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ASYMPTOTICALLY HOLOMORPHIC FUNCTIONS AND
TRANSLATION INVARIANT SUBSPACES OF WEIGHTED
HILBERT SPACES OF SEQUENCES

By JEAN ESTERLEAND ALEXANDER VOLBERG!'!

ABSTRACT. — Letw be a weight orZ and assume that the spectrum of the usual shift operator on the
weighted spacé? (Z) equals the unit circle. We show thatE M = 400, and if the sequence
(w(—n))nxo satisfies suitable growth and regularity condmons then all nontrivial translation invariant
subspaces af?,(Z) are generated by their intersection with

C(ZY) = {u= (un)nez € C(Z) | un =0 (n < 0)}.

When w(n) =1 for n > 0 and w(n) = e/™/1°8(n1+1 for < 0, this shows that every nontrivial
translation invariant subspace 6}(Z) is generated by the translates of the Fourier sequence of some
singular inner function.

The proofs are based on a priori estimates on the growth of the solutions of some convolution equations,
obtained by using the theory of asymptotically holomorphic functions in the disc.
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RESUME. — Soitw un poids sufZ tel que le spectre de I'opérateur de décalage sur I'espace paijd&ig
soit égal au cercle unité. On montre quesi, _, k’gnﬁ +o0, et sila suiteg(w(—n)).>o satisfait des
conditions de croissance et de régularité convenables, alors tous les sous-espaces invariants par translation

non triviaux def (Z) sont engendrés par leur intersection avec
Ei(Z+) = {u = (u’VL)’ILGZ S Ei(Z) | Up =0 (n < 0)}

Quandw(n) =1 pourn > 0 etw(n) = e/™/1e(n+Y nour n < 0, ceci montre que tout sous-espace
invariant par translation non trivial d&,(Z) est engendré par les translatés de la suite des coefficients de
Fourier d'une fonction intérieure singuliére.

Les démonstrations sont basées sur des estimations a priori de la croissance des solutions de certaines
équations de convolution, obtenues en utilisant la théorie des fonctions asymptotiquement holomorphes
dans le disque.
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186 J. ESTERLE AND A. VOLBERG

1. Introduction

Letw be a weight or¥Z, and assume that the usual shift oper&otu.,,)ncz — (Un—1)nez iS
well-defined, bounded and invertible on

5 lunf? () < o0

£@) = {u=(unnez
nez

(we refer to [44] and [48] for general properties of the shift operator). A closed subspace
M of ¢2(Z) is said to be translation-invariant (resp. left-invariant, resp. right-invariant) when
S(M)= M (resp.S~'(M) c M, resp.S(M) C M).

In this paper, we are interested in the case where the spect($h of S equals the
unit circle T. In this situation, the Laurent expansion§&:) = ), ., u,2" “live” on the unit
circle for u = (uy)nez € €2(Z) (these formal Laurent series expansions can be interpreted as
hyperfunctions ofT, see Section 3), and the Taylor expansifis) = >~ u,,2" are analytic
on the open unidisc D for

u = (Un)nZO € Ei(Z+) = {(Un)n>0

D lunl’w?(n) <+oo}-

n=0

Notice that in both cases, we have (z) = zii(z).

We can identify/2 (ZT) with the space{u = (uy)nez € €2(Z) | un, =0 (n < 0)}. Clearly,
if M is a translation invariant subspace@f(Z), then M, = M N ¢2(Z*) has the “division
property”: if u € M, and if a(z9) = 0, wherez, € D, then the functionf_(—zzz) is in ]AV[/Jr (or,
equivalently,(S — zoI)~'u € M, ). Now let N be a right-invariant subspace @f(Z"). Itis not
difficult to check, and well-known, thaV has the division property if and only #(Sy) C T
whereSy : f + N — Sf + N is the map induced b§ on the quotient spac& (Z*)/N.

The issue at hand is the following

Problem 1. — Given a right-invariant subspace of ¢2(Z") having the division property,
does there exist a translation invariant subspecef ¢2 (Z 1) such thatM N ¢2(Z*) = N?

Problem 2. — Given a translation invariant subspateé of ¢2(Z), is it generated by its
intersection with¢2 (Z*) (which constitutes a right-invariant subspace/gfZ*) having the
division property)?

It follows from Wiener’s characterization of translation invariant subspacé¥ @ [51] that
Vsez S™u = £?(Z) for everyu € ¢*(Z*)\{0}, and so the answer to both problems is of course
negative in general.

On the other hand, it was shown in [25, Theorem 3.7] that the answer to Problem 1 is positive if

w(n)=1forn >0 and iflim losw(=n) — 4 . A general discussion of Problem 1 is given

22N — 00 \/n

by the authors in [31]: there exists a sequemié))p)l of weights onZ™, which depends only
W(P)(n)Q

Onw, :=wlz+ such thatthe answer to Problem 1 is positive when®ver , - = +oo for

everyp > 1, andwf) (n)Y/™ —, . 1 for everyp > 1 (the precise definition of these weights
o.)_(f) is given in Section 5). The proof of this result relies on elementary operator theoretical
arguments, but the estimation of the weighfﬁ) in concrete cases relies on sharp estimates of
the growth of a quotient of two analytic functions in the disc [42].
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WEIGHTED HILBERT SPACES OF SEQUENCES 187

Before discussing Problem 2, which is much harder, it seems worth mentioning that analogous
problems have been studied for a large class of Banach spaces of functions analytic on a multiply
connected domaif? by Abkar and Hedenmalm [1] (see [35] for a previous discussion of these
problems for Banach algebras).

Assume, for example, tha® is the annulus{z € C | p < |z| < 1}, and setQ; = D,

2, = C\pD, and let B be a Banach space of functions analytic @nwhich contains all
rational functions with poles iff ..\ ©2. Assume also that evaluation ais continuous orB for
A € © and that the function — & belongstaB if fe€ B, A€ Q, f(A\) =

Denote byM (B) the algebra of multipliers o, i.e. the algebra of function,s analytic on
Q such thatpB C B. A closed subspacg of B is said to beM (B)-invariant if ¢J C J for
everyJ € B. Also, denote byB; (resp.B-) the closed subspace &f consisting of allf € B
which can be analytically extended ¢t (resp.€2:) and defineM (B;) and M (B )-invariant
subspaces aB; as above.

For f € B set M.(f)(&) = £f(&) (£ € Q) and if J is M(B)-invariant denote by
M., j:B/J — B/J the mapf + J — M,(f) + J. Define in the same way/, ; if I is a
M(By)-invariant subspace dB;.

Now, denote by/ the lattice of M (B)-invariant subspace$ of B such thats (M, ;) C Qs
and denote by/* the lattice of M (B )-invariant subspacekof B; such thatr (M, ;) C Q.

For A C B denote byM(B). A the set of all elements of the foriRa, R € M(B), a € A. It

is shown in [1] that if B satisfies suitable regularity conditions with respectoand(2,, then
I=[M(B)-I]- NB foreveryl eY*™ andJ = [M(B) - (J N By)]~ foreveryJ € U. In other
terms, in this context the natural version of Problem 1 has a positive answércfér™, the
natural version of Problem 2 has a positive answerferl{/, and the mapy/ — J N B; is then

a bijection froml/ ontol/*. These results are based on a factorization theorem [1, Lemma 3.7]:
if f € B then there existg; € B; and f, € By such thatf = f; - f2, with some control on the
zero sets off, and fs.

We now go back to Problem 2 faf?(Z), wherew is a weight for which the spectrum
of the shift operatorS equals the unit circle. The commutamt,, of S can be as well
known identified to the space of elemerits= (h,,),cz of ¢2(Z) such thath * u € (2 (Z)
for every u € 62( ), where ¢ * u), is the limit in the sense of Cesaro of the sequence
Zlm < Rmtin—m)p>0, S€€ Section 5, and the translation invariant subspaces (@) are
exact‘y the M, -invariant subspaces. The open Sgtof the above discussion is now the unit
disc, B; becomeg? (Z*) and theM (B )-invariant subspaces @; become the right-invariant
subspaces of? (Z1). Unfortunately, the open s€t, = C\pD becomesC\D, ando(Sy,) C T,
so thato(Sy,) N (C\D) = ¢ for every nontrivial translation invariant subspakeof (2 (Z). We
thus see that Problem 2 in this context is not a limit case of the results obtained in [1] for spaces
of holomorphic functions.

Let (wf))p>1 be the sequence of weights & mentioned above, and assume that
(w(—n))n>o satisfies the growth condition

(+) S e (1)

In this situation we know from [31] that the answer to Problem 1 is positive, and in fact we
know more precisely thaV = [\/,, ., S™(N)] N £, (ZF) and[V/,, o S™(N)] + £2(ZT) = €2(Z)
for every right-invariant subspac¥ of ¢2(Z") having the division property. It is then easy
to see that ifM is a translation invariant subspace €f(Z), then M =/, S"(M™) if
M* := M N ¢2(Z*) does not reduce t§0}. So, for weights satisfyingx), Problem 2 will
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188 J. ESTERLE AND A. VOLBERG

have a positive answer ¥/ N ¢2 (Z*) # {0} for every nonzero translation invariant subspace of
2 (7).

The starting point of our strategy is a factorization theorem due to Borichev [14]. Set
w4 (n) =sup,g w(nﬂ) forn >0, andfors > 0 setw ) (n) = w(n) forn = 0, we (n) = w*(n)
for n < 0. Using essentially the same method as in [14] and [17], we give in Theorem B.5 of
Appendix B a quantitative version of [18, Theorem 6.1]. Assumedtsstisfies the six following
conditions:

(1) o(5) C

@ X, IOg;; ) — oo

3) (log“’( ") (logn)4),>1 is eventually increasing for some> 0;

4) (w(—n))n>1is eventuallylog-concave;

(5) limsup,, 1125:3 <1/4;

n)

(6) limsup,, % < 1/64.

Then, for everyu € £2(Z) and everys < 1/4, there exisw € £2,(Z"), k> 0andh e M, ,
with h, = 0 for n > 0, such thatw = e~" % S¥u, wheree” is computed with respect to
convolution me(S) .

Conditions (3), (4) and (5) imply that satisfies(x), and if it were possible to arrange
that h € M., in this factorization, then we would hawg,, ., S"u =/, ., 5" *w for every
u € ¢2(Z), and so the answer to Problem 2 would be positive. But, as observed by the first author
in [27], there are no weights df for which such a nice factorization i} (Z) is available.

Now, introduce the following conditions:

(4) (w(—n)/n%),>1 is eventuallylog-concave for some > 3/2;

(5) limsup,, . (=2 < 1/200.

The main result of the paper is Theorem 5.8, which shows thastitisfies (1), (2), (3), (3
and (8), we have\/, ., S"u =\, , S"w in the factorization above, despite the fact that in
generalh ¢ M,,. So for these weights both problems (1) and (2) have a positive answer, and
the mapM — M N (2 (Z*) is a bijection from the lattice of translation invariant subspaces of
2 (Z) onto the lattice of right-invariant subspaces/§fZ*) having the division property (and
the inverse map is the mag — \/n<O S™(N)). More generally, every left-invariant subspace
of 2 (Z) has the form\/ = Vo1 S™(N), wherek > 0, and whereV is a closed subspace of
(2 (Z*) having the division property.

We now outline the strategy of the proof of Theorem 5.8, which is based on the theory of
almost analytic functions in the disc developed in [17,50]..3€¢t) = w(—n —1)~! for n € Z.
Using the formula(u,v) =Y, ., tunv—pn—1 for u = (un)nez € (2(Z), v = (vy)nez € (2.(Z),
we can identify the dual of? (Z) with ¢2.(Z). In order to circumvent the fact thate M.,
in the factorizationS*u = e” x w, it suffices to show that if\/ is a nontrivial left-invariant
subspace of? (Z) and if v € ¢2.(Z) is orthogonal toM, thenv € éi(*s)(Z) for somes < 1/4

(see the proof of Theorem 5.8). In order to do this, we will use the factithat;+ = 0 for some
nonzerou € (2(Z). Foru € (2(Z), setu't (z) = Y77 junz" for |z| <1,u™(2) =3, o un2"
for |z| > 1, and define in a similar way™ andv~ for v € ¢2.(Z). The first step consists in
constructing a suitable “Dynkin extension” [23] of

Let u be a complex measure dn, and letC(u =+ [/ d&) pe the planar Cauchy

transform ofy, which is defined a.e. o and holomorphlc orC\D. Denote byH,(C\D) the
space of holomorphic functions @D vanishing at infinity. In the most general sense a Dynkin
extension ofp € H,(C\D) is a functiony € L*(D) such that) = C(u)|p, ¢ = C(u )|\ for
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WEIGHTED HILBERT SPACES OF SEQUENCES 189

some complex measu;teon D (such a function) exists if and only if there existg € L(T)

such thatp(z [T £ (&) ~ d¢ for [z] > 1, see [32]).

The first step performed in Section 2, consists in using condition (2) to construct a Dynkin
extensionD(u~) of u~ for u € £2(Z) which has the two following properties:

(1.1) dOD(u™) € LY(D);
(1.2) vt -0D(u”) € LY(D) foreveryv € (2(Z).

It seems that Dynkin extensions of this type can be found in an unpublished part of Dynkin’s
thesis, which was not accessible to the authors. The construction in Section 2, which is based on
the two natural realizations of the dual of a weighted Bergman spate sranyway a discrete
analogue of the “extraction process” of Borichev—Hedenmalm [16] for the half-line.

Now setU = ut + D(u™) and letv € £2. (Z). SetP* (utv™)(z) =372, || upvy,—p2" for
zeD.

We show in Theorem 3.1 thatL S™w for n < 0 if and only if we have

(1.3) vI.U=C(w".9U)[p — PT(uT.v7).

In fact, formula (1.3) is essentially a version of the classical Cauchy—Pompeiu formula, see
Remark 3.1.

In order to use formula (1.3) to obtain estimates on the growtirtofvhenv is orthogonal
to some nontrivial left-invariant subspace €f(Z) some control on the rate of decrease of
oU(z) =0D(u~)(z) as|z| — 1~ is needed. Such a control is given by Proposition 2.5, assuming
that condition (4) holds. Proposition 2.5 is a discrete version of some results of [16, Appendix
B], but we prove it in Appendix A by a simple and direct method based on the inversion formula
for Laplace transforms.

We now get to the crucial part of the proof. The growthf (u™ - v~) can be controlled, and
C(vt-0U)|p € L' (D) whenv andu satisfy (1.3). Whew satisfies conditions (1), (2), (3),'#
(%), the functionU is asymptotically holomorphic in the disc, and Lemma 4.2 of [17] (stated in
the paper as Lemma 5.2) provides lower boundgd¢t)| on a large class of circles centered
at the origin. Using an averaging process involving these estimates it is possible to show that

+.0U is in fact bounded of. It is then possible to show that

hmsupL(w* (Jz[) [v* (2)| < +o0
|z|—

for somet > 4, where we denote b¥,,-)+ the Legendre transform of the weidht*)* = w‘*w.
This shows that € g“’? ) for somes < 1/4 if v € £2.(Z) is orthogonal to some nontrivial left-

invariant subspace f6,(Z), and the result follows. Notice that these estimates brvere only
a step in the proof of Theorem 5.8: it follows a posteriori from Theorem 5.8 thatisf as
above, thedimsup,, . . |vn\/w_(f)(n) < +oo for somep > 1, Where(wg_p))p% is the sequence
of weights introducted in the discussion of Problem 1.

The situation is simpler when(n) = 1 for n > 1. In this case assume also thasatisfies (1),
(2), (4) and

(5) (logf/%)@l is eventually increasing.

Using a corrected version of Lemma 4.7 of [18] (with the notations of [18], the hypothesis that
xrlogw™!(x) increases as decreases t0 is used in the proof, but omitted in the statement of
this lemma), it is possible to show directly that belongs to the Nevanlinna class of the disc for
everyv € ¢2. (%) which is orthogonal to a nontrivial left-invariant subspace£&d#).
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190 J. ESTERLE AND A. VOLBERG

This special case is developed in Section 4, and the proofs are somewhat simpler than in the
general case, since in this situatiéf(Z) is the space of Fourier sequences of a Hilbert space
of functions in the circle. The results of Section 4 are closely related to the theorem of the
summaubility of the logarithm, due to the second author [49,51].

The existence of nontrivial translation invariant subspace¢?¢%) is an old-standing
problem, and there were so far very few cases of concrete weighits which translation
invariant subspaces éf (Z) have been classified. It follows from Wiener’s theorem [52] that the
translation invariant subspaces/é{Z) have the formXp *(?(Z), whereX  is the characteristic
function of some Borel subsét of T. Also, forr € (0,1), setQ, ={z € C|r <|z| < 1}, and
for f € H(Q,) denote byf(n) the nth Laurent coefficient off. Since H2(Q,.) = /2 (Z) when
w(n)=1forn >0, w(n)=r" forn <0, it follows from Sarason’s theorem [46] on the Hardy
spaceH2((2,.) that the translation invariant subspace$%fZ) have the forni/ = (2 (Z), where
U is an “inner” function on the annuluyg,. (see Section 4).

The results of Sections 4 and 5 provide a new class of concrete weigfts which the
translation invariant subspaces €f(Z) can be classified. If, say)(n) = 1 for n > 0 and
w(n) = elnl/(+leelnl) for n < 0, then all nonzero translation invariant subspace 6%.) have
the formU = 2 (Z), whereU is a singular inner function in the disc (see Theorem 4.6).

If w(n) = (1+n)"Y2forn >0, w(n) = el?l/0+loeinl) for n < 0, then all nonzero translation
invariant subspaces @f (Z) have the forni « (2 (Z) whereU is a “singular inner function” of
the Bergman space of the disc (Corollary 5.10).

More generally, ifw satisfies conditions (1), (2), (3),’4 (5') then all nontrivial translation
invariant subspaces éf (Z) have the form/,, ., 5™ (N), whereN is a nontrivial right-invariant
subspace of? (Z*) having the division property.

Theorem 5.8 has also some strategic interest for the question of existence of nontrivial
translation invariant subspacesé@f(Z). Denote byS™ the class of weights on Z™* for which
the spectrum of the shift and the spectrum of the backward shiff (h+) equal the closed unit
disc. It is not difficult to check (see Section 6) that for everg ST, there exists a weight on
7 satisfying conditions (1), (2), (3), % (5') such thatv|;+ = o. The existence of nontrivial
right-invariant subspaces éf (Z*) having the division property (or, equivalently, the existence
of nontrivial, zero-freez-invariant subspaces of inde¥in the weighted Hardy spadé? (D) is
an open problem (Problem 3 in Section 6). A recent work of Atzmon [8,9] based on the theory
of entire functions of zero exponential type, shows that such subspaces do exist igleg-
convex and satisfies a suitable regularity condition. Also, Borichev [15] showedHth@)
does have nontrivial zero-freeinvariant subspaces of index at lea@sf inf,>,0(n) =0, and
Borichev, Hedenmalm and the second author constructed recently in [17] zergifresriant
subspaces of arbitrary index for all “large” Bergman spaces. We refer to the last section of [31]
for a discussion of this problem (as mentioned above, it follows from Theorem 5.8 that a negative
answer to Problem 3 would provide a counterexample to the hyperinvariant subspace problem
for Hilbert spaces).

We give in Section 6 new examples of operators on Fréchet spaces without nontrivial
hyperinvariant subspaces. Of course there are counterexamples to the invariant subspace problem
for Fréchet spaces [5], but what is new here is that the spectrum of the operators given in Section 6
is the unit circle (the spectrum was empty for all previous counterexamples).

Notice that the existence of a nontrivial translation invariant subspag @j is equivalent to
the existence of € ¢2(Z)\{0} andv € ¢2.(Z)\{0} such that. x v = 0. The results of Section 4
give a complete description of these pajtsv) when, for examplew(n) =1 for n > 0 and
w(n) = elnl/(+logInl) for i < 0. In this casep™ belongs to the Nevanlinna class, the sum of
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WEIGHTED HILBERT SPACES OF SEQUENCES 191
the radial limits ofv™ andv™ vanishes a.e. off, andu € \/ SV where the singular inner
functionV is the “denominator” o™ (Corollary 4.7).

We refer to [8—-11,22,25,28] for recent contributions to the translation subspace problem for
(2 (Z). A positive answer was just obtained by Atzmon [10], using ideas related to Lomonosov’s
lemma for compact operators, for all symmetric weights.

The problem is still open even in the special case where the interior of the spectrim of
is nonempty, despite partial results by Apostol [4] (see also [28]). It is also open when
w(—n) = 1, despite recent progress obtained by Domar using entire functions of exponential
type [22] (see also the related paper [29]).

Notice that the “continuous” analogue of the translation invariant subspace probléfiZor
i.e., the question of existence of nontrivial translation invariant subspaces?fét,w), has
been answered positively by Domar [21] (his simple and elegant argument also works for
LP(R,w), 1 < p < +00). Domar's argument cannot be transferred to the discrete case (see [34]
for a discussion of some links between the discrete and continuous cases). On the other hand,
Domar’s construction shows that there is no analogue of Theorem 5.8 for weighks on
Domar’s construction shows that there always exist nontrivial translation invariant subspaces
J of L?(R,w) such thatf(z) # 0 a.e. for everyf € J\{0}, while Theorem 5.8 gives weights
w on Z such thatMn ¢2(Z*) # {0} for every nontrivial translation invariant subspake of
2(Z).

The methods of this paper can be adapted, with minor modifications, to the sfjd#Zgs
1 < p < 4+o0. The casep = 1, which is significantly more complicated, has been considered
by Harlouchet [33]. The authors wish to thank A. Atzmon, A. Borichev and N. Nikolskii for
valuable discussions and exchange of informations when this work was completed. They also
wish to thank the referee for bringing references [1] and [36] to their attention.

neZ

2. Weighted Hardy and Bergman spaces, Dynkin extensions

Denote byS™ the set of weights : Z* — (0, c0) satisfying the following conditions

. . o(n+1) o(n+1)
2.1 0 < inf < :
( ) < 7llgo J(n) il;% J(n) < 400
(2.2) lim &(n)"/™ = lim &(n)"/™ =1,

wherea(n) = sup,>, %, G(n) =sup,g U(%:)p) (n>0).

Denote byH (U) the space of holomorphic functions on an open subset C, and set

Ho(C\D) = {g € H(C\) | [g(M]  ~_0}.

For f € H(D), n > 0 denote byf(n) the Taylor coefficient of order. of f. Similarly for

g € Ho(C\D), n < 0 denote byj(n) the Laurent coefficient of order of g. Now leto € S+.
Set

(2.3) oc*(n)=c"(-n—-1) (n<0),

oo 1/2
(2.4) zg:qﬁ@m:{feﬁww|ﬂa:[§:wmﬂ%%m] <+m},
n=0

1/2

(25) Hi = {g & Ho(C\D) | llglo- := [Z

n<0

mmzfmﬁ} <+m}
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192 J. ESTERLE AND A. VOLBERG

We can identifyH , to the dual ofH,, the duality being implemented by the formula
(2.6) Z —n—1) (f€H, geHy,).

We will denote byz the identity map oi€. As usual, we will say that a closed subspadef
H, is z-invariantwhemnz M C M. Now if f € H,, A € D set

@) 1o =18 cemon. nw-ro.

As mentioned in the introduction the class is the class of weights o™ for which the
spectrum of the shiff — zf and the spectrum of the backward shift- f, is the closed unit
disc.

We will use later the following notion.

DEFINITION 2.1.— Leto € S*. A closed subspac#/ of H, has the division property if
fx € M foreveryf € M and every\ € D such thatf () =

We refer to [31] for a discussion of subspacegigfhaving the division property. Let € H,,
g € H_,. Animmediate computation shows that we have

(2.8)
(2.9)

(S )| <[ fllo-lgllowd(—n—1)  (n<0),
(f* )] < flo-llgllowa(n+1)  (n>0).

g
Letr € (0,1). Set, forf € H(D), g € Ho(C\D)

@) 1©=109 (ld<t). a©=a() (>0

Clearly, || fr — fllo =+—1- 0,]lgr — gllox —»—1- 0, and we obtain, foff € H,,g € H;,

ox)

(2.11) (f,g)= lim /fr &)gs(&

Let A € D. It follows from (2.9) that

o0

Y (fxg) (A" = lim Zfrgs

n=0 Tﬂlin 0
s—1

Also 5L [ £19 d¢ = 3720 F(n)A™ for F € LY(T), and so

;. n_ o L[ fr(€)gs(€)
nzo(f*g)(n))\ = Tlir{lf ﬂ/g_i/\df-
- s—1" T
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WEIGHTED HILBERT SPACES OF SEQUENCES 193

Since [, & f)d5 =0, 5= [r fr 5)9 ©) d¢ = ((f, ), gs). Since the magf — £, is continuous
onH,,we obtaln, foeD, f € HU, g€ H,.,
(2.12) (fr,9) = lim /fr 9s dg Z
9 r—1-— 2
s—1"

We will say as usual that a sequer(es,),,>, Of strictly positive real numbers is log-convex
WhenufwﬂL < UpUnt2 for n > p. We will say thats : Z+ — (0, 00) is log-convex if(c(n)) >0
is log-convex, and we will say that is eventually log-convex ifo(n)),>, is log-convex for
somep > 0. In this caseg € ST if and only if o(n +1)/0(n) —,_ 1, which implies that
o(n+1) <o(n)forn>p. SetL? (0,1) ={p € L?(0,1) | ¢(t) > 0 a.e}. Denote bydm(¢) the
planar Lebesgue measure @rand lety € L2 (0,1). Set

@13) B,= 20 = {7 H®) |1/l = | //\f ) (€]) dme )]1/2<+oo}7

1

(2.14) op(n) = lZ/(p (t)t?n+t dt] (n>0).
0
Clearly, o, € ST is log-convex, andr,(n) —,— 0. Conversely, ifo € ST is eventually
log-convex, and it-(n) —,,—.~ 0 then there exists a functigne L2 (0, 1), continuous or0, 1)
such that

0 < liminf o(n) < limsup o(n)
Gy S P G )

This follows from [14, Appendix A], see [23, Lemma 5.2]. Using polar coordinates, we obtain
immediately, forp € L2 (0,1)

(2.15) By =H,,, |fle=Iflo, (f€By)

In order to give two interpretations of the dualBf, we need to introduce the (planar) Cauchy
transform, defined fok € L'(D) by the formula

(2.16) == [ [ f(—f)f am(e)
D

Then C(h) € Li..(C) for p € [1,2) (and C(h) is bounded and continuous of if
heU,p L(D)). SetC () = C(h)|p, C~(h) =C(h)| o\

We havedC(h)(\) = h()\) a.e. onD, anddC(h)(\) = 0 onC\D, the partial derivatives being
taken in the sense of distribution theory, so obvioustyh) € Ho(C\D).

Now lety € L2 (0,1), and setp()\) = ¢(|A]) for A € D.

Notice thatp?B,, C ¢?B,B, C L' (D). Set

< +o00.

(217) 1.6=7 [ [ #Oc©am©) (7€ B..Ge By,
D

Clearly, there exists for everye H_. a uniqueG € ¢*B,, such thaff, G] = (f, g) for every
f € B,. This suggests the following definition.
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DEFINITION 2.2.— Lets € S*be an eventually log-convex weight such thét) —,, . 0.
Set

W(U)_{gpeLi(o,U 0 < timinf 27 < timsup -2 <—|—oo}.

n—oo g, (n) n—oo Op(1N)

Forg e H_,, ¢ € W (o) we define theo-Dynkin extension ofy to D by the formula
Dy(9) =C*(Ay(9)),
whereA,(g) € ¢*B,, is given by the relation

[f;Ap(9)] = (f.9) (f€H,).

From now on we will assume in this section that St is eventually log-convex, and that
o(n) =n—oo 0.
PROPOSITION 2.3. — Letge H,,, ¢ € W (o) and setG = A,(g), g =D, (g). We have, for
AeD:
i) g=C7(qG), _
(i) GV =¢*(IA) Xn2gd(—n — 1o 2(n)A",

(i) g is continuous orD, and

Al
_QZg —n—1Do,“(m)A™ "~ 1/r2"+1<p2(r)dr,

0

(v) FNGN) =2 [ L1925 i) + (fr,9) (f € Ho).

Proof. —Denote again by: the identity map onD. It follows from (2.6) that we have
g(n)=(z7"7 1, > forn <O0.

Setd(£) = 5= for £ € D, |A| > 1. We haves, = oo o A1z, the series being conver-
gentinH,, and so
(2.18) g(N) ={0xr,9) (IAI>1).

Hence

g(A\) =1[0x,G //A ¢ dm(¢) for |\l >1,
which proves (i).

SetF(\) = ¢~ 2(|A]).G()) for A € D, so thatF’ € B, = H,,. We have, fom >0
1 —
a(-n-1) =[] =+ [ [ €D Fie) amie)
D

1 27

1 n int 10 i -
=L o) [Tt ar=Foaiin
0 0
Hence
A3 F " = 1D 3o 5(-n = Do m" for A<D,
n=0 n=0
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wich proves (ii).
Set
[Al
B =R, =22 [ ar
0
for A e, n >0, so thaté, (\)| < 2|A\|™.||¢|3.
The series "~ | §(—n — 1).0,%(n){, converges uniformly on compact subsetdof

Forh € L], .(D) we have, in the sense of distribution theory,
=y €T[Oh, ioh, |
8h(ret):7{a(ret)+ 325( et)].

Hencedl,,(\) = A~ L. * ATIAPTTLE2(|A]) = ka(A) a.e. onD. Sincel,, extends continuously
to D we have, by the usual Cauchy—Pompeiu formulaXerD

D T

(&) 4o &
T/g_)\dﬁ—Zoi(n)/ £ d¢ =0,

T

But

—

and sof,, = C* (k,,). Since the mag' — ¢?.f is continuous fronB,, into L' (D), we have

P

§— Y 4(=n—1)0,*(n)ty

n=0

— 0.
p—oo

LY (D)

Henceg is continuous or), and

[Al

_QZg —n—1o,“(n)A\™"" 1/r2"+1ap2(r)dr

0

for A € D, which proves (iii).
Now let f € H,, A € D. We have

(Frg) =[£G //f I =9 66)amie
ngo) -+ [ [ L) gy
D
which proves (iv). O

Remark2.1. — It follows from (2.12) that

oo

(fog)=> _(fxg) (A" forfeH,, ge H,, NeD,

n=0
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and formula (iv) is essentially the Cauchy—Pompeiu formulg:@fC* (D) N'H(D), and ifC(99)
is continuous orfC, then

S (g = o [ L858 4

and formula (iv) gives

//f 595 %T/f(gfég\f

Despite its simplicity, formula (iv) will play an important role in the paper.
We know that ife € ST is eventually log-convex, and #f(n) —,_ 0, then the set

Wie) = {oe 120.1) |0 < tmint 2k < timanp 2L

<+oo}

contains a functiog which is continuous oif, 1). We now give a simple condition anwhich
guarantees the existence of soge W (o) for which there is a good control on the rate of
decrease ofD,(g)(\) as|\| — 1~ for everyg € H,..

We will need the discrete form of the Legendre transform.

DEFINITION 2.4.—Leto € ST. The Legendre transform of is the function defined by the
formula

n

LO’ (’I’) = sup {r—

n>00(n)
Clearly, L, (r) —,_1- o0 if 0(n) =50 0.

Now assume that is log-convex. Sety =0, r,, = J(n for n > 1. We have the following
standard properties

(rel0,1)).

(2.19) ﬁ = inf Lo(r)r™ (n>0)
(2.20) Ly(r)= UT(:L) (rn, <r <rpt1,n = 0);
(2.21) s % (n>1).

The following result is a discrete version of some results of [16, Appendix B]. We will give a
direct proof in Appendix A.

PROPOSITION 2.5. — Let o € S*. If the sequencé(n + 1)*c(n)),>0 is eventually log-
convex for some > 3/2, thenW (o) contains a function satisfying the following conditions

(i) ¢ is strictly decreasing and continuously differentiable[onl ).

(i) Foreveryé € (0,1 — 3/2a), there existss > 0 such that

0D (9)(N)] < k- [gllow- L (X)) (9 € How, AED).

Remark2.2. — Seto,(n) = (n + 1)%(n) for n > 0. If 0 € ST, and if o, is eventually
log-convex for somev > 1/2, then H, is a Banach algebra. This a discrete version of [16,

Corollary 8.9], and the details can be found in [25, Proposition 2.16].
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3. Trandlation invariant subspaces of ¢2(Z), convolution equationson Z, and a
Cauchy—Pompeiu type formula

We will denote byS the set of weights): Z — (0, oo) satisfying the two following conditions

(3.1) 0<inf “0FD e+l L
neZ w(n) nez  w(n)
(3.2) o(n)YM 1, whered(n) := sup win+p) (neZ).
|0 ez w(p)

Forw € S, set

63 o=@ ={u=(umnez | lul = | X w2 " roc.

neZ
34) W) =wl(-n-1) (n€D), wi=wl, w =wls,

where we denote b+ the set of nonnegative integers ad the set of negative integers.
Clearly,S* = {w, }wes, whereST is the set introduced in Section 2.
The usual bilateral shift operatéron ¢, is defined by the formula

(35) Su = (unfl)nGZ (u = (un)nGZ € éw)
The operatolS is bounded and invertible ofy,, and we have
(3.6) [S"|=a(n) (neZ)

so thatSpec(S) = T.
The dual of?,, can be identified té,,., the duality being implemented by the formula

(3.7) (,0) =D upv_p1 (= (Un)nez € lus V= (Un)nez € lu).
PEZ
Now set
(3.8) 5:{u:(un)nez|‘l|i_m un V1M < 11

We have foru = (un )nez € luw, v = (Vn)nez € lws

g UpUp—p

PEL

(3.9) < ullo-lvnllos@(=n=1)  (n€Z)

and sou * v := (ZPGZ UpUn—p)nez € E.

Denote by HF(T) the set of hyperfunctions on the unit circlg i.e. the set of all pairs
F = (f,9) where f € H(D),g € Ho(C\D). Denote by P*:HF(T) — H(D) the map
(f,g) — f and denote byP~ : HF(T) — Ho(C\D) the map(f,g) — g. The notations being
as in Section 2, set, faf € HF (T)

— —

(3.10) F(n)=P+(F)(n) (n>0), F(n)=P-(F)(n) (n<0).
Also foru € £ set
(3.11) a=(ut,u"),
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whereu™ andu ™ are defined by the formula

(3.12) ut(\) = i ANuy,  (|A < 1),
(3.13) um(A) =3 MNu, (]A[>1).
n<0

The Fourier transforn: F — F := (F(n))ncz is a bijection fromHF(T) onto £, and
F~Y(u) = u for u € £ (the hyperfunctior is often called the Carleman transformgt

We will often identify a functionF" € L*(T) to the hyperfunction having the same Fourier
coefficients. We obtain, foF € L!(T)

319 PO =5 [ 5% de (A <1)
T
(315) PO =5 [ £ (A> ),
T
and so, by the Plemelj—Privalov formula
(3.16) F(&) = lim PT(F)(ré)+ lim P~(F)(r~'¢) a.e.on.

r—1— r—1-

Now letw € §. Foru € ¢,,,v € ¢, we define the “productliv by the formula

=UuU*x7.

(3.17) @

@1

Identifying u™ to the hyperfunctior(u™,0), v~ to the hyperfunction(0,«~), etc. we can
use formula (3.17) to define the produetsv~ andvtu™ for u € £,,,v € £,,.. Notice that if
w(n)=1forn >0 thenu™ € H?(D), v~ € H?>(C\D), and sou™v~ can be considered as an
element ofL!(T). We obtain in this case, far € /.

Qv ()

T(uto™ = .
(3.18) PHut v )N = 5 / B (<)
Forw e S, set
(3.19) 03 ={u=(un)nez € lw | up =0(n <0)},
(3.20) = {u = (tp)nez € b | un = 0(n > 0)}.

We can identify/], to

b, (Z7) = {u = (Un)n>0 ’ Z [ |*w?(n) < +oo}.

n=0

The Fourier transform is then an isometry from the weighted Hardy sphgce onto ¢,
which defines a unitary equivalence between the operator of multiplicationdy .., and
St :=5|,+

Recall that a closed subspakg of /,, is said to be translation invariant (resp. right-invariant,
resp. left-invariant) whes (M) = M (resp.S(M) C M, resp.S~—1(M) C M). Such a subspace
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is said to be nontrivial whed/ # {0}, M # ¢,,. We will use the standard notatidnA to denote
the closed linear span A C ¢,,. Letu € ¢, v € £,. Clearly,v L \/@0 S™y if and only if
uxv|z- =001\, S"uifandonly ifuxv|;+ =0,andvl\/, ., S"uifand only ifuxv =0,
and the existence of a nontrivial translation invariant subspaggisfequivalent to the existence
of u € £,,\{0} andv € ¢,,,\{0} such thatu x v = 0.

Recall that a sequencg:,),>, Of positive real numbers is said to be log-concave if
the sequencda,'),>, is log-convex. In particular, ifv € S, the fact that the sequence
(w(—n))n>1 is eventually log-concave means thet is eventually log-convex. In this situation,
the space{vt},¢c¢,. is the weighted Hardy spade.,: and the spacéu~ },cr, IS the space

Hi oy =Hg . Hence we can construct the Dynkin extensity (u—) for everyu € £, if
+
peW(wy).
As in Section 2 we denote /" (F') the restriction to the disc of the planar Cauchy transform
of F € L'(D). The following simple result will play a basic role in the next sections.

THEOREM 3.1. — Letw € §, and assume that the sequerag—n)),,>1 is eventually log-
concave. Lepp € W(w?), u € £y, v € L. Then the two following conditions imply each other

() vLV, 05, )
(i) vt (ut +Dy(u))=Ct(vTdD,(u™)) — P (utv™).

Proof. —It follows from formula (2.12) and Proposition 2.3 that we have Xar D,

n=0

SetF =vt(ut 4+ Dy(u™)) + PT(utv™) = C(vT0D,(u™)). ThenF € H(D) and we have

ﬁ:ﬁ*lﬁ|z+ +ﬁ*’[/1.:‘z+ +;*’Lﬁ|z+

But u v = (@F + ﬁj) * (/7; + 7?), andu— 1/;|Z+ = {0}. HenceF = u  v|+, and the
result follows. O

Remark3.1. — (i) Heuristically— P*(u*v™) represents the Cauchy integral of the “boundary
value” of vt (u* + D, (u™)) on T, and condition (ii) of Theorem 3.1 is again a version of the
classical Cauchy—Pompeiu formula.

(i) If w(n)=1forn >0 we can use formula (3.18) and condition (ii) of Theorem 3.1 gives,
forAeD

v (A [u” )+D (u™)(N)]

(3.21) // GAD@ 7)) dm(§)+%/“+(€)v(£) .
T

In the next two sections we shall show that if the sequénge-n)),,>o grows “sufficiently

fast and regularly” then all left-invariant subspaceg ohave the form\/ng_k S™M for some
k > 0, where M is a closed subspace ¢f,, having the “division property” introduced in

Section 2. In particular all translation invariant subspaces,dfave the form\/, , 5™ M for
somez-invariant subspacé/ of H,,, having the division property.
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4. Thecasew(n)=1forn >0

In this section we restrict attention to the case whefe) = 1 for n > 0 and where
w(—n) —n—0 00. In this situation, set

1/2

an  m={rerm|in.- [nz;f(n)ﬁw%n)} <ol

ThenL2(T) = H* ® H__, where we denote byi*> = H*(D) the usual Hardy space, and

.

¢, = L2(T). Hence the shiftS on ¢, is unitarily equivalent to the multiplication operat@r
defined by the formula

(4.2) T(f)(e") =€"f(e") a.e.onl (feL2(T)).

We will say that a closed subspacel/ of L2(T) is z-invariant (resp.
z~l-invariant, resp.z-biinvariant) if (M) c M (resp.T-'(M) C M, resp.T(M) = M)
and we will use the notatio™ (M) = z".M for M C L2(T), n € Z. The existence of non-
trivial z-biinvariant subspaces df2(T) was pointed out only recently [25, Theorem 5-7]: if
w(n)=1forn >0, and ifw(n) —,— oo then there exists a singular inner functiinsuch
that\/, ., 2"U ¢ L2(T). If, further, W —n—oo 00 then\/, ., 2"U ¢ L2(T) for every
singular inner functiorly [25, Theorem 3-8]. These facts are related to a trivial convolution
equation. If

T

1 [elt4z

is the singular inner function associated to a positive singular measomél’, extendU to C\DD
by using the same formula and set

U\ =0\ -U0) (A<D,

(4.3)
U*(\)=-U"N)+U(@0) (]A>1).
ThenU* € HF(T) and, identifyingU’ € L?(T) to the hyperfunction having the same Fourier
coefficients, we havé/* = (U~',0) — U, so thatU * U* = 0. Hence\/, ., S"U & L2(T) if
U* € ¢,+, which is indeed the case(fogw(—n))/v/N —n—oco 00. Assume again that(n) =1
for n > 0, and thafiminf,, . w(—n) > 0. We will say thatw is quasianalytic when we have

(4.4) Z logw(n) oo

2
n
n<0

If w is not quasianalytic, it follows from the discrete version of the Beurling—Malliavin
theorem [13] thai\fy, # {0} for every nonempty open af¢, where

My ={feL%(T)|flv=0ae},

which provides another family of nontriviatbiinvariant subspaces @f? (T).

On the other hand 77| 1650 — 00, wherep(n) = [, 52—]"!, a sharp result of

Beurling [12, p. 407] shows that(el) # 0 a.e. for every nonzerp € L2 (T).
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In particular ifw is quasianalytic, and if the sequer{cg —n) /n®),,>1 is eventually increasing
for somea > 1/2, then f(e'*) # 0 a.e. for every nonzerg € L2(T). The now classical
“Theorem of summability of the logarithm” [18,49-51], due to the second author, says much
more: we havéog | f| € L*(T) for every nonzerd € L2 (T) if w is quasianalytic, witlv(n) = 1
for n > 0, and satisfies the two following regularity conditions

(4.5) (w(=n)), -, is eventually log-concave,
(4.6) <M) is eventually increasing.
\/ﬁ n>1

=

In the remainder of this section we will consider quasianalytic weightsith w(n) =1 for
n > 0 which satisfy (4.6) and

4.7) (Lan)> is eventually log-concave for sorme> 3
n n>1

Denote by|A| the Lebesgue measure of a Borel getc R and notice that iff” € C1(D) N
L>=(D) and if 9F € L>(D), thenC(dF) is continuous orC, F' — C*(0F) € H*, so that
lim,_,;- F(re'’) exists a.e. ofT. We now state as a lemma two important results concerning
asymptotically holomorphic functions in the disc.

LEMMA 4.1[17,Lemma4.7 and Theorem 5.10]Let F € C}(D) N L= (D), ro € [0,1) and
letp:[ro,1) — (0,00) be a continuous function such th@t— r) log p(r) is increasing orjrg, 1)
and such that

1

/log log p(r) dr = +0c0.

To
Assume thald F'(\)| < p~1(|A]) for ro < [N < 1.
Then eithelim,_,,- F(re'*) =0 a.e. or F satisfies the two following conditions
(i) There exist&, > 1 such that we have, fdr > kg

{re[1- 27k 1—27F 1] |)1\I\1*f IFO)] > p H(AD}] = 9—k=2,

(i) lim,_,- fo2ﬂlog|F(reit)\dt>—oo.

An important result of Bourgain [19] shows that a functigne L?(T)\{0} belongs
to H2H  if and only if log|f| € L'(T). Lemma 4.1 gives more precise factorizations for
f € L2(T)\{0} whenw satisfies the hypothesis of the theorem of summability of the logarithm.
SetHZ = {f € H?| f(0) = 0}. We state as a corollary such a result, which follows from the
proof of [18, Theorem 6.3]. A more precise result will be given in Appendix B.

COROLLARY 4.2.— Letw € § be a quasianalytic weight satisfying.5) and (4.6), with
w(n) =1 for n > 0. Then for everyf € L2 (T) there existyy € H?, h € HZ, k > 0 satisfying
the following conditions

(i) (log™ [A(n)])/ VN —n—o0 00;

(i) f(e') = ek eh(e) g(clt) a.e. onT.

Notice that the theorem of summability of the logarithm is an immediate consequence of
Corollary 4.2.
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We follow now the strategy outlined in the introduction. Denote by

2m

N(D)—{fEH(ID))’ sup /log+|f(reit)|dt<—|—oo}

o<r<1
0

27

lim /1og+|f(reif) |dt < +oo}
0

r—1-

= {f € H(D)

the Nevanlinna class of the disc.

LEMMA 4.3. - Letw € S be aquasianalytic weight such thatn) = 1 for n > 0, and assume
that w satisfies the regularity conditior@.6) and (4.7). Thenv™ € N/ (D) for everyv € £,
which is not left-cyclic.

Proof. —-For ¢ € ST denote again byL, the Legendre transform of introduced in
Definition 2.3. We have, for > 0

(4.8) Lyi/e(r)=Ls (rc)l/c (0<r<l).

Now seto(n) = w(—n — 1)~! for n > 0, so thato = (w*),, according to the notations of
Section 3. Them is eventually log-convex and sinde -, logo(n) — 4 5, we have (see [12)])

1
(4.9 /log log L, (r)dr = 4o0.
0
Also, since the sequencflogo—'/¢(n))/v/n)n>1 IS eventually increasing, it follows
from [43] and (4.8) that we have, fer> 0
(4.10) (1—7)log L, (r¢) is eventually increasing as— 1.
Letu € £,,\{0} such that{u x v),, = 0 for n > 0, and let¢ € W (o) satisfy the conditions of

Proposition 2.5. Denote b, (u ) the p-Dynkin extension of:~ and setF’ = u™ + Dy (u ™).
If follows from Theorem 3.1 and formula (3.21) that we have,Xar D

(4.11) v*(A)F(A)=%//W(§)7f@dm(€)+%/7“+(f)f;£) de.
D

T

Also it follows from Proposition 2.5 that we have, for some 0, as|A\| — 1~

(4.12) OF(\) =o(L;<(|A]).

/
2
T

belongstdJ, ., H?(D) C NV(D). Sinceu™ € H*(D) we see that there exisisc H> (D), with
|¢|| oy = 1, such that) F € L>°(D) and6 € H>(DD), so that T F € L*(D).

Sinceu™v~ € L(T), the function
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Set G = ¢F, and setp(r) = L/*(r°) for r € [0,1). We have|dG(\)| = o(L;=(|A])
as |A| — 17. A fortiori, [0G(\)| = o(p~L(|\])) as |A\| — 1. It follows from (4.9) that
fol loglog p(r) dr = +00, and it follows from (4.10) thatl — r) log p(r) is eventually increasing
asr— 1.

SetA, ={re[l—27%1-2"F1]|inf -, |G| = p*(r)}, B = Urea, 7T. Since
F(et)y(et) = lim,_,,- G(re't) does not vanish a.e. dfi becauseu # 0, it follows from
Lemma 4.1(i) that there exists > 1 such that Ax| > 27%~2 for k > ko. We can also assume
thatr® <1 —8(1 —r) for1 —2 % <r < 1.

Let A € D be such that — 27% < |A| <1 —27%"1, with k > ko, and letr € A, . We have
273 L1 —r<27F 2Ly — A\, andr? <1-8(1 —7) <1-—27%<|)|. Using Cauchy’s

formula, we obtain
dt
217T/§ A ‘ T—|)\\ /’v ref re ’

<L (). /|v re)G(ret)] dr.

Averaging overdy o, we get

k+
[t (V)] < ‘ZH LE/3( \)\| // (rei®)|drdt

Ak+2 >< 0 271'

92+5 1 64 L5 (|A])
Z et [ [lot©c@lamte) < 2L 16l g,

Brio

Since (1 — r)log L, (r) is eventually increasing as — 1-, this shows thatv™*()\)| =
o(LE(|A]) as|A| — 1. HencevtOF € L>(D), by (4.12). It follows then from (4.11) and the
definition of G thatv™ G € L>° (D).

Using Lemma 4.1(ii), we see that

2
lim log‘G re ’dt> —00.

r—1-

0
Sinced is bounded orD, this shows that
27

lim log+‘G_1(reit)’dt< 400

r—1-

and so

2 2m
lim logﬂv(reit)‘dté lim /logﬂGfl(reit)’dt+27rlog+[||v+GHLoo(D)] < +o00
r—1- r—1-

which concludes the proof of the lemman
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Forp > 1 setd,(n) = 1 for n >0, 6,(n) = e*V1"l forn <0, so tha@’; = 4, = 6,. We deduce
from Lemma 4.3 the following result.

COROLLARY 4.4.— Letw € S be a weight satisfying the conditions of Lemmh& Then
every nontrivial left-invariant subspadé of /,,- is contained in€9; for somep > 1. Moreover

(V. |-lo~) is isomorphic to(V, |.[|e ), SO thatlim sup,, e*p\/ﬁ.HS‘}/"H < 400.

Proof. —It follows from Lemma 4.3 thalim sup |, - (1 — |A[) log™ [vt(\)] < 400 for every
v € V. A standard application of Cauchy’s inequalities shows then that

limsup (log™ |v,|)/v/n < 400 foreveryv e V.

n—oo

Forp>1,q>1setV, ,={veV [sup,sq|vale PV < gl|v]+}, SO thatl], , is closed. We

haveV = 5, ,>1 Vg Hence there existg > 1, ¢ > 1 such thatV,, , # 0, and there exist
w €V, 4 andr > 0 such that

TUn

[[0]]w

sup eV gr + w]or]

n=0

Wy, +

for everyv € V\{0}.
Setk = q + 2|w]|,-. We obtain|v,| < kePV?|jv||,- for v € V,n > 0, and we have, for
veV,

w* .

ollF. ,, <D loal> + Y Joa[?eCPFRVE < (1 +k? Ze‘m> o]

n<0 n=0 n=0

It follows from the growth conditions offw(—n)),>0 thatsup,,cz 0p1+1(n)/w(n) < +oo.
Hence(V,||.||.~) is isomorphic to(V, ||.\|9;+1). O

LEMMA 4.5.— Letw € S be a weight satisfying the conditions of Lem#n@ Then for every
f € L2(T) there existy € H? andk > 0 such that

\/ 2= \/ z"g.

n<0 n<—k

Proof. —-Let M be a nontrivial z~!-invariant subspace ofL2(T), and denote by
7:L2(T) — L2(T)/M the canonical surjection. Using the formula(f),v) = (f,v) for
f €M, ve M+ we can identify isometrically L2 (T)/M)* to M. It follows from Corol-
lary 4.4 that there exists > 1 such that M, ||.||..-) is isomorphic to( ML, ||. 0:). Letk >0
such that||v]|.- < k[[v]le; for v e M*, and letf € L2(T). There existsy € M~ such that
o = 1and||x(f)|| = (f,v). We obtain

Z f(n)”—n—l

nez

[

I=(H)l =

< flle,-llv

o <kl fllo,-

Hencer : (L2(T), ||.|ls,) — L2 (T)/M is continuous.
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SetB={he HQ\ > n<0 \ﬁ(n)|ep\/m < +o00}. ThenB is a Banach algebra, ard € B for
every h € B. Since||z" f|lg, < ép(n)||f||9p = ep\/m||f||9p for n < 0, we see that the series

> <o h(n)z" f is absolutely convergentify, for f € (g, h € B.
Computing Fourier coefficients, we see tlﬁtn<O fz(n)z"f = hf. Now extendr by con-
tinuity to L7 (T). We obtain

(4.13) n(hf) =Y h(n)x(="f) (f€Lj (T),heB).

n<0

Now let f € L2(T). It follows from Corollary 4.2 that there exiét> 0, g € H? andh € B
such thatf = z=*e"g. Seth; =", hy =e™". We have

(4.14) w(f)= Z ﬁl(n)w(zn_kg), ﬂ(z_kg) = Z iLg(?’L)TK'(an)

n<0 n<0

The lemma follows then from (4.14).0

According to [31] we will say that a left-invariant subspadé of ¢, is analytic if
M = Mn¢f #{0}. An elementary theory developed in [31, 83] shows thatdf S satisfies
w(n) =1 for n > 0, and if (logw(—n))/v/n —n— 00, then every analytic left-invariant
subspaceV/ of £, has the formy/, _, S"M*. Of course M+ = {f € H?| f € M*} has the
division property introduced in Section 2, and it follows from the results of [31] that the map
G— \/n§0 S™@ is then a bijection from the lattice of nonzero closed subspacés’dfaving
the division property onto the lattice of analytic left-invariant subspacés.of

Denote by (D) the Smirnov class, i.e. the class of analytic functions in the disc of the form
VF, whereV is inner andF’ € (D) is outer. We obtain the following result.

THEOREM 4.6. — Letw € S be a weight satisfying the following conditions

(1) w(n)=1(n>0);

2) 3,0 ) — 4o

(3) (logw(—n)/+/n)n>1 is eventually increasing

(4) (w(—n)/n%),>1 is eventuallyog-concave for some > 3/2.

Then every:~'-invariant subspacé” of L? (T) has the formF" = \/, __, »"G wherek >0
and where G is a closed subspacefdt having the division property. In particular for every
nontrivial translation invariant subspacg/ of /,, there exists a unique singular inner function
U such thatM =/, ., S"U and for every nontrivial invariant subspacé of /.- there exists
a unique singular inner functioty such that

N:{UEKW*

vtU €N+(D),Tllr{17 v (ré) + v (r§) =0a.e.onT}.

Proof. —It follows from Lemma 4.5 that there exists for every nontriviat!-invariant
subspacé” of L2 (T) a nonnegative integér such that:* ' N H? # {0} and the first assertion
follows from [31, Th. 4.5].

Now if Fis translation invarianttheR N H?2 # {0} and it follows from [25, Th. 3.8] that there
exists a unique singular inner functibhsuch thatt" = \/, ., 2"U, so thatF’ = Voez 57U (this
follows also from [31, Th. 4.5]). Now lefV be a nontrivial translation invariant subspace of
£,+. There exists a unique singular inner functidrsuch thatV = {v € £,,- | U * v = 0}. The
convolution produc/* v makes sense foF,, _ [vn|? < +00, lim, o [v,]1/" < 1, and the
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convolution equationff* v = 0 was discussed in [25, Proposition 3.12]: we have v = 0 iff
Unvt € NT(D) andlim, . v (r&)+ lim,_;- v~ (r~1£) = 0 a.e. onT, which concludes the
proof of the theorem. O

Let F be az~! invariant subspace df2 (T). For a givenk > 0 there exists a unique closed
subspacé of H? having the division property such that= Vo< 2"G but the pairgk, G)
satisfying the above condition are not unique in general. The set of all these pairs is discussed
in [31, Corollary 3.6].

For o € N(D), ¢ # 0 denote byD(p) the G.C.D. of all inner functiong/ such that
Up € N*T(D). Then D(yp) is singular and we have as well know= D(¢)~! VF whereV
is inner,F" outer and where the G.C.D. dfand D () equalsl. In particulargpD(¢) € N (D).

We now deduce from Theorem 4.6 a complete description of the fair$, with v € £,,\{0},

v € £, \{0} satisfyingu « v =0.

COROLLARY 4.7.— Letw € S be a weight satisfying the conditions of Theoréré and
let u € £,\{0}, v € £,-\{0}. Thenu x v = 0 if and only ifu andv satisfy the two following
conditions

(1) v e N(D), andlim, ;- v+ (ré)+ lim,_,,- v~ (r~1£) =0 a.e. onT;

(@) ueV e S"D(vT).

Proof. —Assume that, x v = 0. Then\/ V.8™v is a nontrivial invariant subspace 6f-,
and sov satisfies (1). We also know thgy,, ., V.S™v]= =V, ., V.$"U for some singular inner
functionU. SinceU v =0, Uvt € N (D) and soD(y) is a divisor ofU.

HenceU € D(vt)H? € \/,,cz 2" D(vT) and sou eV, ., S D(v+).

Conversely ifu andv satisfy (1) and (2) them)/(v\+) xv =0, sinceD(v*)vt e N*(D), and
souxv=0. O

nez

Notice that ifw € S satisfies the conditions of Theorem 4.6 then we can assume, by modifying
if necessaryw on a finite set, that is nonincreasing. In this case it is easy to see that the map
f — zf is an absolutely continuous contraction, and so inner functions are bounded multipliers
on L2 (T), see [25]. Condition (2) of Corollary 4.7 means thds the Fourier sequence of some
function f € [UL2(T)]~. We do not know any more concrete characterization of such functions.

Notice also that the translation invariant subspace§, ofare independent of the choice of
w if w satisfies the hypothesis of Theorem 4.6, an illustration of the rigidity of quasianalytic
structures.

Now letr € (0,1) and sef2 = {z € C | r < |z| < 1}. The Hardy spacé/?({2) can be viewed
as an “analytic analogue” of the spade®(T) considered in Theorem 4.6 (if we defirién) to
be the Laurent coefficient of of ordern for f € H?(Q2) we see thaf{?(Q) is isomorphic to
the space?(Z) whereo(n) = 1 for n > 0, o(n) = r™ for n < 0). The z-biinvariant subspaces
of H2(Q) were characterized long ago by Sarason in his thesis [46], and they have the form
UH?*(Q) where U is an “inner function” on the annulug, i.e. a function having radial
limits of constant modulus on both componentsd$i. More recently, Hitt and Sarason [39,

47] characterized the!-invariant subspaces (and, by symmetry, thimvariant subspaces)
of H*(2). These subspaces have the fof). _, z"G whereG is a closed subspace &f*
“nearly invariant for the backward shift”, which means that f € G for every f € G such that
f(0)=o.

In particular,z* F'n H? # {0} for somek > 0 if I is a nontrivialz~!-invariant subspace of
H?(Q), and we see that there is a large analogy between the “analytic” and the “quasianalytic”
situations. The methods used here are completely different from the methods of Hitt and Sarason.
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Since the closed subspacesIdt having the division property form a subclass of the class of
closed subspaces &f2 nearly invariant for the backward shift we deduce immediately from [39,
47] that these subspaces have the fdm= Up[V H?]*, whereV is an inner function, or
V = {0}, whereU is a singular inner function, ot/ = 1, and wherep is an outer function
satisfying||¢f||2 = || f||= for every f € [V H?]-. These subspaces form a very large class. For
exampleC f has the division property for every functighc H? without zeroes irD.

5. Thegeneral case

In this section we obtain results analogous to the results of Section & 1S when
(w(—n))n>1 satisfies suitable growth and regularity conditions.

In order to shorten the formulations of the results, it is convenient to introduce the following
regularity conditions

(5.1) <M> is eventually increasing for everye (0, 1);
ne n>1

(5.2) <M(log n)A) is eventually increasing for somé&> 0.
n n>1

Condition 5.2 was introduced by Borichev [14]. The second assertion of the following
elementary result strenghtens [14, Lemma 1] ¢far ST we defines as in Section 2, and for
w € S we definew as in Section 3).

PROPOSITION 5.1. — Letw € §, and assume thdtv(—n)),>1 is eventuallylog-concave.
() If w satisfieg5.1), then

logo(— log @
Jim sup 1289 _ maX(L Jim sup M) ,
n—oo logw(—n) n—oo logw(—n)

(i) If w satisfieg(5.2) then Lg(rs)L;(l””)a(r) —,_1- 0 for everya > 0 and everys > 1,
whereo = (w*) 4.

Proof. —Assume thab satisfies (5.1). Notice that both sides of (i) are not affected if we change
a finite set of values ofw(n)),cz or if we multiply a subsequence of the sequeficén)),cz
by some positive constant. Hence we can assumeutftgt= 1, so thatw=!(n) < @, (n) for
n > 0, and thatw(—n)),>o is log-concave, so that(—n) = sup,<ow(—n + p)/w(p). Hence

&(—n) =max(w(—n), @4+ (n), (n)), where

w —n
)= swp P G (- n)es ().
1<p<n—1 W(p) 1<p<n—1

In particularo(—n) /w(—n) > 1 and@w(—n) /o4 (n) > 1.
n)
n)

Henceliminf,, . % >1and
log &(— log @
lmsup 222 < i gup 1089+
n—ooo l0gw(—n)~ noee logw(—n)

Let ¢ > max(1,limsup, . 2220y and leta € (0,1). We can assume that, (n) <

logw(—n)

w(—n)c for n > 1 and that the sequendélogw(—n))/n),>1 is nondecreasing. For > 1,
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we obtain
logé(n) < clogw(—n) sup M =2'"%logw(—n).
1<psn—1 n
Hence
logw(— log &
lim sup M <max| 1,limsup M
n—oo logw(—n) n—oo logw(—n)

which gives (i). Now assume thatsatisfies (5.2). Far > 0 set

o(z) = Sl;po (logw(—n) — nx).

Then ¢ is differentiable on(0,00)\A where A is a countable, discrete set. An elementary
computation given in the proof of [14, Lemma 1] shows that there exish andd > 0 such that

%;()m) > ca— /A for z € (0,6), = ¢ A. Hencep(z).e—4c* """ is decreasing of0, §). Since

log Ly (e™*) — ¢(x) is bounded ori0, o), we see that satisfies (ii). O

Wheninf, ¢z w(n) = 0 itis of course no longer possible to interpret elements,cdis Fourier
sequences of functions on the unit circle. In this situation we need to consider the sef
“convolution multipliers” oné,,. Denote by, the set of all sequences= (u,,).cz for which
the set{n € Z | Ju,| # 0} is finite. A sequencer = (w, )nez iS @ convolution multiplier ort,,
if the mapR,, :© — u * w is continuous fromd,, |.||.) into £,,. Notice thatM,, C ¢, since
w=w=*e, €4, forwe M,, wheree, = (d,.1)nez. In this situationR,, extends continously
to 4., and this extension belongs to the commutant of the shift opegattis well known [47,
Section 8] that conversely there exists for every elenfémf the commutant ofS a unique
w = Re, € M, such thatR = R,,.

Also

. 1 "
R = lim 2= (Z > pr”u>
k=0 |p|<k
forue/t,, we M, and we have

(5.3) Rwu:prun,p (u€ely,, weM,).
PEZ

According to formula (5.3), we will writev x v instead ofR,,u for u € 4,,, w € M,,. Equipped
with the operator norm ¥1,,, x) is a Banach algebra. Hence we can define

oo *n

w
e =) e M, foreverywe M,,
n!

n=0

denoting byw*™ thenth convolution power ofy, so thatRe. = e’tw,

Notice that if ), |w,|@(n) < +oo, thenw = (w, )nez € My, aNdRy, =, w, S™.
Also >° 7 [wpl|un—p| < +oc for everyu € £,

The results of this section will be based on the following slight reformulation of [18,
Lemma 4.2], which we state as a lemma

LEMMA 5.2.— For every § > 0 there existsB(d) > 1 such that if ¥ € C}(D) and
L:(0,1) — (0, 00) satisfy the following conditions for somg € [0,1):
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(@ fol loglog L(r)dr = +o0;
(i) (1—r)BO® log L(r) is non-decreasing ofrg, 1);
(iii) |OF(2)] <L7'(|2]) (ro < |2 < 1);
(iv) |F(2)| < L(|z|s)5(1f|z|) (ro < |2| < 1) for somes > 16;
(v) limp, |1~ L(|2|")|F(z)| = 400 for everyn > 1,
then there existéy > 1 such that

{re[l—27F1-27"1]| ‘i‘n_f |F(2)| =L~ ()} 22772 (k> ko).

Proof. —We can assume that- |z|® > 16(1 — |z|) and thatL*(|z|) > 4 for |z| > r¢. Since the
conclusion does not involve the valuesiodnd F' near the origin, the result follows immediately
from [18, Lemma 4.2] applied td5. O

The following consequence of Lemma 5.2 can be proved using essentially the same method as
in the proof of [18, Theorem 6.1]. A more precise result will be proved in detail in Appendix B.

COROLLARY 5.3. - Letw € S. Setw,)(n) = w(n) for n > 0, w,)(n) = w*(n) for n <0.
Assume thatw(—n)),>0 is eventually log-concave and satisf{gs2), and that

S logln) _
n

n<0

If limsup,, . llgg:’(*(n) < 1/64, then for everyu € ¢, and everys < 1/4 there existk >

v € £} and a sequence = (w, ),<o satisfying the following conditions
() D<o lwnl@(s)(n) < +o0;
(i) SFu=evxv.

Before using Lemma 5.2 and Corollary 5.3 to obtain our main theorem we need to recall some
more elementary results from [31]. Letc ST. Set

oo 0o 1/2
K,(r)= Z agn+1)r", My(r)= [Z az(n)rznl
n=0 n=0

for r € [0,1), wherea(n) = sup,>o(p)/o(n +p) for n > 0. Forp > 1 denote byA, , the
set of functionsf € H(ID) which can be written as a quotierit= g/h where g € H(D),

h € H(D) satisfy the conditionsg(A)| < Ko (|A[), [h(A)] < Mo (|A]) (A € D), [h(0)] = 1/p.
DefineB, . in a similar way by replacing the conditiog(\)| < K, (|A|) by the weaker condition
lg(N)| < 2K, (|\) Mo (|A]). Forr € [0,1) set

Ay(r) = SuP{|f(>‘)‘af € Apo, |>“ :T}> AU(T) = SuP{‘f()‘)Lf €Byos |>“ :7"}-
Finally set, forp > 1

(p) — -n [p] — -n
(5.4) o'P)(n) Oé1;f<1r Ay (r), oPl(n) Oér#f<1r Ay (r).

The sequences)éf’)(n))n>o and(w[f]( ))n>o0 play for general weights € S the role played
by the sequence&?v™), >, whenw(n) = 1 for n > 0. For example ifM is a nontrivial
left-invariant subspace of, such thatM N ¢F # {0} then there exist» > 1 such that
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HS‘;;L I

Sup,, > lbal 1o for everyv € M+ and such thatim sup,,_, < 400, Where

(p)
w(n)
Mt ={vely|(u,v)=0(ue M)}, see[31, Section 3]. )
We will say that a closed subspadé of ¢ has the division property iV = {f € H,
fe N} has the division property in the sense of Definition 2.1.
If

wlPl(n)

i |

< +00

§ )

=0 =)

for every p > 1, it follows from [31, Corollary 3.5] thatN = (V/, ., S"N) N ¢ and
by = €5 +\,<oS"N for every nontrivial closed subspac€ of ¢/ having the division
property. Also,M =V, , S™(M N £3) for every left-invariant subspack/ of ¢,, such that
Mnet #£{0}.

Precise evaluations in various concrete cases of the growth of the welghtndo !, based
on the Matsaev—Mogulskii estimates of quotient of analytic functions [42], are given in [31,
Section 4]. We state as a lemma the following consequence of these results.

LEMMA 54.- Letw € S. Assume thatw(—n)),>1 is eventually log-concave, and that
(m)@l is eventually increasing for everye [0,1).

no

If limsup,,_, }ggf(*_(z)) <1, then

i logw! (n) lims
P logw(—n) P logw(—n)

for everyp > 1, and M =V, ., S™"(M N (1) for every left-invariant subspack/ of ¢, such

that M N e #{0}. AlsoN = (\/, <o S"N)NLS andl, = 5 +V, <, S™ N for every nontrivial

closed subspac® of £} having the division property.

Proof. —Clearly,wg’_”] (n)=wi(n+1)=[01)] *wy(n) forn >0, and so

[v]
limsup 289 )
n—ooo logw(—n) = poo logw(—n)

Seto(n) = w™!(n) for n >0, and letc € (limsup,,_, . }ggf(t(z)) ,1). Thenw (n) < o¢(n)
whenn is sufficiently large. Sincer;' (n) < w(0)~! @ (n) for n > 0, we see that there exists
an integerk > 1 such thatM,, () < kM,.(r) and K, (r) < kKs<(r) for r € [0,1). Hence
B, , CBoe pi2, ande’_’} < [o°]lPF* for p > 1.

It follows from [31, Proposition 4.4] tha ‘ifg;c,)[f(]r(g) —n—oo 1 for every ¢ > 1. Hence

1 [p] . . .
;:)i‘:if—(:)) < cfor everyp > 1, which proves the first assertion.

It follows from the growth condition ow that)  _,w™%(n) < +oo for everye > 0, and the
other assertions follow then from [31, Corollary 3.5]0

limsup,,_, o,

Before proceeding to the proof of the main result of the paper, we need the following technical
observation

LEMMA 5.5.— Letw € S. Assume thab satisfies the following conditions
() (w(—n))n>1 is eventually log-concave
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(i) (log“( ") (log n)4 )n>1 is eventually increasing for somé > 0;

(i) limsup,, ., llggj(* < 1/200.
Then

lims log M, (r)
Hrn_%}lp (1 —=r)log L=y, (r290)

and K., (r) = O(Ly-, (r*")) asr — 1.
Proof. —Seto = (w*)4, so thato(n) = w(—n — 1) for n > 0. We have

< 400,

S 1/2
(r)y= Z@+(n+ Lr™ and M, (Zw )
n=0

for r € [0,1). Sincewy (n + 1) > [5(1)] " w(0)w ™ (n) forn > 0, M., (r) < 2 K., (r), and
it suffices to show that
. log K., (r)
hTH_ljlip (1 —7)log Ly (1200) < oo
SetA(r) = sup,,5o @4 (n + 1)r", so thatK,,, (r) < (1 —r?)"LA(r'=P) for 8 € (0,1).
We have

log@ 1 log@
lim sup logwy(n +1) = limsup logy (n) < 1/200.
n—oo logo~l(n) n—oo logw(—n)
Choosed < 1/200 such thato, (n + 1) < 0~%(n) whenn is sufficiently large, and choose
6 €(0,1) such that% > 200. It follows in particular from Proposition 5.1(ii) that

(1—r)*log Ly (r) — oo foreveryk>0.

Then limsup, ;- A(r)L;%(r#) < 1, and solimsup, ;- K, (r) L;d_l(r%) = 0. The
lemma follows then |mmed|ately from Proposition 5.1(ii)o

We will use the following lemma to circumvent the fact that the sequénge,, o provided
by Corollary 5.3 is not a convolution multiplier af,.

LEMMA 5.6.— Let w € §. Assume thatv satisfies the following growth and regularity
conditions

1) 3,0 g — 4o,

2 (logwg ”))@1 is eventually increasing for everye (0, 1);

(3) (w(—n)/n%),>1 is eventually log-concave for some> 3/2;
log M., (r) .
1— r)logL(w*) (r200) < +00;

(5) Ko, (1) =O0(L(), (r'?)) asr — 1.
Then there exists > 4 such thatim sup - L(;lm (JAI%)|vT (N)| < +oc for everyv € £,
which is not left-cyclic.

(4) limsup, ;- ¢

Proof. -We will use the same strategy as in the proof of Lemma 4.3.0Set (w*),
K=K, M=M,_ .letuel,, vel,-. Forn>0we have

Wi
E Unfp’l/p

p<0

= llullofvlle-w(n +1).

<luflollvl

1
w* Sup
P

<o w*(p)w(n —p)
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We obtain
(5.5) [P (T ) (V)| < [lullolloflo-K(IA]) - (X €D).

Now assume that € £,,- is not left-cyclic, and let € £,,\{0} such that L \/,, _, S™u. With
the notations of Section 2, lete W (o) and setF' = u* + Dy (u™), G=C*(v +8F) so that
G e L'(D), H=—P*(utv™). It follows from Theorem 3.1 that+F =G+H.

Assume that there exists a continuous increasing funetimm[0, 1) andk, > 1 satisfying

(5.6) |{re[1-27%1-27% 1]| inf, |F(X (M} =272 (k=>ko).
Since 3/8 — 1/32 > 1/3, we can assume that — r'/3 < (3/8 — 1/32)(1 — r) for
rel—2"% 1]. Set
Ap={re[1—-2F427F5 1 o7kl _g=k=2 4 g=k=d]) ‘;Illf IFO\)| = p ()},
B =U,c, T. It follows from (5.6) thaf A | > 2-k=5 for k > kg

Let A € D such thaﬂ \A| 27k ‘and letk > ko such thatl — 2% < |\ <1—27F"1 We

have — < 2k+6 L O \AI Also

3 1
1 _ ‘)\|1/3 < (g _ @) (1 _ ‘)\D g 3.2—147—3 _ 2—k—5 — 2—k—2 + 2—k—3 _ 2—/{7—57

and sor < |A|}/3 \AI forr € Ay 1. Letr € A, 1. We have

/ e Adgl 1—|A/|” ref)|de

< / G e)|+ ()]

27T

m(1—[A]

_ 320\ / B4p(N) 1

< )| dt /3
Ta_pp J MGl = KA

Averaging overAy 1, we obtain

2 1/3
ot ()] < —2eMT) /\G )l dm

(‘/\|1/3) (‘/\|1/3)

(L —[A]) IAk+1\ | 7
We have
/ 1G(&)| dm (&) / IG(€)] dm(€) < +ov,
Bri1
and
1 64
< < 64K (|A]) < 64K (|A[V/3).
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Hence we have

1/3 1/3
.7) oo =0 ZBEEAEN) gy -1,

Since the sequencﬁé‘m)nx is eventually increasing for everye (0, 1), an elementary

verification shows thatw)nx is also eventually increasing for everye (0,1). It
follows then from [51] that(l —1r)*¥log L, (r) is eventually increasing as— 1~ for every
k > 1, and we obtain

log L (r*)

log L, (1) - 0 (s>1)

Now choosea € (12,12.5), so thatl6a < 200. Set p(r) = L,(r*) = (Ly/a(r))* for
€ (0,1). It follows again from [43] that1 — ) log p(r) is eventually increasing as— 1.

Slncezn>1 loeo(n) _ 4 oo, fol loglog p(r) = +o00.

n2

It follows from Proposition 2.5 that we can choase W (o) such that

(5.8)

[OF (V)] = 0D (™) (V)] = O(L;* (1))

for somes > 0 as|\| — 1. It follows then from (5.8) thatd /()| = o(p~1(|A|)) as|A| — 1~.
Also |[F(A\)|=O(M(J\])) as|A| — 1. Let

log M (r)
(1 —r)log L, (r200)

d > limsup(1 —r)

r—1-

Then there exists, € (0,1) such that
(1—r 200\ §(1—7r
7‘[(7‘) g [U(T‘2OO) ( ) ,D(’I" - ) ( )

for r € (ro,1). SinceF = u™ + C*(JF) we cannot havéF(\)| =1~ 0 because otherwise
the function—u~ would provide an analytic extension af to C vanishing at infinity, hence
vanishing identically.

Since%O > 16, it follows then from Lemma 5.2 thaf’ and p satisfy (5.6). Obviously,

Lalr) = 0. SinceK (r) = O(L,(r'?)) asr — 1, and sincen < 13, we deduce from

(5.7) thatjvt (\)| = O(L3 (r%/3)). Hencelvt (\)| = O(L, (r?)) for everyb € (4,a/3). O
We set as before ) (n) = w(n) (n > 0), w)(n) =w?(n) (n<0)forwe s, s> 0.
COROLLARY 5.7. - If w € S satisfies the conditions of Lemrba, then there exists < 1/4

such thaty~ > |vn|?w ™2 (—n — 1) < +oo for everyv € £« which is not left-cyclic. Moreover
the norm3|.\|wz< ) and|.||..~ are equivalent on every nontrivial left-invariant subspacé of.

Proof. —Set againr = (w*), . There exists, € (0,1/4) such thatvt ()| = O(L, (|A|/*))
as|\| — 1~ for everyv € £+ which is not left-cyclic.
Letsi € (so,1/4) ands € (s1,1/4). It follows from (5.8) that
Lo (IA150) < L3 (A1) = Lows (|A])

whenl — || is sufficiently small, and it follows then from Cauchy’s inequalities that

limsup |v, |w™* (—n — 1) = lim sup |v,|o* (n) < +o0.
n—oo n—oo
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We obtain
Z v ?w ™ (—n — 1) < (sup |vn|w ™ (—n — 1))2 szsl_zs(—n —1) < +o0.
nz0 n=0

Now let V' be a nontrivial left-invariant subspacef-. ThenV C sz«s).

The injection é%) — {,+ Is clearly continuous. Using the topology of coordinatewise
convergence, we see that the graph of the injecfiof.||.«) — (bu* , |- Hw )is closed. Hence
(V, ||-|lw+) is isomorphic ta(V, ”'HWZ;))' O

(S)

Leto € ST, and let)V be az-invariant subspace of the weighted Hardy spaice= H2(DD).
We define the (possibly infinite) index df by the formula/nd(N) = dim(N/zN). Also we
will say that NV is zero-free if(,. v f~1({0}) = 0. It is easy to see, and well-known also (see
for example [31]), thatV has the division property introduced in Section 2 if and onlyifs
zero-free andnd(N) = 1. The following theorem is the main result of the paper (according to

the notations introduced in Section 2 we ®gt(n) = sup,~ w(nﬂ) forw e S).

THEOREM 5.8. — Letw € S be a weight satisfying the following conditions

Q) 3,20 ) — 4o

2 (log“’( ") (logn)4),>1 is eventually increasing for some > 0;

3) (w(—=n)/nY)p>11s eventuallylog concave for soma > 3/2;

(4) limsup,,_ ., 122200 < 1/200.

Then for every € £, there existe € £, andk > 0 such that\/, ., S"u =V, ., S"v, and
for every nontrivial left-invariant subspadd of /,, there existg > 0 and a closed subspacé
of H having the division property such thaf = \/ng—k S™N.In particular, every nontrivial
translation invariant subspacg/ of Z, has the formM = \/n<O S™N whereN is a zero-free
z-invariant subspace off,,, of index1.

Proof. —We could use the same method as in the proof of Corollary 4.5, but we will use here
a duality argument. Denote B¥ the set of elements df,- which are not left-cyclic. It follows
from Lemma 5.5 that satisfies the conditions of Lemma 5.6, and it follows from Corollary 5.7
thatiW sz«s) for somes > 1/4.

Letu € £,\{0}. It follows from Corollary 5.3 that there exisisc M., ,,, w € £ andk >0
such thatS*u = e# x w, with ¢, =0 for n > 0 andy>,, _ |¢n|@(s) (n) < +00.

Sety = e¥, so thaty) € My,, ¥, =0forn>0and}, . [¢¥nl@)(n) < +oo. We have
|S*u — 30 YnS" Wy, —p—oo 0. Now letv € £, and assume thatS"w,v) = 0 for

n=—p

n<0.Thenve W C sz«s) and so

Sk =1 n(S™ =0.
(S*u, v) pggon;plb w, v)

This shows that*u € \/, ., S"w, and the same argument shows that \/, ., 5" +*u. Hence
Vn<0 S"u = Vnéfk S"w.
The other assertions follow then immediately from Lemma 54.
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Foro € St,p > 1 define agaiw® ando ! by (5.4), so thatog 0[Pl (n) = O(y/n) asn — oo
foreveryp>1if > 7 | log;;% < +oo (see [31, Section 4]). Since

(p) (]
fim 2otk o oPtk)
n— oo O'(P) (n) n— oo O'[P] (n)

for everyk > 1, we obtain, using the observations of [31] mentioned before Lemma 5.4.

COROLLARY 5.9.— Letw be a weight satisfying the conditions of Theorgr@ Then for

everyv € {,~ which is not left-cyclic there exists> 1 such thatlimsup,,_, . Jﬁ;}' ) < 400,
“t

and for every nontr|V|aI left-invariant subspacg of /.- there existsp > 1 such that

HS

lim SUD;, 00 T — < 00 In particular,

. log |5
limsup ——— <

n— o0 \/ﬁ

for every nontrivial left-invariant subspadé of ¢, if >, logy (1) < 40,

n3/2

We thus see that Lemma 5.6 and Corollary 5.7 were only a step in the proof of Theorem 5.8,
since Corollary 5.9 gives a much better result.

Wheno(n) = (n 4 1)~1/2, the weighted Hardy spacl, = H2(D) is the usual Bergman
space B?(D) of square integrable holomorphic functions in the disc [36]. According to
Korenblum [41] we will say that a functiofi € B*(D) is Bergman-inner if| U || g2y = 1 and if
(U,z"U) =0 forn > 1. A Bergman-inner function will be said to be singular if it has no zeroes
in D.

It follows from the Aleman—Richter—Sundberg theorem [3] that the zero4raeariant
subspaces ob?(D) of index 1 are the subspaces of the fo‘(m>0 z"U whereU is a singular
Bergman-inner function [31, Proposition 5.1]. We obtain in parucular the following result.

COROLLARY 5.10.— Setw(n) = (n + 1)"2 (n > 0), w(n) = el?l/Ueeln+1)* (5 < @),
where 0 <a<l Then every nontrivial translation invariant subspace/gf has the form
V ez S"U whereU is a singular Bergman-inner function.

If w is as above, then every nontrivial left-invariant subspacé, efis (isomorphically)
contained iné,,. wherew,(n) = (n + 1)~Y2 for n >0, wy(n) = e?VI7l for n < 0. We do
not know a concrete description of these subspaces.

Using conditions analogous to conditions (4) and (5) of Lemma 5.5 it is possible to obtain
formulations of Theorem 5.8 by replacing the Condltldﬁw(logn)‘l)n>1 eventually

increasing for somed > 0 by the condmon(w)@l eventually increasing for some
suitabled € (1/2,1).

But the constants involved in these conditions would depend @he constanB(4) is not
given explicitely in Lemma 4.2 of [18]) and on the real> 3/2 for which (w(—n)/n%),>1
is eventually log-concave, and there are minor technical complications to obtain a version of
Corollary 5.3 suitable for this purpose. We leave the details to the reader. Notice that the results
of this section apply to the weight$®) defined by the formula(©) (n) = e~"/1°&(*+1) for n > 0,
w(®)(=n) = ecInl/lee(nl+1) for n, < 0if ¢ > 200. The constar®00 is indeed not best possible. It
would be interesting to see whether Theorem 5.8 holds férfor ¢ > 1, but significant progress
in this direction would necessitate to revisit the proof of [18, Lemma 4.2]. We will not do it here.
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6. New counterexamplesin the Fréchet case, and an open problem

If F is a space of sequences @rnwe will set as aboveqF ™ = {u = (up)nez € F |ty =0
(n<0)}andF~ ={u= (up)nez € F |un, =0 (n>0)}.
Set

U= {u: (Un)nez | limsup|un|1/|"‘ < l,limsup\un\l/" < 1}.

Forr e [0,1) setQ, = {\ e C|r < || < 1} and denote by (n) the nth Laurent coefficient of
f € H(Q,). Equip the inductive limit) = lim_, H(€,.) with the usual locally convex topology.
ThenV =, andi/, equipped with the topology induced by the topologyfis a topological
algebra with respect to convolution. Using the formlav) = > ., un,v_,—1 We can identify
U* to U and, sincef,*) is an integral domainl/ does not have any nontrivial translation
invariant subspace (the right and left-invariant subspacésare described in [26]).

Notice that/ = U* @ U~ is the direct sum of a nuclear Fréchet space and a D.F.N. space (i.e.,
the strong dual of a nuclear Fréchet space).

More sophisticated counterexamples to the translation invariant subspace problem for
reflexive, locally convex complete linear spaces of sequences can be found in the literature. Set

A= {u=(w)oe:

p=1

In|
Z \un\QeQ‘”lsz < 400, limsup |u,|/™ < 1}
n<0 nmee

andforg e (1/2,1) set

Ao = N {u=woez

Z ‘un‘26p|n\5 < +o00, limsup \un\l/" < 1}.
n—oo

p=1 n<0
Also set
o0
__—pn
B+ = U u= (un)nZO Z ‘un‘2elog(n+2) <40y,
p=1 n=0
- g _plnl
B = ﬂ U= (Un)n<o Z |t | ePEIRIFD < 400
p>1 n<0

andB = Bt @ B, so thatB™ is a D.F.N. space3~ a nuclear Fréchet space, aid= B* a
reflexive, locally convex complete topological algebra with respect to convolution.

Atzmon [6,7] showed that the Fréchet spageand.4 s have no nontrivial translation invariant
subspaces, and Borichev [14], using the theory of asymptotically holomorphic functions, showed
that a similar result holds fd8 (which means thas has no nontrivial closed ideals). In all these
examples, the spectrum of the shift operator is empty. We now use the results of Section 5 to
produce examples of Fréchet spaces of sequenc&saming no nontrivial translation invariant
subspaces for which the spectrum of the shift operator equals the unit circle.

THEOREM 6.1. — Let

D= m {u = (Un)nez

p=1

o0
pln| __—2n
E |un|26710g(\n\+1) < 400, E |un|2ex/log(n+2) <—|—oo}
n<0 n=0
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andforg e (1/2,1) set

gﬁ = m {u = (un)nEZ

p=1

> —2n
Z |un|2ep‘”|ﬁ < 400, Z |, | eTet D < +oo}.

n<0 n=0
Then the spaceB and £z do not possess any nontrivial translation invariant subspace.

Proof. —Setw,(n) = ePI"l/1oe(In1+1) for n < 0, w,(n) = e "/ VI8("+2) for n > 0, so that
D =(),> Lw,. We can identifyD* to Up>1 - C B. Letu € D and assume that there exists
v € D*\{0} such thatu x v = 0. There exist® > > 1 such thaw € Ew; Then(wy) is eventually
log-convex, so thatup,,»,((@;)+(n))/w,(—n) < +oc0. Also w; satisfies the conditions of
Theorem 5.8, and it follows then from Corollary 5.8 thatsup,, . [u,|/wp(—n) < 400,
so thatu™ € BT andu € B. Since(B, *) is an integral domainy = 0 andD does not possess
any nontrivial translation invariant subspace.

Now fix 8 € (1/2,1) and setw,(n) = e?!"l” for n < 0, wp( ) = e~"/108(n+2) for n > 0,
so thatés = (1,5, £, - We can again identif; to |-, lus. Let M # E5 be a translation
invariant subspace @5, and setV = {v € &} | <u v) = ] (ue M)} so that/V is a translation
invariant subspace @f;. Clearly, N # {0}, and saV N/, # {0} forsomep > 1. SinceN N,
is closed inf,-, it follows from Theorem 5.8 thaiv N é #{0}. HenceN* # {0}, where
Nt={v= (vn)nez €N |v,=0(n<0)}. Seto, = (w )+, and setV = {f € U,>, Ho, |
fe N}. ThenV is a zero-freex-invariant subspace cU 1 H,, which is closed with respect
to the locally convex inductive topology QU 51 Ho But it follows from a result of Matsaev—
Mogulskii [42] that closed-invariant subspaces Qﬂ b1 Ho, are determined by their zero-set,

and soV =5, Hy,, N* :Up>1£j§* andN = &, so thatM = {0}. O

We now go back to weighted Hilbert spaces of sequence.ofhere were no specific
requirements ow; = w |z+ in Theorem 5.8. In fact we have the following result.

PROPOSITION 6.2. — For everyo € ST there existsw € S, satisfying the conditions of
Theorenb.8, such that |;+=0o

Proof. —Define 5 as in Section 2. For: > 0 set V(z) = Y00 a(n)'0" e, W(z) =
logm#, o(z) = V(2)/*" =e"W® Itfollows from Hadamard's three circles theorem thatV’
is convex on(0, c0). Hencey is decreasing, convex and infinitely differentiable(@nco).

Now setf(y) = infm>0(<p( )+ zy) for y > 0 and setu(n) = o(n) for n > 0, w(—1) = /™)
andw(n) =finh+ Tog T forn < —2. It follows from standard properties of Legendre transforms
thaté is increasing, concave and infinitely differentiable @noo), and 1og9(y) —y—oo 0. Set
p(n) =w(—n—1)forn >0.Thenp e ST, andsincer =w |7+ € ST, an elementary verification
shows thatw € S. Clearly, (W)@l is eventuallylog-concave for everyx > 0, and
> om0 logwin) — 4 o0, We haves(n)'9” e~ < V(z) for z > 0, and so

n2

3 — . _ . _ . _
10°loga(n) < ;r;% (logV(z) + nx) = O<11;f<1(10g V(z)+nz) = inf (p(z)+nz)=0(n)

0<z<1

whenn is sufficiently large, andimsup,,_, ., llggf(t(zg <1073

Sincelog V' is decreasing we ha®V (z) < —xW'(x) for z > 0. Hence

‘W/(.’IJ)’ > 210gV(SE’) > i and 10g|W/(37)|

2 2
log1
3 o W) <zlogl/x
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whenz is sufficiently small, so that

o W'(@)
—IW’(I) z—0+

Hence

) W (z) + log(—W'(z))
l 3
PR — o)

For everyy > 0 there exists a unique > 0 such that(y) = p(z) + zy, andy’(z) = —y. It

follows from standard properties of Legendre transformsgtia) = sup,,~ o 6(u) — zu, so that
z=0"(y) >y—o0 0.

<1/2.

Hence

: 0(y) ] o(z) ,

hmsup[ — 1| logy =limsup ———log(—¢'(x

el b P ey 5 (@)
: W(z) 4 log(—W'(x))

=1 <1/2.
T W) /
We thus see that there exigts> 0 such that 9(” O 1< 1021, for y > yo. We obtain
6
W >1+logy >logy fory> yo,

which shows that( logn)n>1 is eventually increasing. A foruor@M

eventually i mcreasmg and satisfies the conditions of Theorem 5.8

logn)p>1 is

Theorem 5.8 and Proposition 6.2 suggest the following problem:

Problem 3. — Does the weighted Hardy spatke = H?(D) possess a nontrivial, zero-free
z-invariant subspace of indexfor everyo € S*?

Denote byT the shift operatorf — zf on H,. It is not difficult to see that the nontrivial
zero-freez-invariant subspaces of index 1 éf, are thez-invariant subspaced/ for which
U(Tﬁw) C T (or, equivalentlyg(Ths) C T, whereT, is the operator induced 8§ on H,, /M).

All singly generated zero-free invariant subspacéigfhave indext, but the existence of such
subspaces is unknown in the general case. A negative answer to Problem 6.3 would of course
provide an example of a weight € S for which ¢,, = ¢2(Z) has no nontrivial translation
invariant subspace.

When o € S is nonincreasing and whes(n) —, . 0, the shiftT on H, belongs to
the classAy, of Brown—Chevreau—Pearcy and it follows in particular from [20] that for
every singular inner functioV there existsf € H, such thatf ¢ \/@O z"U f, which shows
that z-invariant subspaces dff, are not determined by their sets of zeroesDinA recent
construction of Borichev [15], based on lacunary series, shows more generally¢hatdf- is
log-convex, and iinf,,> o(n) = 0, then H,, possesses for evepysuch tha < p < co a zero-
free, z-invariant subspace of index The existence of nontrivial zero-freeinvariant subspaces
of H, seems to be an open problem for arbitrarg S+.

Wheno is log-convex there are three available methods to obtain partial positive answers to
Problem 3. The so-called Keldysh method, developped by Nikolski in [43], gives in particular
explicit examples of functiong € H, without zeroes irD, such that\/7120 z"f C H, when

o(n)=e"",1/2 < a < 1. Another approach, based on functions of “extremal rate of growth
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and decrease” was proposed by Hedenmalm and the second author in an unpublished paper [37],
and developped in the case wherén) = e~ V™. A variant of this method was recently
used by Borichev, Hedenmalm and the second author [17] to produce zere-ineariant
subspaces of arbitrary index in all “large” Bergman spaces. Atzmon [8,9] obtained recently new
positive results on the existence of translation invariant subspacgs dfised on the theory

of entire functions of zero exponential type. It follows from Atzmon'’s results thatdfS™ is
log-convex, and iup,,[o(n + 1)o(n — 1)/a(n)?*]*/™ < +oo, thenH,, possesses a nontrivial
z-invariant subspacé/ such thatr(T‘jW) = {1}, which gives a positive answer to Problem 3

in this situation. We refer to [31, Section 5] for a detailed discussion of these results. It seems
that the answer to Problem 3 ought to be positivelégrconvex weights, but the general case
remains unclear.

Appendix A. Strong convexity properties

In this appendix we give a proof of Proposition 2.5. This result is a discrete version of
results from [16, Appendix B]. Our direct approach, based on the inversion formula for Laplace
transforms, seems somewhat simpler.

We denote as above Wy, the Legendre transform of ¢ ST, see Definition 2.4.

Leto € ST. Fora € R, we definer, € ST by the formula

(A1) oa(n)=m+1)%(Mn) (n=0).

Clearly,o,, is log-convex foru < « if o, is log-convex.

LEMMA A.l.— Leto € ST, and assume that,, is eventually log-convex for somae> 0.
Then

lm L) *(r)L, ! (r) <400 (0<pu<a).

r—1-

o(n)

Proof. —We can assume that, is log-convex, so that is log-convex. Sety =0, r,, = =Dy

forn > 1. We haver,, = UU?T@U(I + %)*a for n > 1. Sinceo,, is log-convex,

n Oa (n) " 1 e J(n) @ 1 o
= —_— —_ > —_— Ju— .
i= ) (0)  Eomer ()
Hence there exists> 0 satisfying

(A.2) ry=co(n)(n+1)% (n>1).

Now let i € (0, ), and setp = aaTu, so thate(p — 1) — pu=0. Letr > r; and letn > 1 be
such that € [r,,, r,+1]. We have

LP

£,(1) 2 (n+ 1) 0 e > (n+ 1) 7o )

Using (2.20) and (A.2) we obtain

LP

Op

(1= ot (n)yr =P Lo (r) (r>r)
and the lemma follows. O
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LEMMA A.2.— Leto € ST, and assume that, is eventually log-convex for some> 1/2.
Then W (o) contains a strictly decreasing functiofi which is continuously differentiable
on [0, 1) and satisfies

limsup ¢(r) L, ,, (r) < +00.
Proof. —For ¢ € L2 (0,1) setg(t) = e t¢*(e?) (t > 0). Thenp € L' (R*) and we have
(A.3) op(n) =2L(¢)(2n+1) (n>0),

where we denote b;l 1z — fo *Ztgb t) dt the usual Laplace transform of
Denote byl the gamma -function and set for-0
tsfl eft

I'(s)

(A.4) es(t) = (t>0).

ThenL(es)(z) =(z+1)"° forRez > 0.

Now assume that,, is eventually log-convex for some > 1/2. Replacinga by o — ¢ is
necessary, we can assume thatn) —, .. 0. ThenW(c,,) contains a functio¥ which is
continuous oro, 1).

SetG = F, ¢(t) = €'(G * ez4)(t) for t > 0 and o(r) = [(—logr)]}/2 for r € (0,1).
Since p = G * ez € LY(RY), o € L2%(0,1). AlSO G * €2 = (G * €24_1) * €1 and so

— fom(G * e2q_1)(t)e'dt for z > 0. Since G and es,_1 are continuous or{0,cc),
G * egq—1 IS continuous or(0,00) and we see thap is strictly decreasing and continuously
differentiable on(0, 1).
We have

Tp(n) = 2L(G * 20) 21+ 1) = %

and sop € W (o). By using the inversion formula for Fourier transforms we obtain fsr0

) 1| T o@en+1+iy) | o dy
) (2n+1)t _ - / Wt qy| <
(Gxeza)(t)e o @nt2tigee o Y 20+ 2+ iy
9 o0 oo

__oxm) 1 / _ds 2 ()= / _ds
=Gt ) Gase - Y | i

Hence

2 Vi ds

R 2 —2n
@ (r) < [77 / (1+s2) (n+ 1o, (n)r

forn >0, 1/2<r <1.Sincep € W (o), o(r)=O(L;} (r)) asr — 1~. Modyfingy nearo if

01/2
necessary, we can arrangéo be continuously differentiable dg, 1). O

Proof of Proposition 2.5. €hoosep € L2 (0, 1) satisfying the conditions of Lemma A.2 with
respect too. Then ¢ satisfies (i) andp(r) = O(L; ! (r)) asr — 1. Also it follows from

01/2

LemmaA.1thatl;1 (r) = O(LY>**(r)) asr — 1~. We obtain

01/2
(A.5) ¢*(r)=O(LY*"2(r)) asr—1".
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Leté € (0,1 —3/2a) and setd = a(l — §) — 1, so that3 > 1/2. We have

1/2

[Z 0_2(H)T2n] < (Z(n + 1)_2[3) Lo_,(r)
n=0 n=0

for0<r<1.
_B_

Using again Lemma A.1 we see tﬂaii;*‘* (r)=0(Ls(r)) asr — 1~. We obtain

. 1/2
(A.6) (Z 02(11)1"2") = O(L}ﬁﬁhx (r) asr—1".
n=0

Sinces =1 — 2L, this gives

o 1/2
(A7) #*(r) (Z 02(71)7‘2") = O(L;‘;(r)) asr — 1~
n=0
and assertion (i) of Proposition 2.5 follows immediately from Proposition 2(3.

Appendix B. Factorization theorems

We give here quantitative versions of known factorization theorems [18, Theorems 6.1
and 6.3]. These results, which have some interest in themselves, are more precise than the
factorization results needed in Sections 4 and 5.

Recall that ifw € S and if w = (wy)nez satisfies) ", ., |w,|@(n) < +oo, thenw is a
convolution multiplier or¢,,,, andw * u = Znez wy, S™u foru e £,,.

We first give an easy elementary result.

PROPOSITION B.1. — Letw € S andletu € £,,. If limsup,,_, . \u,n\l/” < 1 then there exists
k>0,v el andw = (w,)n<o such thaflimsup, . ___|w,|"/"l <1 andS*u=e® xv.

In particular

\/ Sy = \/ S™v.
n<0 n<—k
Proof. —=SetQ, = {\ € C | r < |\| < 1} for r € [0,1), setp = limsup,,_,, |u_,|"/" and
setf(A) =3 ,cpunA" for X e Q,. Letr € (p,1). By using a suitable Weierstrass product we
can write f = Bg where B € H(D) and wherey € H(f2,.) has no zeroes if},.. In this situ-
ation we have as well-known = 2P e", whereh € H((2,.) and wherep € Z is the winding
number ofg(sT) with respect to the origin fos € (r,1). Writing A = hq + ho, with by € H(D),
hs € Ho(C\rD) we obtain a factorizationf = z=*f,ef2, where k > 0, f; € H(D),
f2 € Ho(C\rD), so thate=/2f = 2= f,. Thenw = f, satisfieslimsup,, . |w,|"/I" <1,
w, =0forn>0,ande ™ xu=e fwy=5"%f €, whereR . is defined as in Section 5.
Setv = f1. Thenv € 1, andS*u = e® % v,
Now setp =e", 1» = e~ ", so thatp and« belong toM,,. We have

u:ZLan"_kv, S_kvzzwnS"u, and \/S"u: \/ S". O

n<0 n<0 n<0 n<—k
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In what follows we will need the notion of boundary value for functigns L}, (D) such
thatdp, computed in the sense of distribution theory, is a measure of bounded variatidbn on
This theory is developed in detail in [32]. Here we can restrict attention to the case where
dp € L>(D), so thatC(dy) is continuous onC and ¢ is continuous onD, since
¢ — C*(d¢) € H(D). In this situation we define the “boundary value” @fon T to be the

hyperfunction defined by the formula

(B.1) b(p) = (¢ = CT(9p),C (3p)).
We obtain
®.2) o) == [ e amie) (<o)
D

It follows from the Cauchy—Pompeiu formula that

2im
rT

> [ [aveeramie) = 5 [eterag
rD
forn < 0,7 € (0,1). Also

r—1-

rT

lim [ c@p) €)1 de = / C(@o)(E)E " de =0
T

for n > 0, sinceC~ () € Ho(C\D), and we obtain

—

(8.3) o) = lim oo w61 de e,
rT

Now assume thaly € L>(D) and that

2m
sup /‘(p(reit)‘zdt < 4o00.
O<r<10

Then ¢ — CH(dy) € H?, lim,_,,- ¢(re'’) exists a.e. orT and it follows from (B.3) that
b(¢) € L*(T) and we have

(B.4) b(p)(e") = lim p(re’) a.e.orl.

r—1-

~ Now let o be as above, and assume that L>°(D), dy € L=(D), dy € L>=(DD), so that
O(py) = Oy + 1Py € L (D). We obtain

(B.5) b)) = b()b(¢).

As in Section 2 we will denote by, the Legendre transform ef € S*. We will need the
following technical result.
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LEMMA B.2.— Let 0 € Stbhe eventually log-convex, and assume that the sequence
(W)n% is eventually increasing. Lét> 1 ande € (0, — 1). Then there exists for every
f € H,. afunctiony € C*(D )satisfying the two following conditions

() W) =O(L; (X)) (Al =17);

(i) f=C"(¢).

Proof. —It follows from (4.10) that(1 — r) log L, (r°) is eventually increasing as— 1~ for

everyc>0.Fixd>1,¢€ (0,0 —1)andd; € (1, %). When1 — r is sufficiently small we
have
A+e)(a—r%1) (A+e)(1-r%1)
Lg(r6)1+5 <Lo(r®) 7 =L, (r )5 p—

Hence there existy € (0,1) andn € (0, 1) satisfying
(B.6) Lo(rP) <L (r) (ro<r<1).

ol/d01

Now leta > 3/27, and set(n) = ¢/%1(n)/(n + 1) for n > 0. Since

1 -1
liminf Og%n(”) 0,
we havef(n ) o(n) whenn is sufficiently large, and sdf_. C H,.. Let f € H_.. Since
1—n<1— =, itfollows then from Proposition 2.5 that there exists a funcpanw(6), which

is contlnuously differentiable and strictly decreasing@n ) and satisfies
[OD,(F )N =0(LF (M) (A= 17):

But 6(n) < o'/%1(n) for n >0, and S0 L5 (r) < Le(r) for r € [0,1). It follows
then from (B.6) and Proposmon 2.3 that the functipn= 9D, (f) satisfies the required
conditions. O

The following factorization result is a quantitative version of [18, Theorem 6.3]. It is also
related to Bourgain’s theorem from [19].

THEOREM B.3. — Letw € §, and assume that satisfies the following conditions
(1) wn)=1 ( 0):

(2) 3,0 255 = +o0;
3) (w(— ))n>1 is eventuallyjlog-concave

(4) (IOg“(n ”))@1 is eventually increasing.

Then for everyf € L2 (T) and everys < 1/4 there existy € H?, h € H, k > 0 satisfying

(i) limsup, ... |h(n)|w®(—n) < +o0;

(i) f(e) =e ik e g(eit) a.e. onT.

Proof. —Seto(n) = w™'(—n — 1) for n > 0, so thato = (w*)4, let s > 4, § € (1,s/4)
and ¢ € (0,6 — 1). Let f € L2(T)\{0}, and setft(\) = 300 f(n)A™ for |\ < 1,
F= N =30 f(m)A™for [\ > 1, F = f* +C*(p), wherep € C'(D) satisfies the conditions
of Lemma B.2 with respect t@, § ands. We obtain

(B.7) |0F (N =0(L,"(]A°)) (Al —17).
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Also F € C*(D) and, sincef ™ € H?, there exists) € H> (D), with ||¢)[| g~ ) = 1, such that
Fip e L*(D). Set

A={refon] inf [FO)|> L)},
andsetB =J,. ,rT. Fork > 0 set

Ap={reC|1-2"FgIg1-27F1}

Q.={ eC|1-2"F < |\ <1},

Ay=An[l1-27%1-27F"]
andBj = BN Ay. Setp(r) = LU/Q(rS) for r € [0,1). It follows from (4.9), (4.10) and (B.7) that
F.¢) andp satisfy the hypothesis of Lemma 4.1. Siné&\)| > |F(N\)|.]¢(\)] for A € D, we
deduce from Lemma 4.1(i) that there exiggs> 1 for which we have

(B.8) |Ak| =252 (k> ko).

Now denote byy the characteristic function of;, and set, for\ € C
1 OF (&)
== =/ >
w == [ [ 55 am(e) w>0)
Ay

1 A

= — — e T v k 2 1 .
o) = grrpa(Mm ()-5 (k>1)
Sinceuy,_ is analytic for|A\| > 1 — 2*, we have
L fug—a(§) .,
5w ¢ dé = ug—1(N)

rT

forr € Ay, |\ >1-27%"1 Since

5 [ g e

we obtain

1 vg(§) —k—1
(B.9) - —2dm(§) =up1(N) (k=1 >1-2 ).
/D/A £

It follows from (B.7) that||u—1 | 1) = O(L;'¢[(1 — 27%+1)?]). Also it follows from
(4.9) and (4.10) thak, () e ™ T —,_ o 00, SO that2k = o(L/2[(1 — 2-F+1)%]. We obtain

(B.10) okl o () = 0 (Lo 572 [(1 = 277F1)?]).

Setv(\) = > p=; vk(A). It follows from (B.10) that the seri€s. ;- ; v;, convergesinL>° (D).
HenceC(v) is bounded and continuous @h and it follows from (B.9) that we have

(B.11) C(v) |o\5=COF) o5
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When1 — |\| is sufficiently small, we have— |A|*/% > 4(1 —|)|), so thaf\|* < (1 —27F+1)0
for A € Ag. It follows then from (B.10) that we have

(8.12) [ =o(LZ72(A1) (A= 17).
Now setG = f+ + C*(v), so thatdoG = v and letA € Q4 1, S0 thatu,_1(A\) = C*(v,)(\)
for p < k. We have

[F(\) =G| =[CH@F)(N) = €T (v) (V)]

C+
> upa(N) - Z CT(vp)(N)

p=k+1

Z ||8/\F q //I/\ €|

By continuity, this inequality holds fol € Ay, ;. Usmg (B.7) and (B.10), we see that

suprea, ., [F(N) — G| = o(Ls'~/?[(1 — 27%)]) ask — oo. Since|A|* < (1 —27*)? for
A € Ap+1 whenk is sufficiently Iarge, we obtain

(B.13) [F(\) =GN =o(L; (A1) (Al —=17).
It follows then from the definition o3 that we have

(B.14) liminf L2 (]A\]*)|G(N)] > 1
Al—17
"\ep
SincedG = v, G being computed in the sense of distributioi&;(\) = 0 for A € D\ B.
It follows from (B.12) and (B.14) that there exisis € (0,1) such thatG(A) # 0 and
|0G(A)/G(N)| < L7Y(|A]®) for A e B, r1 < |A| < 1. SetU(A) =0 for [A| < ry or for A ¢ B,
U(N) =0G(\)/G(A) for A € B, r < |A] < 1. We obtain

(B.15) UM <L Y (IAF) (AeD).

Now setH =C*(U), h ( )lr. f1 = fe™". SinceH is bounded and continuous @
and sincele H =Ue 8e € L>(D) and it follows from (B.15) thatzd e~ € L>=(D).
It follows then from (B. 5) thaf; = b(Ge ), since

lim G(re') = linlai fH(re)+C(w)(e") = f(e") a.e.orl.

r—1-

Also d(Ge H)(\) =0forr; < |\ <1, and so

—— [ [at@e Mg amee)

T]D

for n < 0 andlimsup,, .. |f1(—n)|"/" < 1. Sinceh € C(T), f € L*(T).

Sinceh = b(H), h(n) = 0 for n > 0. Also it follows from (B.2) and (B.15) that we have, for
n >0,

[h(=n = 1) < sup L7'(r)r" < sup Lg*(r)r" = sup (L5 ()",

0<r<1 0<r<1 0<r<1
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Henceh(—n) < o%/*(n) = w='/s(—n — 1) and|h(n)| = O(w~/5(n)) asn — —oo. Since
f =e"f1, the theorem follows then immediately from Proposition B.1o

In order to obtain our second factorization theorem we will need the following extension of
formula (B.5).

LEMMA B.4.— Letp € LL (D), v € L=(D), with 9p € L>=(D). Assume that there exists
a continuous non-negative non-increasing functioon [0, 1) such thatess sup [¢(A)[p(|A]) <
+oo and |0y ()] < p(|A]) a.e. onD.
Then
b(p)(n) = lim Y r Plo(0) (p)b(&) (n —p)  (n € ).

'r’~>1

PEZL

—

Proof. —Sety™ =C*(p), so thaﬁ@t)(n) =0forn>0 andb(Tp:)(n) =b(p)(n) forn <O0.
Then

> b)) 6@ (= p) = Y b W) () (0 — p)] < +o0,

p<0 p<0

and lIap\—w)(n) => <0 b@) (p)b(T/})(n — p), by (B.5). Hence we can restrict attention to the
case where € H(D).
Lets € [0,1) andr € (s,1). Thenb(y)) € L>(T) and we have, fon € Z

gr%@xp)b( ~p)= g [ et (£)eag

rT
We obtain, by the Cauchy—Pompeiu formula

L / POV e~ 3 (@) (p)b()(n — p)
p=0

2im
/ [ (©p(©)e! —r"¢<£>w<§>} df‘

// {w Ol ov(E)] +r" " e(€) Ilaw( )H!g‘"—ljdm(g)

1
s<\§\<r

27T
There existsM > 0 such that|p(€).|0v(€)| < M and |¢(€)]|0v(¢/r)| < M a.e. for
€] <7, re[0,1). Hence

lim sup SM(1—|—|5|_‘”|_1) (1-57)

r—1-

o [ HOUOET A= S ) (D) - p)
rT p=0
for everys € (0, 1), and the lemma follows from (B.3).0

Forw € S, s > 0 set as in Section &, (n) =w(n) (n =0), w)(n) =w’(n) (n <0). The
following factorization result, which is slightly more precise than Corollary 5.3, is a quantitative
version of [14, Theorem 4] and [18, Theorem 6.1].

THEOREM B.5. — Letw € §, and assume that satisfies the following conditions
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(1) 30, < 55" = +oo;
2) (w(— ))n>1 is eventually log-concave

3) (log“( ") (log ) )n>1 is eventually increasing for somé > 0;

(4) limsup,,_, }ggzzr < 1/4;

(5) limsup,,_, % <1/64.

Then for everyu € ¢, and everys < 1/4 there existsv € £}, k > 0 and w = (wy,)n<o
satisfying the following conditions

() Zn<o |wn“*~)(s) (n) < 4005

(i) S*u=e"xv.

Proof. —Set agairv = (w*)+ and set

log & logt w1t
5_hmsup10gwﬂ = limsup 28 & (")

K = mi —1 274 —1
00 (—n)’ n—oo logw(—n) ’ mln(ﬁ 2747,

so thatK > 4. Let s > 4, and lett (4,min(s,K)),6 € (1,t/4) ande € (0,6 — 1). Let
u € £,\{0} and setF" = u™ + C*(p), whereyp € C'(D) satisfies the condition of Lemma B.2

with respect tou™,d ande. Also setp(r) = 5/2( t) for r € [0,1). Then b(/l?“) =u, and F
satisfies (B.7).
Fora € (0,1), c <y~ ! there exists\/ > 0 such that we have, foxre D

<M<Za”c u") <ML~ N log L (M),

Hence
log+|u+()\)| =0(logL01/c(‘)\|1—a)) =0( (wc(l a)))

as|\| — 1.
Since~y~! > 16t, we can choose and o such that?!=% > 16. Let 7 € (16, <0-2)). |t
follows from Proposition 5.1 that we have

(B.16) IFO) (A

A —1-

Since the sequenc(é%)n% is eventually increasing for evewry € (0,1) and every
d > 0 it follows again from [43] that1 — r)* log p(r) is eventually increasing as— 1~ for
everyk > 0. SinceF satisfies (B.7) and (B.16), and sint@") = u # 0, it follows then from
Lemma 5.2 that there existg > 1 such thatAx| > 27%=2 for k > k¢, where

Ag={re[1-27F1-27F1]| Jnf [PV > p(r)}-

Using the same construction as in the proof of Theorem B.3 we obtain two functiens|, (D)
andU € L>*(D), with 0G € L*(D), andr, € (0,1) such that(0G)(A) — G(A)U(N) =0
for ry < [Al < 1, [UN)] < L7 Y(]A) for A € D and [F(A) — G(A)| = O(Ls"~/*(]A)) as
A — 1”. Se Set again = C*(U), h=C(U)|r, so thath(n) = 0 for n. > 0. Setw = (h(n))n<o,
v =b(e=HG). We have agaim(G) = b(F) = u and |i(n)| = O(w~/*(n)) asn — —oo. It
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follows from Proposition 5.1 that

log (1 /s
lim sup 28X/ (M)

n—oo logw!/t(—n)

Since) ,, . w™*(n) < +oo for everya > 0, this shows tha} |fz(n)\&(1/s) (n) < 400, and

w satisfies (i). In particulaw is a convolution multiplier orf Hencee®” =$°° 2’ s

n=0 n!

sinceY>,_, |h(n)| < +o0, we havee® = eh = b(eH)
ande™" =e~h = b(?—?). Also, sinceﬁ}u(l/s) (Z) is a Banach algebra with respect to convolution,

W(/s)*

also a convolution multiplier oi

W(1/s)"

we have) ", ., |b(?—?)(p)\|un_p\ < oo forn eZ.

Since|F(A) — G(A)| —x—1- 0 it follows from (B.16) that G(A)| = O(Ly/*" M (|J16t))
as|A\| — 1. Also

(@) N[ =0(UW)) =O(L; " (IA))  as|A| =17

It follows then from Lemma B.4 that

oo
—

b(e=AG)(n) = lim > rPlb(e=H)(p)b(@)(n—p) = b(e~H) (p)un—p

r—1-

pEZ p=0

forn € Z. _

Hencev = b(e=HG) = e ™ x u € {,. Sinced(e 1G) = (0G — GU)e H vanishes for
r1 < |A| < 1, we see as in the proof of Theorem B.3 thatsup, . __ |v,|'/I"! <1, and the
theorem follows then immediately from Proposition B.1o

REFERENCES

[1] ABKAR A., HEDENMALM H., Invariant subspaces on multiply connected domdml. Math.42
(1998) 521-557.

[2] ALEMAN A., RICHTERS., RoSsW.T., Pseudocontinuations and the Backward Shiftiana Math.
J. 47 (1) (1998) 223-276.

[3] ALEMAN A., RICHTERS., SUNDBERGC., Beurling’s theorem for the Bergman spa&eta Math.177
(1996) 275-310.

[4] AposToLC., Hyperinvariant subspaces for bilateral weighted shiftént. Eq. Op. Theory (1984)
1-9.

[5] ATzmON A., An operator without invariant subspace on a nuclear Fréchet space of Math.117
(1983) 660-694.

[6] ATzmON A., An operator on a Fréchet space with no common invariant subspace with its inverse,
J. Funct. Anal55 (1984) 68-77.

[7] ATzmoN A., Nuclear Fréchet spaces of entire functions with transitive differentiafioAnalyse
Math. 60 (1993) 1-19.

[8] ATzmON A., Entire functions, invariant subspaces and Fourier transfolsreel Math. Conference
Proceedingd1 (1997) 37-52.

[9] ATzmON A., WeightedL? spaces of entire functions, Fourier transforms and invariant subspaces
Preprint.

[10] ATzmON A., The existence of self-adjoint translation invariant subspaces on symmetric self-adjoint
sequence spaces @nhJ. Funct. Anal178 (2000) 372-380.
[11] ATzmON A., SoDIN M., Completely indecomposable operators and a uniqueness theorem of

Cartwright-Levinson type]. Funct. Anal169 (1999) 164-188.

4€ SERIE— TOME 35 — 2002 -N° 2



WEIGHTED HILBERT SPACES OF SEQUENCES 229

[12] BEURLING A., Mittag—Leffler lectures in Complex Analysis (1977-78pllected works of A.
Beurling, 361-443.

[13] BEURLING A., MALLIAVIN P., On Fourier transforms of measures with compact suppata
Math. 107 (1962) 291-309.

[14] BorICHEVA., Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras
of sequencedylath. USSR Si64 (2) (1989) 323-338.

[15] BORICHEV A., Invariant subspaces of given index in Banach spaces of analytic funcfioRgine
Angew. Math505 (1998) 23—44.

[16] BorICHEVA., HEDENMALM H., Completeness of translates in weighted spaces on the halAttee,
Math. 174 (1995) 1-84.

[17] BoRrICHEV A., HEDENMALM H., VOLBERG A., Large Bergman spaces: invertibility, cyclicity, and
subspaces of arbitrary indefreprint.

[18] BORICHEV A., VOLBERG A., Uniqueness theorems for almost analytic functidresjingrad Math.
J. 1(1990) 157-190.

[19] BOURGAIN J., A problem of Douglas and Rudin of factorizatidPgcific J. Math.121 (1) (1986)
47-50.

[20] BROWN S., CHEVREAU B., PEARCY C., On the structure of contraction operatorsJl,Funct.
Anal. 76 (1988) 269-293.

[21] DOMAR Y., Translation invariant subspaces of weight&dand L? spacesMath. Scand49 (1981)
133-144.

[22] DoMAR Y., Entire functions of ordex 1, with bounds on both axeAnn. Acad. Sci. Fenr22 (1997)
339-348.

[23] DYNKIN E.M., Functions with a given estimate f8f /0z and N. Levinson’s theoremiylath. Sh.81
(1972) 182-190.

[24] EL FALLAH O., KELLAY K., Sous-espaces biinvariants pour certains shifts a pdids, Inst.
Fourier 48 (1998) 1543-1588.

[25] ESTERLEJ., Singular inner functions and biinvariants subspaces for dissymmetric weighted shifts,
J. Funct. Anal44 (1997) 64-104.

[26] ESTERLEJ., Countable inductive limits of Fréchet algebrhsinn. Math.71 (1997) 195-204.

[27] ESTERLEJ., Exact factorization never holds for Banach spaces of sequeBicd2gtersburg Math.
J. 12 (2001) 869-874.

[28] ESTERLEJ., Apostol’s bilateral weighted shifts are hyperreflexi@perator Theory: Advances and
Applications127 (2001) 243-266.

[29] ESTERLEJ., Gay R., Product of hyperfunctions on the circlstael J. Math.116 (2000) 271-283.

[30] ESTERLEJ., VOLBERGA., Sous-espaces invariants par translation de certains espaces de Hilbert de
suites quasi-analytiquement pondéréesiR. Acad. Sci. Paris, Ser.326 (1998) 295-300.

[31] ESTERLEJ., VOLBERGA., Analytic left-invariant subspaces of weighted Hilbert spaces of sequences,
J. Op. Theory5 (2001) 265-301.

[32] HARLOUCHETI., Trace de Cauchy pour certaines fonctions localement intégrables sur un ouvert borné
deC, submitted.

[33] HARLOUCHET I., Idéaux fermés de certaines algébres de Beurling quasi-analytiques sur le cercle
unité,J. Math. Pures Appl79 (2000) 863—899.

[34] HEDENMALM H., A comparison between the closed modular ideal#'¢f,) and L' (w), Math.
Scand 58 (1986) 275-300.

[35] HEDENMALM H., Bounded analytic functions and closed idedls\nal. Math.48 (1987) 142-166.

[36] HEDENMALM H., KORENBLUM B., ZHU K., The Theory of Bergman Spaces, GTM /19@ringer-
Verlag, 2000.

[37] HEDENMALM H., VOLBERG A., Zero-free invariant subspaces in weighted Bergman spaces with
critical topology, Preprint.

[38] HELSONH., Lectures on Invariant Subspacescademic Press, 1954.

[39] HITT D., Invariant subspaces &2 of an annulusPacific J. Math.134 (1) (1988) 101-120.

[40] KELLAY K., Fonctions intérieures et vecteurs bicycliquasshiv. der Math.77 (2001) 253—-264.

[41] KorENBLUM B., Outer functions and cyclic elements in Bergman spatds,nct. Anal115 (1993)
104-118.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



230 J. ESTERLE AND A. VOLBERG

[42] MATSAEV V.I., MoGuULsKIl E.Z., A division theorem for analytic functions with a given majorant
and some of its applicationd, Soviet Math14 (1980) 1078-1091.

[43] NikoLskil N., Selected problems in weighted approximations and spectral andysts, Steklov
Inst. Math.120 (1974).

[44] NikoLskIl N., Treatise on the Shift OperatoBpringer-Verlag, Berlin, 1986.

[45] NikoLskil N., Yngve Domar’s forty years in harmonic analysis, Festschrift in honour of Lennart
Carleson and Yngve Domar (Uppsala, 199%)ta Univ. Upsaliensi§8 (1995) 45-78.

[46] SARASOND., The HP-spaces of an annuluslem. Amer. Math. So&6 (1965).

[47] SARASON D., Nearly invariant subspaces for the backward sl@®jperator Theory Adv. Appi35
(1988) 481-493.

[48] SHIELDS A., Weighted shift operators and analytic function theory, in: Pearcy C. (Edpjics in
Operator TheoryAmer. Math. Soc. Math. Surveys, VA3, 1974, pp. 49-128.

[49] VOLBERGA., The logarithm of an almost analytic function is summaBleyiet Math. DokI26 (1982)
238-243.

[50] VoLBERG A., Asymptotically holomorphic functions and certain of their applicatidhi®c. 1.C.M.
Kyotoll (1990) 959-967.

[51] VoLBERG A., JORICKE B., Summability of the logarithm of an almost analytic function and a
generalization of the Levinson—Cartwright theoréviath. USSR SI58 (1987) 337-349.

[52] WIENER N., Tauberian theorem#nn. of Math.33 (1932) 1-100.

[53] YaAkuBOVITCH D., Invariant subspaces of the operator of multiplicationzbip the spaceF, in a
multiply connected domair,OMI, Stek. Akad. Nauk. SS3R8 (1989) 166—183.

(Manuscript received June 17, 2000;
accepted, after revision, October 6, 2000.)

Jean STERLE
Laboratoire de Mathématiques Pures,
UPRESA 5467,
Université de Bordeaux I,
351, cours de la Libération,
33405 Talence cedex, France
E-mail: esterle@math.u-bordeaux.fr

Alexander \OLBERG
Department of Mathematics,
Michigan State University,
East Lansing, MI 48824, USA
E-mail: volberg@math.msu.edu

4€ SERIE— TOME 35 — 2002 -N° 2



