm@ = (H?JTE),H?;:’&)) WhereH‘(’;z’é) e T,,M and Hl(’;fl_f) € T:OF. The symboloy; =
Thom (M x OF) is defined by

O'H(m,g,U,UI) =01 (m,v - H(rlrz,lf) © 02 (g’w - HZ();?llf))

We connectr; andoy; through two homotopies. First we consider the symbabn [0, 1]
T(M x OF) defined by

X

Alt;m, & v,w) =01 (m,v — antf) ©oa(&w— H?;Z’g))v

for t € [0,1], and (m,&,v,w) € T(M x OF). We haveChar(A) = {(t;m,&,v,w) | v =
He'e, andw =M, .} and

m,&?
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Char(A) N[0,1] x Tk (M x O%) = {(t;m,&,0,0) | (m,&) € Cr([|®:a]%) }
C[0,1] x K x OF,

where I C M is the compact subset of Assumption 3.6. Thdisdefines a homotopy of
transversally elliptic symbols. The restriction dfto ¢ = 1 is equal toor;. The restriction of
Atot =0 defines the following transversally elliptic symbol

ot (m. .0, w) = 01(m. v~ Hun) @ 02 (6w = H(y) o))

sinc:ern’?E =M, for every (m,&) € M x OF. Next, we consider the symbd} on [0,1] x
T(M x OF) defined by

B(t;m, &, v,w) =o1(m,v —Hpm) © 02(5’“’ - tH?;g-,E))'

We haveChar(B) = {(t;m,&,v,w) | v ="H,,, andw = tH?;g-f)} and

Char(B) N [0,1] x Tk (M x OF)

C{(tmo& v =Hm,w =11 ), [l + G o |F =0}

In particularChar(B) N [0,1] x Tx (M x OF) is contained in{(t;m, ,0,w = tH?;S o) ME
Cr(]|®]|?)} which is compact sinceCr(||®||?) is compact. So,B defines a homotopy of
transversally elliptic symbols between = B|;,—o and o1 = B|;=1. We have finally proved

thatoy, o1, oq17 define the same class K (Tx (M x OF)). O

When E = L is a k-prequantum line bundle ovek/, the line bundleL X (E[_M] is

a k-prequantum line bundle oved/ x OF, Therefore Proposition 3.7 shows that under
Assumption 3.6 thé<-multiplicities of RRE (M, L) have the form

(3.12) [RRE (¥, Lx)]",

where (X,wx,®) is a Hamiltonian K -manifold with Cr(||®|?) compact, andLx is a x-
prequantum line bundle oveY relative to aK-invariant almost complex structure. In order

to compute the quantity (3.12), we exploit in the next subsection the localization techniques
developed in [33].

3.4. Localization of themap RRE

For a detailed account on the procedure of localization that we use here, see Sections 4
and 6 of [33]. In this sectiofX,wy,®) is a HamiltonianK-manifold which is equipped
with a K -invariant almost complex structure, and:grequantum line bundl&. We suppose
furthermore thaCr(||®||2) is compact. We give here a condition under whiRX (X, L)|*
depends only on the data in the neighborhood ot (0).

For anyj3 € ¢, let X” be the symplectic submanifold of points af fixed by the torusT
generated by. Following Kirwan [22], the critical se€r(||®||?) decomposes as

(3.13) Cr(|@f?) = | Cf, with Cf =K. (7 no~'(8)),
BeB
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whereS is the subset of’. defined byB := {3 € t7, X n®~1(B) # 0}. SinceCr(||®||?) is
supposed to be compadi,is finite.
For eachs € B, letU/” — X be aK-invariantrelatively compacbpen neighborhood (It'é(

such that/8 N Cr(||®||?) = Cg. The restriction of the transversally elliptic symbithom - (X)
to the subse/” definesThom$ (%) € K i (T xUU?).

DEFINITION 3.8.— Forevery € B, we denote b}RRff(X, —) the Riemann—Roch character
localized neaﬂ’é(, which is defined by

RRY (X, E) =Index};s (Thomy, (U”) @ p* Elys),

for every K-vector bundlell — X.

Theexcision propertyells us that

(3.14) RRE (X,E)=)_ RRf(X,E)
BeB

for every K-vector bundleE — X (see [33, Section 4]). In particulafRRE (X, L)]¥ =
ZB[RR[@((XI)]K, and our main point here is to find suitable conditions under which
[RR (X, L)) =0 for 3+0.

Let 3 be a non-zero element in For every connected componesitof X°, let Nz be the
normal bundle ofZ in X. LetaZ,...,af be the real infinitesimal weights for the action
on the fibers ofVz ® C. The infinitesimal action ofs on Az ® C is a linear map with trace

equal toy/ =13, (aZ, ).

DEFINITION 3.9.— Letus denote b¥r ;3| Nz | the following positive number

l
Trp|Nz| =Y _|(af,B)],

=1

wherea?,...,af are the real infinitesimal weights for the actiorlbf on the fibers of/z @ C.
For anyT g-equivariant real vector bundk — Z (respectively redll s-equivariant real vector
spacek), we define in the same walrs|V| > 0 (respectivelyIrg|E| > 0).

Remark3.10.— If V = V! @ V?, we haveTrs|V| = Trg|V!| + Trg|V?|, and if V' is
an equivariant real subbundle of, we getTrs|V| > Trs|V’|. In particular one sees that
Trs|Nz| = Trs|TX|z|, and then, ifE,, C T,,X is a Tg-invariant real vector subspace for
somem € Z, we haveTrs|Nz| > Trg|Epy|.

The following proposition and corollary give us an essential condition under which the number
[RRE (X, L)]¥ only depends on data localized in a neighborhood of (0).

PROPOSITION 3.11. — Let L be ax-prequantum line bundle oveY. The multiplicity of the
trivial representation inRRé‘(X, L) is equal to zero if

(3.15) 812 + 5 TealWz| — 2(pe,8) > 0

for every connected componediof X which intersect®~!(3). Condition(3.15)always holds
if 5 €t — {0} is K-invariantor if || 3] > ||pc||-

4€ SERIE— TOME 36 — 2003 N° 5



Spirf-QUANTIZATION AND THE K-MULTIPLICITIES OF THE DISCRETE SERIES 821

Since every3 € B belongs to the Weyl chamber, we h&(g., 5) = Trs|¢/t|, and then (3.15)
can be rewritten a§3||2 + 3 Trg|Nz| — Trsle/t| > 0. From (3.14), we get

COROLLARY 3.12. —If condition(3.15)holds for all non-zergs € 3, we have
[RRE (%,L)]" = [RR} (X, D))",

whereRR{ (X, —) is the Riemann—Roch character localized néar' (0) (see Definitior8.8).
In particular, [RRE (X, L)]¥ =0 if (3.15)holds for all non-zerg3 € B, and0 ¢ Image(®).

3.5. Proof of Proposition 3.11

Wheng € ¢ is K-invariant, the scalar produ¢p., 3) vanishes and then (3.15) trivially holds.
Let us show that (3.15) holds whéls|| > ||p.||- Let Z be a connected componentdf which
intersects®—!(3). Let m € ®~1(3) N Z, and letE,, C T,,X be the subspace spanned by
Xx(m), X € t. We haveE,, ~ t/¢,,, wheret,, := {X € ¢, Xy (m) =0}. Since®(m) = (3, and
® is equivariant,,, C t3:={X € ¢, [X, 5] =0}, soT,, X contains &l 3-equivariant subspace
isomorphic tot/¢5. So we havélrs|Nz| > Trs|t/€s| = 2(p., 3), and then

1812 + 3 TealAz| — 2(pe, 8) > 181 ~ (pe. ) > 0

since|| 3] > [|pel. )
We prove now that condition (3.15) forcB8R s (X, L)] to be equal td). Letmg ,(E) € Z

be the K -multiplicities of the localized Riemann—Roch characRaRff(X,E) introduced in
Definition 3.8:RRf (X, E) = Zue/\: mg,, (E)x. We show now thatng o(L) = 0, by using
the formulas of localization that we proved in [33] for the ma&ﬁff(/‘v, -).

First case: § € B isanon-zero K-invariant element of ¢*. We show here the following

relation for the multiplicitiesng ,, (L):

- 1
(3.16) mg . (L) #0 = (1, B8) > ||8]> + 5 TrslNz|  forsomeZ c P,

in particularmg (L) = 0.

Since Ty belongs to the center ok, X7 is a symplecticK -invariant submanifold oft.
Let V' be the normal bundle o&” in X. The K-invariant almost complex structure d&f
induces akK -invariant almost complex structure ar’, and a complex structure on the fibers of
N — XP.Then we have a Riemann-Roch charaft&’ (X”, —) localized alongt’ n® 1 (3)
with the decompositiolRfy (X7, F) = 3~ ; RRf (Z, F|z), where the sum is taken over the
connected componengsC X'? which intersectb~!(3). The torusT; acts linearly on the fibers
of the complex vector bundl&’, thus we can associate the polarized comgiexector bundle
N*8 and(N @ C)+# (see Definition 5.5 in [33]): for any redlz-weighta on N ++?, or on
(N ®C)**#, we have

(3.17) (a, 3) > 0.

We proved the following localization formula in Section 6.2 of [33] which holdsﬁi(rf() for
any K -vector bundlef over X';

(3.18) RRE (X, E) = (1) > RRE (X", Elxs ® det NP @ S* (W @ C)FF)).
keN
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Herery is the locally constant function o equal to the complex rank g¥+#, and.S*(—)
is thekth symmetric product ovet.

Leti:tsz — t be the inclusion of the Lie algebra @3, and leti* : t* — t; be the canonical
dual map. Let us recall the basic relationship betweenTthaveight on the fibers of &-

vector bundleF’ — X and theK-multiplicities of RR (X”, F) € R(K): if the irreducible
representatiory,, occurs inRRg(Xﬁ,F), theni*(u) is a Tg-weight on the fibers of" (see
Appendix B in [33]). .

If one now uses (3.18), one sees that 3(L) # 0 only if i*(p) is aTg-weight on the fibers
of someL|z @ det N1 ¥ @ §*((Nz @ C)™P). Since(i*(u), ) = (1, B), (3.16) will be proved
if one shows that eactiz-weightyz on L]z ® det V¥ ® S*((Nz © C)1F) satisfies

(3.19) (v2.8) 2 18I + 5 Tes Nz|.

Letaz be theT 5-weight on the fiber of the line bundil z  det V2" Since anyll 5-weight
on S*((N ® C)*P) satisfies (3.17), (3.19) holds if

(3.20) (az,B) =87 + %TT@INzl

for every Z c &% which intersectsb~1(3). Let Ly, be the prequantum line bundle on
(M,2w,2®) such thatL? = Lo, ® r (where x is by definition equal todet(Tg.X) =
det(TX)~1). We have

(E|Z ® det(NJrﬁ))z =Ly, |z @det(TX) !z ® det(J\/Jr'ﬂ)Q.

S02az = a; + as Whereay, as are respectivelyT s-weights onLs, |z anddet(TX)" !z @
det(N*7)2. The Kostant formula (2.1) oha,, | z gives(ay, X ) = 2(3, X ) for everyX € tg, in
particular

(3.21) (o1, 8) =2/ 8II>.

On Z, the complex vector bundl&X has the following decompositioif X |z = TZ @
NP o NP, where N~ is the orthogonal complement &f # in A: every T z-weight
§ on N'—F verifies (6, 3) < 0. So we get the decompositialet(TX) |z @ det(N+F)? =
det(TZ) ® det(N—P)~! @ det (N +7), which gives

(3.22) (a2, B) = Trp|Nz|
sinceT acts trivially onT Z. Finally (3.20) follows trivially from (3.21) and (3.22).

Second case: 3 € B suchthat Kz # K. Consider the induced Hamiltonian action/g on
X, with moment magb, : X — €. Let B’ be the indexing set for the critical point §® x, ||
(see (3.13)). Following Definition 3.8, for eagh € B’ we consider theiz-Riemann—Roch

characterRRg,ﬁ(X, —) localized alongﬂg"’ = Kg.(X%' N @;(;13 (3")). Hereg is a K g-invariant
element of3’ with Cé(ﬁ =XNne1(B).

Let Holf\ : R=>°(T") — R™>°(K), Holy” : R=>°(T') — R~>(K), andHolf{ : R=°(K )
— R™°°(K) be the holomorphic induction maps (see Appendix B in [33]). Recall that
Hol¥ = Holﬁﬁ o Holéfﬁ. The choice of a Weyl chamber determines a complex structure on the
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real vector space/ts. We denote by/ts the vector space endowed with the opposite complex
structure.
The induction formula that we proved in [33, Section 6] states that

(3.23) RRE(X,E)=Hollf (RR}"(X,E) AL €/t5)

for every equivariant vector bundIE. Let us first write the decompositioRRgﬁ (X,i) =

D ouent mﬁ7u(i)xff" into irreducible characters akg. Since is Kg-invariant we can use
B

the result of the First case. In particular (3.16) tells us that

1
Trp|Nz|

(3.24) mg (L) #0 = (u.8) > 1B8]° + 5

for some connected componeitc X'° which intersect®~1(3).
Each irreducible charactgrffﬁ is equal toHoléf‘* (t*), so from (3.23) we get

RRY(M, L) H01T<(me t“) 11 (1—t‘“))

aE€RF(b/tg)

whereR ™ (¢/€3) is the set of positivd’-weights ont/tz: so (o, 3) > 0 for all o« € RT(€/€3).
Finally, we see thaRRX (M, L) is a sum of terms of the formy ,,(L)Holj (t“~°1) where
o1 =) ;o and | is a subset ofRT(¢/¢3). We know thatHol% (¢#') is either0 or the
character of an irreducible representation (tirtely; in particularHolé’f(t“')~ is equal to+1
only if (1/,X) <0 for every X ¢ t, (see Appendix B in [33]). SQRR[ (M, L)]* # 0 only if
there exists a weight such thatngs (L) # 0 and thatHol% (t#~°1) = +1. The first condition

imposes(y1, 3) = ||8]|> + 4+ Trs|Nz| for some connected componefitc X, and the second
one givesy, ) < (a1, 8). Combining the two we end up with

1
18I + 5 TrslVz| < (o B) < Y (o) =2(pe, ),

acRt(E/tg)

for some connected componeftcC X# which intersectsp—!(3). This completes the proof
that[RRf (M, L)) = 0if ||8]|* + 3Trs|Nz| > 2(p, 8) for every componeng C X which
intersectsb—1(3).

4, Quantization commuteswith reduction

Let (M,w, ®) be a Hamiltoniar-manifold equipped with an almost complex structurén
this section, we assume that the moment ridaip proper and that the se€'r(||®||?) of critical
points of || ®||?: M — R is compact We denote the corresponding Riemann—Roch character by
RRE (M, —) (see Definition 3.2). Lef := ®(M) Nt be the moment polyhedron.

The main result of this section is the following

THEOREM 4.1. — Suppose thaf\/ satisfies Assumptio8.6 at everyi € t*, and that the
infinitesimal stabilizers for thé-action onM are Abelian If L is a k-prequantum line bundle
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over(M,w,®,.J), we have

(4.25) RRE(M,L)=¢ Y Q(Myip)xp,
ueAi

wheree = +1 is the ‘quotient’ of the orientation(J) defined by the almost complex structure
and the orientation(w) defined by the symplectic form. Here the inte@¢i/,,, ,.) is computed
by Propositior2.4. In particular, Q(M,.+,. ) = 0if 1+ p. does not belong to the relative interior
of A.

The same result holds in the traditional ‘prequantum’ case. Supposk/tkatisfies Assump-
tion 3.6 at everyu € t*, and that the almost complex structufds compatible withw. If L is
a prequantum line bundle ovéh/, w, @), we haveRRg (M, L) =3 - RR(M,,, L)X} -

+

The next lemma is the first step in computing tRemultiplicities mu(i) of RR{{(M,E).
Since(M, ®) satisfies Assumption 3.6 at evelywe know from Proposition 3.7 that,, (L) =
[RRE (M x OF, LK C[_,)]¥ for everyp € A%

Let RRE (M x OF, —) be the Riemann—Roch character localized I¢(§E:l]r(0) ~®d L(u+p.)
(see Definition 3.8). This map is tlzero magf &1 (u + p.) = 0.

LEMMA 4.2.— Let L be ax-prequantum line bundle oved/. Suppose that the infinitesimal
stabilizers for the/{-action areAbelianand that AssumptioB.6is satisfied afi. We have then

(4.26) m,, (L) = [RRE (M x OF, LRC_,)]"

In particularm,, (L) = 0 if x+ p. does not belong to the moment polyhedfon

Proof. —The lemma follows from Corollary 3.12, applied to the Hamiltonian maniftld=
M x OF, with moment mapp; andx-prequantum line bundlé X Ci_,- Let 8 # 0 such that
XPN®,"(3) # 0. Let V' be the normal bundle ot in X, and letz € X7 N ®,*(3). From
the criterion of Proposition 3.11, it is sufficient to show that

1
(4.27) 18I + 5 Trs Nz = 2(pc, 8) > 0.

Write x = (m, &) with m € M#? and ¢ € (0#)#. We know thatTrs| N, | = Trg| T, X| =
Trp| Ty, M| + Trg|TOF|.

Since the stabilizet, ~ t is Abelian andj < ¢ we havet: C £3. Then the tangent
spaceT:OF ~ £/t contains a copy ok/ts, so Trs|T:O| > Trslt/ts| = 2(p.,3). On
the other handT',,M contains the vector spack,, ~ £/¢,, spanned byX,;(m), X € ¢.
We have assume that the stabilizer subalgehyrais Abelian, and sinces € ¢,,, we get
¢, C tg. Thust/¢s C E,,, C T,, M andTrs|T,, M| > 2(p., 3). Finally (4.27) is proved since
L(Tr| T M| + Trg|TeOR)) > 2(pe. f). O

The remaining part of this section is devoted to the proof of Theorem 4.1. Following the
preceding lemma we have to show that

(4.28) [RRE (M x OF, LRC_ )] =cQ(M,i1,.),
whereQ(M,,.) is defined in Proposition 2.4.
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In Section 4.1, we recall the basic notions ab8pin“-structures. The existence of induced
Spin‘-structures on symplectic quotient is proved in Section 4.2. The proof of (4.28) is settled in
Section 4.3. We give in the same time the proof of the ‘*hard part’ of Proposition 2.4: the fact that
the indexQ(M,) does not depend af for £ sufficiently close tq: + p.

4.1. Spin® structuresand symbols

We refer to Lawson and Michelson [25] for background Bpin‘-structures, and to
Duistermaat [14] for a discussion of the symplectic case.

The groupSpin,, is the connected double cover of the grd8,,. Let » : Spin,, — SO,
be the covering map, and letbe the element which generates the kernel. The gfnip;,
is the quotientSpin,, xz, U;, whereZ, acts by (¢,—1). There are two canonical group
homomorphisms

7: Spin;, — SO, Det : Spin{, — Uj.

Note thatn® = (1, Det) : Spin;, — SO,, x U; is a double covering map.

Let p: E — M be an oriented Euclidean vector bundle of rankand letPso(FE) be its
bundle of oriented orthonormal frames. $pin°-structure onE is a Spin;, principal bundle
Pspine () — M, together with &pin“-equivariant mafPspinc (£) — Pso(E). The line bundle

(429) L:= PSpinC (E) X Det C

is called thecanonical line bundleassociated td®gpinc (£). We have then a double covering
map*

(430) nCE : PSpin“ (E) — PSO(E) X PU(L),

wherePy (L) := Pgpinc (E) Xpet Ut is the associated; -principal bundle oved/.

A Spin°-structure on an oriented Riemannian manifold iSpan°“-structure on its tangent
bundle. If a grougs acts on the bundl&, preserving the orientation and the Euclidean structure,
we define aK-equivariantSpin©-structure by requiringPspinc (E) to be a K-equivariant
principal bundle, and (4.30) to Hé& x Spin, )-equivariant.

Let Ao, be the complex Spin representationSyfing,,. Recall thatAs,, = A;m D A,
inherits a canonical Clifford actioa : R?™ — Endc(As,,) which is Spin$,,,-equivariant, and
which interchanges the gradingv) : AL, — AJ, , for everyv € R?™. Let

(4.31) S(E) = PSpinC (E) Xspingm Agm

be the spinor bundle oveM, with the gradingS(FE) := S(E)™ @ S(F)~. Since E =
Pspine (E) X Sping, R?™, the bundley*S(E) is isomorphic taPspinc (E) X Sping, | (R*™ ® Ay, ).

Let E be the bundle& with opposite orientation. Apin® structure onE induces &pin® on
E, with the same canonical line bundle, and such &@)* = S(E)T.

DEFINITION 4.3.—LetS-Thom(E):p*S(E)* — p*S(F)~ be the symbol defined by
PSpinC (E) ><Spingm (R2m 2] A;_m) - PSpimC (E) ><Spimgm (RZm 2] Ag_m)a

[p; v, w] = [p, v, c(v)w].

41f P, Q are principal bundle ovek/ respectively for the group§ and H, we denote simply by x Q their fibering
product overM which is aG x H principal bundle oven\/.
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When FE is the tangent bundle of a manifold/, the symbolS-Thom(FE) is denoted
by S-Thom(M). If a group K acts equivariantly on thé&pin®-structure, we denote by
S-Thomg (E) the equivariant symbol.

The characteristic set &-Thom(F) is M ~ {zero section of E}, hence it defines a class
in K(E) if M is compact (this class is a free generator of Wé\M )-module K(E) [3]).
When E = TM, the symbolS-Thom(M) corresponds to thprincipal symbolof the Spin®
Dirac operator associated to tBein“-structure [14]. If moreovel is compact, the number
Q(M) € Z is defined as the index &§-Thom(M). If we change the orientation, note that
Q(I) = -Q(M).

Remark4.4. — Itshould be noted that the choice of the metric on the fibefs®hot essential
in the construction. Legy, g1 be two metrics on the fibers &, and suppose thaF, g,) admits
aSpin®-structure denoted s ine (E, go). The trivial homotopyy, = (1 —¢).go + t.g1 between
the metrics, induces a homotopy between the principal budtlg$F, go), Pso(F, g1) which
can be lifted to a homotopy betwe®r ;.- (E, go) and aSpin“-bundle over(E, g1). When the
baseM is compact, the corresponding symb8i§hom(FE, go) andS-Thom(E, g;) define the
same class K (F).

These notions extend to the orbifold case. Métbe a manifold with a locally free action
of a compact Lie groupd. The quotientX := M/H is an orbifold, a space with finite
quotient singularities. Apin® structure onX is by definition aH -equivariantSpin® structure
on the bundleTy M — M, where Ty M is identified with the pullback ofTX via the
quotient mapr: M — X. We define in the same wa¥yThom(X) € K,»(TX), such that
7*S-Thom(X) = S-Thomp (T y M ). HereK,,, denotes thé(-theory ofpropervector bundles
[21]. The pullback byr induces an isomorphism* : K., (TX) ~ Ky (T g M). The number
Q(X) € Zis defined as the index 8f Thom(.X'), or equivalently as the multiplicity of the trivial
representation ifindex?, (S-Thom (T M)).

Consider now the case of ldermitian vector bundleE — M, of complex rankm. The
orientation on the fibers of is given by the complex structuré. Let Py (E) be the bundle
of unitary frames orfs. We denote by: U,,, — SO, the canonical inclusion map. We have a
morphism; : U,,, — Spins,,, which makes the diagram

U ! Spins,,,
4.32 .
(4.32) \\ l"
SOQm X U1

commutative [25]. Then
(433) PSpinC (E) = Spingm Xj PU(E)
defines &pin®-structure over, with canonical line bundle equal tetc E.

LEMMA 4.5.—LetM be a manifold equipped with an almost complex structur€he symbol
S-Thom(M ) defined by th&pin®-structure(4.33) and the Thom symbdlhom (A, J) defined
in Section3.2 coincide.

Proof. —The spinor bundles is of the formPgpinc (TM) X Sping, . Agy, = Py(TM) xy,,
Az, The mape: R2™ — Endc (A2, ), When restricted to th¥,,, -equivariant action through
is equivalent to the Clifford ma@'l: R?™ — Endc(AC™) (with the canonical action df,,, on
R2™ andAC™). ThenS = A¢TM endowed with the Clifford action. O
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LEMMA 4.6.— Let P be aSpin“-structure overM, with bundle of spinorss, and canonical
line bundlelL. For every Hermitian line bundl& — M, there exists a unigugpin®-structureP;,
with bundle of spinor$ ® L, and canonical line bunde ® L? (Py, is called theSpin°-structure
P twisted byL).

Proof. -Take P, = P xy, Py(L). O

We finish this subsection with the following definitions. L@t, o) be an oriented manifold.
Suppose that

e aconnected compact LiE acts onM,

e (M,o0,K) carries aK -equivarianSpin°®-structure,

e one has an equivariant map: M — ¢.

Suppose first thal/ is compact. The symb&-Thomg (M) is then elliptic and defines a map

OF(M,-):Kg(M) — R(K)

by the relationQ® (M, V) := Index’; (S-Thomg (M) ® V). ThusQX (M, V) is the equivariant
index of theSpin® Dirac operator on\/ twisted byV'.
Let U, be the equivariant vector field aW defined byW ;(m) := ¥ (m) psr|m.-

DEFINITION 4.7.— The symbo$-Thomg (M) deformed by the may, which is denoted by
S-Thom (M), is defined by the relation

S-Thom (M )(m,v) := S-Thomg (M) (m,v—Wp(m))

for any (m,v) € TM. The symboB-Thom}. (M) is transversally elliptic if and only ifm €
M,V r(m) =0} is compact. When this holds one defines the localized @&pM, V) :=
Index}; (S-Thomy (M) ® V).

We finish this section with an adaptation of Lemma 9.4 and Corollary 9.5 of [33, Appendix B]
to the localized ma@X (M, —). Let 3 € t% be a non-zero element in the center of the Lie
algebrat = ¢* of K. We suppose here that the subtoiu¥s — K, which is equal to the
closure of{exp(t.3), t € R}, acts trivially onM. Let m, (V), u € A% be theK-multiplicities
of QK (M, V).

LEMMA 4.8.— If m, (V) # 0, 7*(11) is a weight for the action o3 on V @ 2. If each
weighta for the action ofT; onV ® LL* satisfiega, 3) > 0, then[QK (M, V)]X =0.

4.2. Spin® structureson symplectic reductions

Let (M, w, ®) be a Hamiltoniank -manifold, such thaf is proper. LetJ be aK-invariant
almost complex structure ol . And let L be ax-prequantum line bundle ovéi/, w, J). Since
we do not impose a compatibility condition betweérand w, the almost complex structure
does not descend to the symplectic quotients in general. Nevertheless we prove in this section
that theSpin© prequantization defined by the daﬁ J) induces &pin°® prequantization on the
symplectic quotientd/,, .

Let Y be the subse® ! (interior(t )). When) # 0, the Principal-cross-section Theorem
tells us thaty is a HamiltonianZ'-submanifold ofM/, with moment map the restriction @f to

Y [26].

LEMMA 4.9.— If the infinitesimal stabilizers for thé<{-action on M are Abelian, the
symplectic cross-sectighi is not empty.
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Proof. —There exists a unique relatively open faceof the Weyl chambet’ such that
®(M) N is dense in®(M) N t;. The facer is called the principal face dfi/, ®) [26]. All
points in the open face have the same connected centrali#zér. The Principal-cross-section
Theorem tells us th@t, := ®~1(7) is a Hamiltoniank .-manifold, wheré K ,, K] acts trivially
[26]. Here we have assumed that the subalgebyas= {X € ¢, X/(m) =0}, m € M, are
Abelian. Hencelt,, ¢.] C &, for everym € );, and this impose$t., ¢,] = 0. Therefore the
subgroupk’; is Abelian, and this is the case onlyrifis the interior of the Weyl chamber.o

For the remaining of this section, we assume fiat (), so that the relative interiak® of the
moment polyhedron is a dense subse®@})’). On M, we have the orientation(.J) defined by
the almost complex structure and the orientation) defined by the symplectic form. We denote
their ‘quotient’ bye = £1. On the symplectic quotients we will also have two orientations, one
induced byw, and the other induced by, with the same ‘quotient.

PROPOSITION 4.10. — The almost complex structuteinduces

(i) an orientationo()) on), and

(i) aT-equivariantSpin® structure on()’, o()’)) with canonical line bundldetc(TM|y) ®
C_2p,-

Proof. —On Y, we have the decompositidnl/ |y = TY @ [¢/t], where[t/t] denotes the trivial
bundle) x &/t corresponding to the subspace®i/|,, formed by the vector fields generated
by the infinitesimal action of/t. The choice of the Weyl chamber induces a complex structure
on t/t, and hence an orientatiari[t/t]). This orientation can also be defined by a symplectic
form of the typew,(X,Y) = (£, [X,Y]), where¢ belongs to the interiot’ . Let o()) be the
orientation ony defined byo(.J)|y = o(Y)o([t/t]). On Y, we also have the orientatiarfwy)
defined by the symplectic form,,. Note that ifo(J) = co(w), we have als@(Y) = co(wy).

Let P := Sping,, xu, Puy(TM) be theSpin® structure onM induced byJ (see (4.33)).
When restricted tq), P|y defines aSpin® structure on the bundi&@y ¢ [¢/t]. Let ¢ be a
T-invariant Riemannian structure dRY @ [¢/t] such thatT) is orthogonal with[¢/t], and
g equals the Killing form on[t/t]. Following Remark 4.4P|y induces aSpin® structure
P’ on (TY @ [t/1],q), with the same canonical line bundle = detc(TM|y). Since the
SOgi x Uj-principal bundlePso (TY) x U(€/t) is a reductiof of the SO, principal bundle
Pso(TY @ [¢/t]), we have the commutative diagram

Q Pso(TY) x U(t/t) x Pu(L)

w |

P/ Pso(TY @ [t/t]) x Py(L),

whereQ is a(n°)~1(SOzx x U;) =~ Spin$,, x U,;-principal bundle. Finally we see tha@t = Q/U;,
is aSpin® structure oriCY. Since(U(¢/t) x Py(L))/U; ~Py(L ® C_5,, ), the corresponding
canonical line bundle &' =L ® C_5,,. O

Let Aff(A) be the affine subspace generated by moment polyhefircemd letA be the
subspace of* generated byfm — n | m,n € A}. Let Ta be the subtorus df with Lie algebra
ta equal to the orthogonal (for the duality) & Itis not difficult to see thal'a corresponds to
the connected component of the principal stabilizer forfthaction on) .

5Here2n = dim M, 2k = dim Y and2l = dim(/t), son =k + 1.
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Here we consider the symplectic quotiédt := ®~1(£) /T for generic quasi-regular values
¢ € A° (see Definition 2.3). For such the fiber®d—1(¢) is a smooth submanifold af/, with
a locally free action of'/Ta, and with a tubular neighborhood equivariantly diffeomorphic to
d1(¢) x A. Recall that)/, inherits a canonical symplectic foray.

PROPOSITION 4.11. — Let , € A% such thatii = p + p. belongs toA. Let L be ax-
prequantum line bundle. For every generic quasi-regular vadue A°, the Spin® structure
on Y, when twisted byl.|y ® C_,,, induces aSpin® structure on the reduced spadd; :=
®~1(¢)/T with canonical line bundlg Ls,, |¢-1(¢) ® C_2;)/T. Here we have two choices for
the orientationso(M;) induced by(Y), ando(wg) defined by the symplectic forng. They are
related byo(M¢) = eo(we).

Remark4.12. — The preceding proposition will be used

(i) when & = i + p. is a generic quasi-regular value df: the symplectic quotient
(M4 p.,wWptp, ) is thenSpin® prequantized. Or

(i) for generaly + p. € A. One takes theg generic quasi-regular close enoughite- p..

Proof of Propositiond.11 —Let £ € A° be a generic quasi-regular value &f and Z :=
®~1(¢). This is a submanifold of with a trivial action of 7o and a locally free action of
T/Ta. We denote the quotient map by Z — M,. We identify* (T M,) with the orthogonal
complement (with respect to a Riemannian metric) of the trivial buftdie\] formed by the
vector fields generated by the infinitesimal action Gfy. On the other hand the tangent bundle
TY, when restricted t&, decomposes dBY|z = TZ @ [A], so we have

(4.35) TY|z =" (TMg) @ [t/ta] © [A] = 7*(TMe) @ [t/ta ® C,

with the convention/ta = t/ta ® iR andA = t/ta @ R. Sincet/ta ® C is canonically oriented
by the complex multiplication by, the orientatioro()) determines an orientatios(M¢) on
T M, through (4.35).

Now we proceed like the proof of Proposition 4.11. L@t be theSpin® structure on)
introduced in Proposition 4.11, and 1€/* be Q' twisted by the line bundld.|y ® C_u:
its canonical line bundle igletc(TM)|y ® C_s, @ (Lly ® C_,)? = Lay|y ® C_o;. The
SOqir x Up-principal bundlePso (7 (TM)) x U(t/ta ® C) is a reductiof of the SO,
principal bundlePso (7* (T M) @ [t/ta ® C]); we have the commutative diagram

QN Pso(ﬂ'* (TMg)) X U(f/fA ®(C) X PU(L|Z)

| |

Q'|z ——————Pso(m"(TM¢) @ [t/ta @ C]) x Py(L|z),

whereL = Lo, |y ® C_oz. HereQ” is a(n®) =1 (SO2x x Uy ) ~ Sping,, x Uy -principal bundle.
The Kostant formula (2.1) tells us that the actiorfaf is trivial onL| z, since — i € A. Thus
the action ofl'4 is trivial on Q”. Finally we see thaf): = Q" /(U;» x T') is aSpin® structure on
M¢ with canonical line bundl&¢ = (Lo |z ® C_23)/T. O

6 Here2k = dim Y, 2k’ = dim M, andl’ = dim(t/ta), SOk =k’ + 1.
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4.3. Definition of Q(M,.+,.)

First we give three different ways to define the quan@yM,., ) € Z for any p € A%
The compatibility of these different definitions proves Theorem 4.1 and the ‘hard part’ of
Proposition 2.4 simultaneously. First of @A, 1, ) =0if u+ p. ¢ A.

First definition If 1 + p. € A° is ageneric quasi regulavalue of®, M, , =& '(u+
pc)/T is a symplectic orbifold. We know from Proposition 4.11 tid}, . inherits Spin®-
structures, with the same canonical line bundle, |- () ® C_2)/T, for the two choices of
orientationo(M,,+,.) ando(w,.+,. ). We denote the index of tHfpin® Dirac operator associated
to theSpin® structure or{M,,4 ., 0(wy+p.)) by Q(M,.+,.) € Z and the index of th8pin® Dirac
operator associated to tfpin® structure on(M,, 4, ,0(M,4,.)) by Q(M,4,.,0(M,4p,))-
Sinceo(M,.4p,.) = €0(wputp, ), We haveQ (M, 1p.) = QM4 p., o(Myuyp,))-

Second definitionWe can also defin€)(M,,4,.) by shift ‘desingularization’ as follows.
If u+ p. € A, one considers genenc guasi regular valges A°, close enough tq: + pe.
Following Proposition 4.11M, = ®~1(£)/T inherits aSpin® structure, with canonical line
bundle (Lay|e-1(c) ® Coz)/T. Then we setQ(M,,1,.) := Q(M¢), where the RHS is the
index of theSpin® Dirac operator associated to tHgin® structure onM¢, o(we)). If we take
the orientatioro(M¢) induced byo(Y) we have another inde@(Me, o(M)) = cQ(M). Here
one has to show that these quantities do not depend on the chgieehei¢ is close enough to
w1+ pe. We will see thatQ(M,, 1, ) = 0 whenp + p. ¢ A°.

Third definition We can use the characterization of the multiplicity#(i) given in
Lemma 4.2. The numbeg( M,+,.) is the multiplicity of the trivial representation in
eRRE(M x OF L ®C [—u)-

We have to show the compatibility of these definitions, that is

(4.37) it i+ pe € A% [RRE(M x OF, Lo C_,))]" = Q(Mg, 0(Mc))
for any generic quasi regular valges A° close enough tg + p.. And

. o K AT T =~ K
(4.38) if 14 pe ¢ A°: [RRy (M x OF, L& C_,)] " =0.

We have proved already (Lemma 4.2) thaR}S (M x OF, L @ C_,)|X = 0if pu+ p. ¢ A.

We work now with a fixed element € A% such thatii = i + p. belongs toA. During
the remaining part of this sectiod] will denote a smallT-invariant open neighborhood of
&1 (1u+ p.) in the symplectic slice ! (interior(t")).

We will check in Section 4.5, that the functioft® — /|| and||® — £]|? have compact critical
set on) when¢ € Aff(A) is close enough tgi. Since the manifolc{y oY )) carries al-
invariantSpin°-structure, we consider the localized me@§ —)and Q% ¢V, —) (see
Definition 4.7). The proof of (4.37) and (4.38) is divided |nto two steps. We flrst relate the maps
RRE(M x OF,—) and Q% »—; (Y, —) through the induction map

(4.39) Ind% :C~>(T) — C~*°(K)¥.
HereC~>°(T"), C~*°(K) denote respectively the set of generalized function¥'@nd X', and

the K invariants are taken with the conjugation action. The ﬂmﬁf is defined as follows: for
¢ €C~>°(T), we have

[ @ ak =2 / 8(0) ()
K
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for every f € C*°(K)X.

PrRoOPOSITION 4.13. — Let E and F' be respectively-equivariant complex vector bundles
over M and O%. We have the following equality

RRE (M x OF ERF) =Ind} (QF_;,(V,Ely ® Fl2))
in R~°°(K). It gives in particular that
[RRE (M x OF, ER F)]" = [Q}_, (¥, Ely® F|.)]".

After we compute the ma@g_ﬂ(y, —) by making the shiffi — ¢&.

PROPOSITION 4.14. — Supposé € Aff(A) is close enough t@. Then
(i) the mapsQf (¥, —) andQf_(, -) are equal,
(i) if furthermore¢ € A° is a generic quasi-regular value @f we get

[Q5-c(V. LIy C_.)]" = Q(Me,o(My)),

(iii) andif¢ ¢ A, [QF (¥, LIy ®C_))" =0.
Finally, if £ € Aff(A) is close enough t@, Propositions 4.13 and 4.14 give

(4.40) [RRE(M x OF, Lo C_,)]" = [Q4_, (. LlyeC_.)]"

—[Q5_, Llyeoc_,)] .

If w4+ p. € A°, we choos& € A° close tou + p.: in this case (4.37) follows from (4.40) and
the point (ii) of Proposition 4.14. Ifi + p. ¢ A°, we choos€ close tou + p. and not inA: in
this case (4.38) follows from (4.40) and the point (iii) of Proposition 4.14.

Propositions 4.13 and 4.14 are proved in the next subsections.

4.4. Proof of Proposition 4.13

The induction formula of Proposition 4.13 is essentially identical to the one we proved in [33].
The main difference is that the almost complex structure is not assumed to be compatible with
the symplectic structure.

We identify the coadjoint orbi©” with K/T. Let 1" be the Hamiltonian vector field of
the function=(|®;(?: M x K/T — R. Here) denotes a small neighborhood &f* (i) in
the symplectic sliceb~ (interior(t )) such that the open subgét= (K xr V) x K/T is a
neighborhood ofo ' (0) = K - (@~ (ji) x {}) which verifiesd N {H" =0} = &' (0).

From Definition 3.8, the localized Riemann—Roch charaRt&§ (M x K /T, —) is computed
by means of the Thom claﬁhom? (U) € Kig(TgU). On the other hand, the localized
map QT_ﬂ(y,—) is computed by means of the classThom} #()) € Kr(Tr)) (see
Definition 4.7). Proposition 4.13 will follow from a simple relation between these two
transversally elliptic symbols.

First, we consider the isomorphism i/ — U’, ¢([k;y], [h]) = [k; [k~ 1h],y], whereld’ :=
K x7 (K/T x ). Let¢* : Ky (TxU') — K (TxU) be the induced isomorphism. Then one
considers the inclusion: T — K which induces an isomorphisi : K+ (T (K/T x ))) —

K (TrU') (see [1,33)). Letj: Y — K/T x Y be theT-invariant inclusion map defined by

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



832 P.-E. PARADAN
j(y) == (&,y). We have then a pushforward mapK,(T7Y) — K¢ (Tr(K/T x Y)). Finally
we get a map

0:=¢"oi,0j: Kp(Tr)Y) —» Ki(Trl),

such thafindex/; (©(0)) = Indf (Index3;(0)) for everyo € Kr(T7Y) (see Section 3 in [33]).
Proposition 4.13 is an immediate consequence of the following

LEMMA 4.15. -We have the equality

O(S-Thom$ #(Y)) = Thom'p* ().

Proof. —Let S be the bundle of spinors oK x7 ): S =P X Sping, Ao, whereP —

Pso(T(K x7 Y)) x Py(L) is the Spin® structure induced by the complex structure. From
Proposition 4.10, we have the reductions

Q

Pso(TY) x U(t/t) x Py(L|y)

|

(4.41) Ply Pso(TY & [¢/t]) x Pu(L{y)
P

Pso(T(K X y)) X PU(L)

Here@/U; is the inducedpin®-structure oriy. Let us denote by: T(K xr)Y) — K x1 Y,
py:TY — Y andpk,r: T(K/T)— K/T the canonical projections. Using (4.41), we see that

p*S= (K x7p3S())) ® pxr Ne T(K/T),
whereS()) is the spinor bundle o. Hence we get the decomposition
S-Thomg (K x7 Y) = Thomg (K/T) ® K X7 S-Thomz()).

The transversally elliptic symbd]‘hom}}f (U) is equal to

[Thomg (K/T) ® Thomg (K/T) ® K xr S—ThomT(y)]deformed by 7>

hencer; := (q&‘l)*Thomf;ﬂ (U) is equal to

[Thomg (K/T) ® K x7 (Thomy (K/T) ® S-Thomz (V)] 4 ormed by H
whereH = ¢, (HM).

Using the decompositioi/’ ~ K xr (¢/t® K xr (¢/t) © TY), a small computation gives
H'(m) = pry,(hi) + R(m) + Ha(y) + S(m) for m = [k;[h],y] € U, where’ R(m) € ¢/t
and S(m) € T,Y vanishes whemn € K xr ({e} x V), i.e., when[h] = &. Here H is the
Hamiltonian vector field of the functios! |® — i[|?: Y — R.

7 A small computation shows thd@(m) = pry (A~ (pr(hi2) — ®(y))), andS(m) = [z — pry(hii)]y (y).
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The transversally elliptic symbel, is equal to the exterior product
a1 (m, & + & +v) = c(& — prey(hft)) © c(§2 — R(m)) © c(v —Hz — S(m)),

with & € £/t, & € £/t, andv € TY.

Now, we simplify the symbob without changing it -theoretic class. Sinc€har(o1) N
TrU' = K xr ({€} x V), we transformp; through theK -invariant diffeomorphisnh = e~
from a neighborhood df in £/t to a neighborhood afin K/T. That givesr, € K (Tx (K X1
(¢/t x Y))) defined by

oa([k; X, y), &1+ & +v) = (& —pry (e¥ 1)) © ¢(&2 — R(m)) © ¢(v — Hp — S(m)).
Now trivial homotopies linksy with the symbol

03([kaXv y]agl +& +U) = C(gl - [Xvﬂ]) ®C(€2) QC(U - Hﬁ)a

where we have removed the terfiém) andS(m), and where we have replaced, (¥ 1) =
[X, i + o([X, i]) by the term[X, i]. Now we see thabs = i.(04) Where the symbob, €
Kp(Tr(t/t x Y)) is defined by

04(X,y; & +v) =c(—[X,f]) ©c(&2) @c(v —Hp).

Sooy is equal to the exterior product 6§, v) — c(v — H;), which isS-Thomi’[‘(y), with the
transversally elliptic symbol otyt: (X, &2) — c(—[X, i]) ® c(&2). But the K -theoretic class of
this former symbol is equal th (C), wherek: {0} — ¢/t (see Section 5.1 in [33]). This shows
that

04 = k(C) ®S-Thom? #(¥) = ji(S-Thom? #(I)). O
4.5. Proof of Proposition 4.14

In this subsectionj = 1 + p. is fixed, and is assumed to belongAo The induced moment
map on the symplectic slicé ! (Interior(t* )) is still denoted byd. Letr > 0 be the smallest
non zero critical value of ® — i, and lety = ®~1{¢ € Aff(A), | — 4]l < 5}

For ¢ € Aff(A), we conside, =t + (1 — t)fi, 0 <t < 1. If one shows that there exists
a compact subset C Y such thatCr([|® — &||?) N Y C K, the family S-Thom7 (),

0 < t < 1, defines then a homotopy of transversally elliptic symbols betvﬁe@homi’ﬂ()})
andS-Thom7.~*(Y). It shows thaQ} (Y, —) andQ% _, (¥, -) are equal.

We describe novr(||® — &||?) N Y using a parameterization introduced in [30, Section 6].
Let 5 be the collection of affine subspacegbfenerated by the image undeiof submanifolds
Z of the following type: Z is a connected component 9f7 which intersectsd—!(j), H
being a subgroup of. The setB is finite since®~!(ji) is compact and thus has a finite
number of stabilizers for th& action. Note that3 is reduced toAff(A) if i is a generic
quasi regular value ob. For A € B, we denote by3(—, A) the orthogonal projection od.
Let B ={5(&,A) — & | A € B}. Like in [31, Section 4.3], we see that

(4.42) Cr(lo—gP)ny=[J " ne(B+9)

BEBe

if [|€— fil] < 5. If we takeK := &1 {¢& € AA, [|¢ — 1] < 5}, we haveCr(|@ — £[2)NY C K
for [|£ — fi]| < 5. Thus point (i) of Proposition 4.14 is proved.
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Now we fix¢ € Aff(A) close enough tgi. And for eachs € B¢, we denote byQ% (¥, —) the
map localized neap’® N ®~1(3 + ¢). The excision property tells us, like in (3.14), that

(V. —)=)_ Qh(Y,-).

BEBe

Note that0 € B; if and only if ~1(¢) # 0. Point (iii) of Proposition 4.14 will follow from the
following

LEMMA 4.16. - Let{ € Aff(A) close enough tgi, and let be a non-zero element &% .
Then[QF (Y, L]y ® C)]" = 0. Hence[Qg (Y, Ly @ C_,)]" =0,if ¢ A.

For the point (ii) of Proposition 4.14, we also need the

LEMMA 4.17.—If £ € A° is a generic quasi regular value df, we have[QF (V, L]y ®
C_)]" = Q(Me,0(M)).

Other versions of Lemmas 4.17 and 4.16 are already known: igythecase for ar!-action
by Vergne [42], and by the author [33] when tBigin“-structure comes from an almost complex
structure.

We review briefly the arguments, since they work in the same way. We consid8pihe
structure onY defined in Proposition 4.10, that we twist by the line bunflle ® C_,,: it
defines &pin® structureQ” on Y with canonical line bundl&" := Lo, ® C_5;. We consider

then the symboB-Thom;f(y) constructed withQ* (see Definition 4.7). Fop € B, the
term Q% (¥, L|y ® C_,,) is by definition theT-index of S-Thomg'i;f(yﬂug, wherel/” is a
sufficiently small open neighborhood ®F N ®~1(3 +¢) in Y.

Proof of Lemmat.17. — A neighborhood/® of Z := ®~1(¢) is diffeomorphic to a neighbor-
hood ofg> in Z x A, where® — £ Z x A — A is the projection to the second factor. Let
pr: Z x A — Z be the projection to the first factor. We still denote @y the Spin°-structure
on Z x A equal topr*(Q*| z ). We easily show tha@} (, Ly ®C_,) is equal to the -index

of 0z = $-Thom3, *(Z x &). Let Q" be the reduction 0R"|z introduced in (4.36). Since
Q| z = Sping,, X (Sping, , x Ugy/) Q", the bundle of spinor§ overZ x A decomposes as

S=pr* (7" S(Me) ® Z x A(t/ta ® C)).

Here S(1M) is the bundle of spinors o/, induced by theSpin“-structureQ” /Uy, and
7: Z — M¢ is the quotient map. Inside the trivial bundex (t/ta ® C), we have identified
Z x (t/ta ® iR) with the subspace oT'Z formed by the vector fields generated by the
infinitesimal action oft/ta, and Z x (t/ta ® R) with Z x A € T(Z x A)|z. For (z, f) €
Z x A, let us decompose e T pn(Z x K) asv =, + X +1Y, wherev, € 7*(TM,), and
X +1Y €t/ta @ C. The mapoz(z, f;v1 + X +1Y) acts onS(Me). @ A(t/ta ® C) as the
product

c.(v1) @ e(X +i(Y - f)),

which is homotopié to the transversally elliptic symbol
c.(v1) @c(f +iX).
8 See [33, Section 6.1].
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So we have proved thatz = ji o 7*(S-Thom(M¢)), wherej, : K¢ (Tr Z) — Kpr(Tr(Z x A))
is induced by the inclusion: Z — Z x A. The last equality finishes the proof (see [33,
Section 6.1]).

Proof of Lemmad.16 — The equality{Q7 (¥, L|y ® C_,)]” = 0 comes from a localization
formula on the submanifolgy” for the mapgg(y, —) (see [33,42]). The normal bundl¢ of

VP in Y carries a complex structurgy on the fibers such that ea@h-weighta on (N, Jy)
satisfieg«, 3) > 0. The principal bundl&*, when restricted t3’° admits the reduction

Q' Pso(TY?) x Py(N) x Pu(Llys)
(4.43) l
Q"|lys —————— Pso(TYP @ N) x Py(L¥|ys).

HenceQ” := Q’/U(l) is a Spin°®-structure on)’® with canonical line bundle equal ° :=
L#|ys @ (det N) ! = Low|ys @ C_g; @ (det N) 1. Let QF (Y7, —) be the map defined by’
and localized nea®—!(3 + ¢) N VP by ® — £. Following the argument of [33, Section 6] one
obtains

QL (V. Lly®C_,) = (-1)'> " Q% (V" det N @ S*(V)),

keN

whereS*(N) is thekth symmetric product oV, andl = rankc . Thus, it is sufficient to prove
that [QF (Y7, det N ® S*(N))]" = 0 for everyk € N. For this purpose, we use Lemma 4.8.
Let o be theT g-weight ondet /. From the Kostant formula (2.1), tfigz-weight onLs,, |ys is
equal to2(8 + &). Hence anyl' 5-weighty ondet N’ @ S*(N) @ (IL#)'/? is of the form

1

where§ is a Tg-weight on S*(N). So (v,8) = (B + € — 1, 3) + 3(a, 3) + (6,5). But the
Ts-weights on N are ‘positive’ for 8, so («,8) > 0 and (4,3) > 0. On the other hand,
B+ & = B(£,A) is the orthogonal projection of on some affine subspacé C ti which
containsii, hence(8 + £ — fi, ) = 0. This proves thaty, ) > 0. O

5. Quantization and the discrete series

In this section we apply Theorem 4.1 to the coadjoint orbits that parametrize the discrete series
of a real, connected, semi-simple Lie graGpwith finite center. Nice references on the subject
of ‘the discrete series’ are [36,12].

Let K be a maximal compact subgroup 6f andT' be a maximal torus ink. For the
remainder of this section, we assume tifats a Cartan subgroup af. The discrete series
of G is then non-empty and is parametrized by a subgin the dualt* of the Lie algebra of”
[19].

Let us fix some notation. L&&. C R C A* be respectively the set of (real) roots for the action
of T ont® C andg ® C. We choose a system of positive rodtg for 9., we denote by’
the corresponding Weyl chamber, and we detbe half the sum of the elements %. We
denote byB the Killing form ong. It induces a scalar product (denoted By, —)) on ¢, and
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then ont*. An element\ € t* is calledregularif (A, «) # 0 for everya € R, or equivalently, if
the stabilizer subgroup of in G is T'. Given a system of positive roo%™ for 2R, consider the
subset\* + 1 3 o+ « of t*. This does not depend on the choicet®f, and we denote it by
A5 [12].

The discrete series @f are parametrized by

(5.44) Ga:={\et*, Aregular} N A% N .

WhenG = K is compact, the safy equalsA’ + p., and it parametrizes the set of irreducible

representations df . Harish-Chandra has associated to amy@d an invariant eigendistribution
on G, denoted byo,, which is shown to be the global trace of an irreducible, square integrable,
unitary representation af. R

On the other hand we associate Xee G4, the regular coadjoint orbid/ := G - \. Itis a
symplectic manifold with a Hamiltonian action &. Since the vectorX,;, X € g, span the
tangent space at evefye M, the symplecti@-form is determined by

w(Xn, Ym)e = (& [X,Y]).

The corresponding moment mép M — ¢* for the K -action is the compaosition of the inclusion
i: M — g* with the projectiorg* — £*. The vector\ determines a choic®™* of positive roots
for the T-action ong ® C:a € R <= (a, A) > 0. We recall now how the choice 6&**
determines a complex structure dh. First take the decompositign® C =t C® Y x 8o
whereg, == {v € g ® C | exp(X).v = e¥*X)y for any X € t}. It gives the following T-
equivariant decomposition of the complexified tangent spade att A:

T\ MRC= Zga:n@ﬁ,
aER

with n =3 _ni 8o We have then d’-equivariant isomorphisn: TyM — n equal to
the composition of the inclusioM\M — T\M ® C with the projectionn & n — n. The
T-equivariant complex structuré, on T M is determined by the relatiofi(Jyv) = +Z(v).

Hence, the set of real infinitesimal weights for thieaction on(T M, .J) is R+, SinceM is

a homogeneous spach, defines an invariant almost complex structuren M, which is in fact
integrable. Through the isomorphishi = G/ T, the canonical line bundle = detc(TM) ! is

equaltor =G xp C_g, With p= 13" _oai s cv.

If A€ Ggq, thenh — p is a weight, and

(5.45) L:=GxpCy_,—G/T

is ax-prequantum line bundle ovéd, w, J). We have shown in [32], thatr(||®||?) is compact,
equal to thei -orbit K - A. Then the generalized Riemann—Roch charaktef (M, —) is well
defined (see Definition 3.2). The main result of this section is the following

THEOREM 5.1. — We have the following equality of tempered distributiond®dn

O\k = (‘Udim(g/m RRE (G- A, fi),
where©, |k is the restriction of the eigendistributidd), to the subgroupy.
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The proof of Theorem 5.1 is given in Section 5.2. It uses the Blattner formulas in an essential
way (see Section 5.1).

With Theorem 5.1 at our disposal we can exploit the result of Theorem 4.1 to compute the
K-multiplicities, m, (A) € N, of ©,|x in term of the reduced spaces. By definition we have

(5.46) Orlx =Y m,(A)xf inR™>(K).
uEAi

The moment mapb: G - A — ¢* is proper since theG - A is closed ing* [32]. We show
(Lemma 5.5) that the moment polyhedran= ®(G - X\) N t*. is of dimensiondim 7". Thus on
the relative interiorA° of the moment polyhedron, the notionsge#neric quasi-regular values
andregular valuescoincide: they concern the elemets A° such thatd—1(¢) is a smooth
submanifold with a locally free action af. We have shown (Section 4.3) how to define the
quantity Q((G - \)+,.) € Z as the index of a suitablgpin® Dirac operator ond~!(¢)/T,
where¢ € A° is a regular value ob close enough tg + p..

PROPOSITION 5.2. — For everyu € A%, we have

m,(A) = Q((G- N utp.)-

In particular m,(\) = 0 if 1 + p. does not belong to the relative interior of the moment
polyhedronA.

Proof. —A small check of orientations shows that= (—1)dim(§/m, thus this proposition

follows from Theorems 4.1 and 5.1 if one checks that the following hdi@s: A, ®) satisfies
Assumption 3.6, and the infinitesimal-stabilizers are Abelian. The first point will be handled
in Section 5.3. The second point is obvious siddex G /T all the G-stabilizers are conjugate
to T, so all theK -stabilizers are Abelian. O

5.1. Blattner formulas

In this section, we fix\ € G4. Let R+ be the system of positive roots definad o €
RTA <= (a,A) > 0. ThenRS C R, andp =1 Y cr+2 @ decomposes ip = p. + py,
wherep, = 53 cq @ andRf = RHA —RE

Let P: A* — N be the partition function associated to the et: for u € A*, P(u) is the
number of distinct ways we can wrije= Zaeﬂﬁ koo with k., € N for all a. The following
theorem is known as the Blattner formulas and was first proved by Hecht and Schmid [20].

THEOREM 5.3.— For € A%, we have

mu(A) = > (=1)"P(w(p+ pe) — (a+ pe)),

weW

where® 1y := X\ — p. + p,. Here W is the Weyl group of K, 7).
Using Theorem 5.3, we can descrili®,|x through the holomorphic induction map
Hol¥ : R=>°(T') — R~>°(K). Recall thattol’} is characterized by the following properties:
(i) Hol% (t*) = Xff for every dominant weight € A% ;

9 We shall note thatiy, € AL (see [12, Section 5]).
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(i) HolX (twor) = (—1)“Hol% (t*) for everyw € W andy € A*;
(iiiy HolX (t*) = 0if WopunA* =0.
Using these properties we have

5.47) SRRl ()= 3 | 3 (1" Rlwo ) |3E

pneEM* HEAT FweW

for every mapR : A* — Z.
For a weighta € A*, with (), a) # 0, let us denote the oriented inverse(af— ¢*) in the
following way

1ot = ZkeNt’m, if (A\,a) >0,

P et i (L) <0
Let A = {ai,...,;} be a set of weights with(\, a;) # 0, Vi. We denote byA™ =
{e104, ..., €1y} the corresponding set of polarized weights= +1 and(\, ¢;«;) > 0 for all 4.

The produc{], . ,[1 —t°]}" is well defined inR~>°(T'), and is denoted by[ [, , (1 —t*)]; .
A small computation shows that

(5.48) {Ha_ta)]_l_(_ww{ 11 (1_#)}

a€A A QEA+ A

= (=17t Pas ()t

HEN*

-1

HereP 4+ : A* — N is the partition function associated t0", v = 3", ) .o, andr =f{a €
A, (A, a) < 0}. This notation is compatible with the one we used in [33, Section 5] i$ a
complexT-vector space where the subspace fixed\ig reduced to{0}, thenA2V € R(T)
admits a polarized inversg\2V], ' = [laenq) (1 — t9)]3 ", whereR(V) is the set of real
infinitesimalT-weights onV.

LEMMA 5.4.— We have the following equality iR—*°(K)

®k|K:H01¥(t“*[ II (1—#‘)}_1).

aeiﬁi A

Proof. —Let © € R~>°(K) be the RHS in the equality of the lemma. From (5.48), we have
O =3, car P(u)Holgt (t##2) =37 . P(pn — pa)Holz (). If we use now (5.47), we see
that multiplicity of © relative to the highest weight € A% is > v (=1)"P(w(p + pe) —

(s + pe)). From Theorem 5.3 we conclude thf | x = ©. O

5.2. Proof of Theorem 5.1

In Lemma 5.4 we have used the Blattner formulas to wiif¢x in term of the holomorphic
induction mapHol¥. Theorem 5.1 is then proved if one shows tHRRX (G - \,L) =

(—1)"Hol% (¢ [laem+ (1 — t93), with -y = X — p. + pn, andr = 1 dim(G/K). More
generally, we show in this section that for aRyrequivariant vector bundlg — G - A

(5.49) RRE(G -\, V)= (—1)"Hol¥ (V,\.tQP"[ 11 (1—t0‘)]_1),

ae%,f A
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whereV, € R(T) is the fiber of” at \.

First we recall whyCr(||®[|?) = K - A in M := G - ) (see [32] for the general case of closed
coadjoint orbits). One can work with an adjoint orbif := G - X through theG-identification
g* ~ g given by the Killing form; thenb : M — ¢ is just the restriction o/ of the (orthogonal)
projectiong — ¢. Let p be the orthogonal complement bfin g. Everym € M decomposes
asm = Ty, + Ym, With z,,, = ®(m) andy,, € p. The Hamiltonian vector field of! ||®[* is
Hon = [Tm, m] = [Tm, Ym] (S€€ 3.8). Thus

Cr(||<1>||2) ={H=0}={me M, [xn,yn] =0}.

Now, since) is elliptic, everym € M is also elliptic. Ifrm € Cr(||®||?), [m, Zm] = 0 andm, .,
are elliptic, hencey,,, = m — ,,, is elliptic and so is equal t0. Finally Cr(||®|*) =G - ANt =
K-\

According to Definition 3.2, the computation 8R% (G - \, L) holds on a smalK -invariant
neighborhood of< - A of G - A. Our model for the computation will be

M::KXTP

endowed with the canonical -action. The tangent bundBM is isomorphic toK x 7 (v @ Tp)
wherer is the T-invariant complement of in €. One has a symplectic for®@ on M defined
by Q,(V,V') = (A [X, X'] + [v,']). Herem = [k,z] € K xpp, andV = [k,z; X + v],
X' =[k,z; X' +v'] are two tangent vectors, with, X’ € t andv, v’ € p. A small computation
shows that the<-action on(K x 7 p, €2) is Hamiltonian with moment mag : M — ¢* defined
by

B([k,z]) =k - ()\— 1prt*()\oad( )oad(:v))).

Heread(z) is the adjoint action ofr, andpr,. : g* — t* is the projection. Note first that the
tangent space¥ , M and T, o) M are canonically isomorphic o p.

LEMMA 5.5.— There exists aK-Hamiltonian isomorphisnil : i/ ~ U, wherel is a K-
invariant neighborhood of{ - A in M, U is a K-invariant neighborhood o/T in M, and
T (M) =[1,0]. We impose furthermore that the differentialoft X is the identity.

COROLLARY 5.6.— The cone\ + Zaew R*a coincides withA = ®(G - X\) Nt in a
neighborhood of. The polyhedral seh is of dimensionlim 7.

Proof. —The first assertion is an immediate consequence of Lemma 5.5 and of the convexity

theorem [26]. LetX, € t such that¢(X,) =0 for all ¢ € A, that is a(X,) = 0 for all

a € R X, commutes with all elements ip. Let a be a maximal Abelian subalgebra of

p, and let¥ be the set of weights for the adjoint action ofon g: g = >y ga, Where
go=1{Z €y, [X,Z]=a(X)Z for all X € a}. Since[X,,a] =0, we have[X,, g.] C g, for

all « € X. But since[X,,p] =0 andg, N ¢ =0 for all « # 0, we see thatX,, g,] = 0 for all

a # 0. But X, belongs to the Abelian subalgebyg, so [X,, g.] = 0. We see finally thatX,
belongs to the center @f, and that impliesX, = 0 sinceG has &finite center We have proved

thatZ>L =0, or equivalentlyz =t O

Proof of Lemmab.5. — The symplectic cross-section theordh¥] asserts that the pre-image
Y := &~ !(interior(t} )) is a symplectic submanifold provided with a Hamiltonian actioof
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The restriction®|y is the moment map for th&-action on). Moreover, the sef(.) is a K-
invariant neighborhood oK - A in M diffeomorphic toK xr Y. Sincel is a fixedT'-point of
Y, a Hamiltonian model fof),w|y, ®|y) in a neighborhood ok is (T»\),wx, ®») wherew
is the linear symplectic form of the tangent spdteM restricted toT', ), and®, : T))Y — t*
is the unigue moment map with, (0) = A. A small computation shows that— X o ad(z) is
an isomorphism fromp to T, ), and® (z) = A — 3pr. (Aoad(z) cad(z)). O

We still denote the almost complex structure transported?(mK x p throughY by J.
SincedY () is the identity,J;; ) : t © p — v @ p is equal toJy. Letm: K xr p — K/T, and
wﬁ:f{ — K/T be the fibering maps. Remark that for any equivariant vector buridiger M/
the vector bundléY ~1)*(V|;,) — U is isomorphic tOWZN{(K x1 Vy). At this stage, we have
according to Definition 3.2

(5.50) RRg (G- \,V) = Indexs (Thomy (U, J) @ m5(K x1VA)).

With the help of Lemma 3.4, we define now a simpler representative of the class defined by
Thom (U, .J) in K (TxU). Consider the map

A K XTPHE*,
(k,x)— k-,

and let)~ be the vector field on\/ generated\ (see (3.8)). Note thak -~ never vanishes
outside the zero section @f x1 p. Let (—, —) ; be the Riemannian metric ol defined by
V.V 5 = (X, X)) + (v,0") for V = [k, z; X +v], V = [k,z; X" +v']. A small computation
shows that

(H25) 7 = 11517 + oAz 1)

=M

in the neighborhood of the zero section i xr p. Hence, if we takel/ small enough,
(H,A5) 57 > 0 ontd — {zero section}, henceThomy (U, J) = Thom (U, J) in Kx (TxU)
(see Lemma 3.4). . .

Let J be the K-invariant almost complex structure v, constant on the fibers off —
K/T, and equal toJ, at[1,0] so that for[k,z] € K x7p, Ji (V) = [k, 2, Jr(X + v)] for
V = [k,z, X +v]. Since the se{)A~ =0} = K/T is compact, using/ and the map\, one
defines the localized Thom symbol

Thom%(ﬁ, j) S KK(TKM)

Through the canonical identification of the tangent space{tz aff and [k, 0], one can write
J[k o] = J[k 0] = Jp,0) forany(k, z] € U. We note that/ and.J are related oty by the homotopy
Jt of almost complex structuresi[ foz) = Jip,ta) foOr [k, 2] € U. From Lemma 3.4, we conclude
that the localized Thom symbdlﬁmm% u,.J) andThom%(M, j)|z7 define the same class in
KK(TKL?), thus (5.50) becomes

(5.51) RRE(G -\, V) =IndexS (Thom3; (M, J) © 7 (K x1 V).
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In order to compute (5.51), we use the induction morphism
. ZKT(TTp) —Kg (TK(K X7 p))

defined by Atiyah in [1] (see [33, Section 3]). The mapenjoys two properties: first,. is an
isomorphism and th& -index ofc € K x (T (K x p)) can be computed with thHB-index of
(i) (0).

Leto:p*(ET) — p*(E~) be aK-transversally elliptic symbol o&” x - p, wherep: T(K x
p) — K x7 p is the projection, andZ™, E~ are equivariant vector bundles ovET x p. So
for any [k, z] € K xr p, we have a collection of linear mapg[k, z, X + v]) :E[};_z] = Ej

depending on the tangent vectdfs+ v. The symboli,)~!(o) is defined by

(5.52) (i)' (0)(z,v) = o ([1,2,0 4 v]) :E[";’w] — By for any(z,v) € Tp.

Foro = Thom}*}(]\?, J), the vector bundleE™ (respectivelyE~) is /\%ddTM (respectively
Age"TM). Since the complex structure leawes £/t andp invariant one gets

(i) ! (Thom% (M, J)) = Thom(p, Jx) A% &/t,
and
(5.53) (i.) " (Thomi (M, J) @ 7 (K x7 V3)) = Thom(p, Jy)Vx A% £/t,

whereThom? (p, J») is the T-equivariant Thom symbol on the complex vector spgce/ )
deformed by the constant map- t, z — . In (5.53), our notation uses the structureftifr)-
module forK(T7p), hence we can multiplffhom? (p, Jy) by Vi A €/t.

Theorem 4.1 of Atiyah in [1] tells us that

KT(TTp) 4 KK(TKM)
(554) Indexfl llndcxz\%
C=°(T) ——= C~=(K)K

Ind%

is a commutative diagram, withl = K x7p,and wherdndqlf is the induction map (see (4.39)).
In other wordsndex (o) = Ind' (Index;; ((i.)~*(0))). With (5.51), (5.53), and (5.54), we
find

RRE (G-, V)=Ind} (Index, (Thomy(p, Jx)) Va AL £/t)
= Hol (Index; (Thom3:(p, J1)) Vi)

(See the Appendix in [33] for the relatioHol? (—) = Ind% (— A% £/t).) But the index
Index; (Thomy.(p, J»)) is computed in Section 5 of [33]:

IndexpT(Thom%(p,J,\)):{ II (1—t_0‘)}_1:(—1)%2””{ 11 (1—t“)}_1,

aeRrt A aeRrt A

with r = £ dim(G/K). Equality (5.49) is then proved.
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53. (G- A\, ®) satisfies Assumption 3.6

Let M be a regular elliptic coadjoint orbit fak, with the canonical Hamiltonia# -action.
The goal of this section is to show thaf satisfies Assumption 3.6 at every

Letg = ¢ p be the Cartan decomposition@fThe Killing form B provides aG-equivariant
identificationg ~ g* and K-equivariant identification$ ~ ¢*, p ~ p*. The Killing form B
provides also & -invariant Euclidean structure gnsuch thatB(X, X) = —|| X1 + || X2||?
and|| X ||2 = || X1]|% + || X2|?, for X = X7 + Xo, with X; € &, X, €p.

Hence we can and we shall considéras an adjoint orbit of5: M =G - A whereX € tis
a regular element, i.eG, = K, is a maximal torus inK (in this section- means the adjoint
action). The moment mag : M — ¢ is then the restriction td/ of the orthogonal projection
tdp— £ Foruct, we considerthemap,: M x K - p— ¢, (m,n)— ®(m) —n.

This section is devoted to the proof of the following

PROPOSITION 5.7. — The setCr(||®,||?) of critical points of||®,||? is a compact subset of
M x K - u. More precisely, for any > 0, there existg(r) > 0 such that

(|, ) € (M {geq. €l <c(r)}) x K-,

whenevel|u| <.

Note thatM N {¢ € g, ||&|| < c¢(r)} is compact, thus Proposition 5.7 shows tlidt satisfies
Assumption 3.6 at every. Let a be a maximal Abelian subalgebragfand consider the map

FFAK-A)Xx(K-p)xa—R

defined byF* (m,n, X) = §|leX - m|*> — 2(eX - m,n).

PROPOSITION 5.8. — For anyr > 0, there existg:(r) > 0 such that
(m,n,X)eCr(F*) = |[leX m| <c(r),

whenevel|u| < r.
We first show that Proposition 5.8 implies Proposition 5.7, and then we concentrate on the
proof of Proposition 5.8.

Proposition 5.8 = Proposition 5.7. Consider the mag — i.: M — ¢. One easily sees that
Cr([[®,]12) = K - (Cr([|@,]2) N (M x {})), andCr([|@,,[|%) 1 (M x {s}) € Cr(|| — pu]|?) x
{u}. Thus Proposition 5.7 is proved if one shows that for any0, there exists:(r) > 0 such
that

Cr(|e - pll?) cMn{ceq, gl <clr)},
whenevef|u|| < r. Since the bilinear fornB is G-invariant, the mapn — B(m,m) is constant
on M, equal to—||A||, and thus|®(m)||* = 3 |/m||* + £||A||? for anym € M. Finally we have
on M the equality
1
1@ (m) = ull* = S lIm]* = 2(m, ) + est,

wherecst = 2 ||A[|2 + [|u||%. If we use now the Cartan decompositiGn= K - exp(p), and the
fact thatp = |, k - @, we see that every elemehtf is of the formm = (k; "eXks) - A with
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ki, ke € K and X € a. It follows that ||®((k; 'eXk2) - \) — p|? = F#(m/,n, X) + cst with
m' =ky -\, n =k -p. Itis now obvious that ifm = (k; 'eXkz) - A € Cr(||® — p/|?) then
(ko - A\ k1 - u, X) € Cr(F*). Finally, if Proposition 5.8 holds we gétn|| = |l - m/|| < c(r).

Proof of Proposition5.8 —Let (m,n,X) € Cr(F*). Then, the identity%F“(m,n,X +
tX)|t=o0 =0 gives
(5.55) (eX -m,e* - [X,m])=2(e* - [X,m],n).

The proof of Proposition 5.8 is then reduced to

LEMMA 5.9.— (i) For anyr > 0, there existsi(r) > 0 such that||eX - [X,m]|| < d(r)|| X]||
holds for everym,n, X) € K - A x £ x a satisfying(5.55)and||n|| < r.

(i) For any d > 0 there existsc > 0, such that for everym,X) € K - A\ x a, we have
leX - [X,m][| <d| X[| = [le* -m] <.

Proof of (i). —Let X be the set of weights for the adjoint actionobng: g=>" 5 g,
whereg, ={Z € g, [X,Z] = a(X)Z forall X € a}. Eachm € g admits a decomposition
m=_, ma, With m, € g, Which is stable relatively to the Cartan involution:

(5.56) O(ma) =m_,, foreverymeg.
Suppose now that:= (m,n, X) € K - A x £ x a satisfies (5.55). We decomposec K - \

intom =3Y"_ mq With m,, € go. Let S :={a € ¥, my #0 and + a(X) > 0}. The LHS of
(5.55) decomposes ibHS = 3 e2*X) o (X)|m4 ]2, and

(+) LHS = ) e @a(X)|ma|*+ Y e a(X)|ma|’

ozEE,T acX,

a(x) A(X)?
> 3 S a2 = RIX| Y mal?

aexf ” || aES,
W|th R = Supa) HX||<1 |OC(X)| But
(%) > e ®a(X)? [mall* = || - 1x,m]|* - > e Ma(X)?mall?

aexf aexy
> [|eX - (X ml||* = RAIX[2 D Jmall
aed,

Sincea € I & —a € X, we have2 )
the inequalitieg*) and(xx) give

aexy [Mmall? < Epenllmall® = m|* = [A]%. So,

eX - [X,m]||?

H 2
(5.57) LHS > — R|| X ]| Al

Since the RHS of (5.55) satisfies obviouBIYS < 2||eX - [X,m]||.|[»|, (5.55) and (5.57) yield

X (X m]|®

2||eX - XmH||n||/” RIX] — RIIX]- I

In other wordsE := ||eX - [X,m]|| satisfies the polynomial inequalify? — 2aE — b* < 0, with
b= R||X]|.|A]| anda = R|| X||.||n||- A direct computation gives

e - 1, ml|| < dlIX]l,
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with d = R(||n|| + +/[n]Z + [A?).

Proof of (ii). — Suppose that (ii) does not hold. So there is a sequengeX;);en iN K- A X a
such thaf|eXi - [X;, m;]| < d|| X;]| butlim; ., [|e™ - m;|| = co. We write X; = t,v; with ¢; > 0
and||v;|| = 1. We can assume moreover that— v, € a with |[ve|| =1, andm; — me, € K-\
wheni — co.

But me € K - X is a regular element of7, and rankG) =rank(K), thus [vee, moo] =
Y ey @(Voo)Moo o # 0: there existsay € ¥ such thatag(vee )Moc,qa, 7# 0, @and then also
(Voo ) Moo, —ap 7 0 (Se€ (5.56)).

On the one hand the sequenee’.m; = 3" e%*"Im, , diverges. Hencet;)en is
not bounded and so can be assumed to be divergent. On the otherMand[v;, m;] =
S, e a(v;)m; o is bounded, so the sequenadst=o(*)a(v;)m; 14, are also bounded.
BUtlim; .o a(03)1M 40y = @0 (Voo )Mo, +a, 7 0, hence the sequence’s™(¥) are bounded.
This contradicts the fact théiin; . t; = 400 andlim; ., ag(v;) #0. O
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