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GENERAL RECURSIVE FUNCTIONALS OF FINITE TYPE

AND HIERARCHIES OF FUNCTIONS

R.O. GANDY

UNIVERSITY OF MANCHESTER, ENGLAND

INTRODUCTION

Kreisel (in GK1) has argued that if one takes the totality N of natural numbers as a basis ,

then the number theoretic functions which can be predicatively defined are exactly the hyperarithmetic

(HA) functions. But when we go beyond the hyperarithmetic hierarchy we can, nevertheless, dis-

tinguish different degrees of impredicativity. For example, let 7 be the least ordinal such that

all the constructible (sensu G6del) number-theoretic functions of order less than 6 form a model

of classical second-order arithmetic, and let S be the first binary relation over N to be constructed

having order-type J . These definitions are surely thoroughly impredicative ; a is, as it were,

defined from above (1). On the other hand, Spector has shown (in CS) that a complete 11:1 predicate

(e, g. , Kleene’s 0 or Spector’s W) can be expressed in the form

where A is arithmetic. This is not a predicative definition because the totality over which the quan-

tifier ranges has not been given a previous definition. But it is a definition, so to speak, from

below, because each object in the range of the quantifier has been previously (and predicatively)
defined. I believe that Russell would have admitted it as a non-circular definition. One of the objects

of the work prescribed in this lecture is to study and to characterise more exactly the class of

number theoretic function which can be defined from below (2).

---------------

(1) I do not hold that there is anything unsound or philosophically objectionable in the use of thoroughly impre-
dicative definitions. But it is clear (witness the recent independence results obtained by Cohen) that the more
impredicative the definition of an object or class, the less the information which we can expect to obtain
about it from that definition.

(2) I do not now regard this as a very fruitful programme. If the operation of collecting together all previously
defined functions is only repeated a finite number of times, then one obtains just those functions which are
primitive recursive in E1. If the operation is repeated any transfinite number of times then one obtains the
functions of ramified analysis. If one seeks to control the transfinite applications of the operation by requiring
that the ordinal used should be the type of a well-ordering which has already been obtained, then I believe
that the functions one obtains are just those which result from applying the operation less than ~o times ,
where C. is the first ~-number as defined in section 4. 

0

More promising, I consider, is the programme of successive diagonalisation which is considered in this lec-

ture. But for functionals of type 3 or greater, D aax (see section 5) is thoroughly impredicative. Therefore,
if one seeks to obtain a more detailed knowledge of particular hierarchies of functions by avoiding operations
which are thoroughly impredicative, one should investigate the functionals which arise by application of Dmin. ·
I have found this difficult to do.
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However, the line of attack to be followed here is a rather indirect one. Let us first consider

the class HA of hyperarithmetic functions. One way of expressing the presupposition of N is to per-

mit curselves the use of Kleene’s functional E defined by

Now Kleene has shown (in SCK1 ) that HA coincides with the class of functions [E] which are recur-

sive in E. This suggests immediately where we should look if we wish to extend our notion of

function beyond HA - namely at the results of diagonalising [ E ]. In other words, we are to consider

the predicate

D(x,E) ={x} (E) is defined,

Where { x } (E) denotes the partial recursion with index number x and type 2 argument E. Or more

generally, we consider

D(x, a, E) = {x} (a, E) is defined.

It is not hard to show that the former predicate has the same Turing degree as Kleene’s 0, as

here and that the latter predicate is equivalent to x EOa and to the functional E1 (introducel by Tu-

gué in T) defined by

’Equivalent’ means that each of the three objects considered is recursive in either of the others .

We remark that E itself is equivalent to D, where

D(x, a) = {x} (a) is defined.

These considerations suggest investigation of the class of functions generated by repeated ap-

plication of the following three principles :

(i) use of functionals of finite type ;

(ii) use of general recursions applied to such functionals ;

(iii) use of diagonalisation over classes generated by (ii).

2 - RECURSIONS IN FUNCTIONALS OF FINITE TYPE

In this section we give a brief resume of some of the definitions and results of SCK1. A re-

cursive functional has a numerical value and a finite number of arguments ; each argument ranges

over a pure type - type 0 is N and pure type n + 1 consists of the functionals with numerical values

and a single argument of type n. A partial recursive functional (p. r. f, ) is defined, perhaps in terms

of other p. r. f. s. , by a particular instance of one of the schemata S 1 - 9 ; to each such instance

a particular index number is allocated. This number encodes the number and the types of the ar-

guments of the p.r.f. which is being defined, the number of the schema, and the index number (s)

of the p. r. fs. , (if any) in terms of which the definition is being made.

S 1 - 3 define respectively the successor, constant and identity functionals. S4 defines the

result of substituting the value of a p. r. f. for a numerical argument of an other p. r. f. S 5 is the
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schema for primitive recursion ; the numerical value of the functional for a numerical argument

n + 1 is defined in terms of the value for argument n - this contrasts with the schema used by G6del

in KG. Instances of S 6 permute the arguments of a given type ; this schema can be dropped if in

each instance of the other schema (and their index numbers) we are allowed to specify freely which

arguments of appropriate type are the relevant ones ; whereas Kleene always takes the first ar-

gument as the relevant one. S 7 applies a type 1 argument to a type 0 argument. S l3’ (with j ~ 2)

applies a type j argument to a given previously defined functional ; in symbols :

where 1t denotes a string of arguments, and x has been previously defined. The computation of

u ) ) for particular exJ, u , is said to be def ined if the computation of X (1;J-2, , a , u ) is defined

for every functional i of type j-2. S 9 is a reflection schema ; one of the type 0 arguments c is

considered as an index number, and the value of the functional being defined for a given set of ar-

guments is the value of the p. r. f. with index number c for a specified selection from that set of

arguments ; in symbols

(u)

Naturally such a computation will only be defined if c has the form of an index number for the

specified list of arguments and the computation on the right is defined. In conjunction with S 4,S 9

allows the progress of a computation to be determined by the result of a subsidiary computation.

Functionals which can be defined without the use of S 9 are called primitive recursiue ; they

are automatically defined for all values of their arguments. For the definition of p. r. fs (S9 per-

mitted) S5 can be omitted. If a p. r. f. is defined for all values of all arguments it is said to be a

total or a teneral recursive functional. When the types of the arguments are all 0 or 1, these de-

finitions are equivalent to the customary ones.

By the description of a computation we mean an index number and a set of arguments of ap-

propriate types. We write { z} (11.) both for the description of a computation and for its value (if

this is defined). The course of a computation { z} ( u) can be set out on a (horizontal) tree. At each

point there stands a description of a computation and, if that computation is defined, eventually

there will also stand its value. We start by placing {z} ( u ) at the vertex at the extreme left of the

tree. Suppose {y} ( f~) stands at a point P ; the progress of the computation beyond this point is set

out as follows.

(i) If y refers to an outright calculation by schemats S1-3, S7, then P is a t ip, and at it we

insert the appropriate value.

(ii) If y refers to S4, { y} (6) = {Yl} ({Y2} ( ~), ~ ) say, then P is a node. Immediately to its right
there stand two points Qi , Qz ; Qi is above Q2, At Q2 we place the computation description {Y2} (6) ;
if this is defined, eventually its value - u say - will be placed at Q2. Then we place the compu-
tation description {y,) (u, 6 ) at Ql. If this is defined, then, when we eventually place a value at

Ql, we shall also place it at P.

(iii) If y refers to S9, {y} (a, b , c ) ={a} (b) then just one point Q stands immediately to the

right of P. At Q we place the computation description { a} ( ~ ), and when a value is placed at Q it

is also to be placed at P.
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(iv) If y refers to 88j,

then P is a branch point ; immediately to its right stand infinitely many points Q~, one for each 1;

in type j-2. At QT stands the computation description (i , ), When values have been placed

at all the QT, the functional h Tj-2{y} (’tJ-2, &#x26;) is defined, and the value of applied to

it is placed at P. Now we can use the computation tree to obtain normal forms for ’{z} (u) = w’

and ’{z} (11.) is defined’ ; the tree plays a role analogous to that played be a derivation in recursive

function theory. Towards that and we make a number of remarks.

1. There are only a finite number of points (’predecessors’ ) to the left or any given point.

2. The non-numerical arguments in the computation description at any point form a selection

from the list 11.’ of the non-numerical members of u .

3. Any type can be mapped one-to-one into any higher type. Hence, if r is the highest type

occurring in 11., , the different branches at a node or a branch point can each be described by an

appropriately chosen object in type r-2. Therefore a point on the tree can be uniquely specified by
a finite sequence of type r-2 objects, and hence by a single type r-2 object. Such an object is called

a position.

4. By remark 2, we can specify the computation description (for a given tree - so that u

is given) at any position y of the tree by a single number j3(y). Also the value (if defined) at y

will be denoted Thus (3 and 11 are functionals of type r-1.

5. If Yo is the vertex then evidently will be given primitively recursively in terms of

z and u. 0’ where u o is the numerical part of u . Examination of the case (i) - (iv) shows that else-

where P(y) can be simply defined in terms of the value of fi at the immediate predecessor of y,

y itself, and, if y is the upper point at a node, the value of p at the point immediately below y .

So we have

= 9(z, 1t 0’ 11, y)

where 8 is primitive recursive.

6. The value of Y) at a position y is easily determined from P(yL w , and the values of p at

the points immediately to the right of ~y , There may be branches of arbitrarily great length through

the position y. Hence, even is defined, we cannot give a primitive recursion for T)(y). But

we can give a primitive recursive predicate L(z , 1t" y, T)) which expres ses that the value of n at

y is correctly related to its values at the points immediately to the right of y. Y) is then said to

be l ocal l y correct at y.

7. We are interested only in the values Tl(y) when y describes a point on the tree.

The precise expression of this latter predicate depends on the particular way in which the choice

at nodes, or at branch points where j  r, is represented by a type r-2 object. But a little thought

will show that the condition can be expressed by quantifying over certain variables of type r-3, a

predicate which is primitive recursive in those variables, # and ’y . (For example, if choosing the

lowest point at a node is represented by the zero functional of type r-2, then expressing that such

a choice has been made will obviously require universal type r-3 quantifier). Thus using remark 5

we obtain :

y is a position = (QI )P(z , 1t, ~, y , ... )
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where .... denotes the type r-3 variables, and (Q1;) quantifiers over them. (In fact a single uni-

versal quantifier suffices. ) In case r = 2 the quantifiers are omitted. To emphasise the dependance

on T) we shall refer to n-positions.

8. To clarify the relation of the definitions in remarks 6 and 7 to 1~, we introduce the fol-

lowing definition : if Yl , Y2 are two putative positions (i. e. represents finite sequences of type r-2

objects) then Y2 is said to be beloW Y1 if there is an T)-position 5 which is a node and Y1 (resp. Y2)
is an extension of the upper (resp. lower) r¡-position immediately to the right of 5. Then the value

of and whether y is an n-position depend only on the values of T) at T)-positions which lie below y.

Furthermore ’below’ is a well-founded relation. We say that Y1 is beyond Y2 if Y1 (as a sequence)

is an extention of y 2. Now is determined by fi (y) and the values of T) at points beyond y ;

hence if T) is locally correct at y then its value there is uniquel y determined by its values at al l the

p-positions which are below or beyond Y ,

We are now able to obtain the required normal forms. First suppose that {z} ( u) is defined.

Then every branch of the tree comes to a tip, and every point y of the tree there will be assigned

a value 71(y). Evidently this n is locally correct, and the Y) -positions are just the points on the

tree. Suppose, conversely, that 1~’ is locally correct at all 711-positions. Observe that the relation

’below or beyond’ between points on the tree is well-founded ; since also ’below’ is well-founded

both for Y) and T)’" it follows by transfinite induction from remark 8 that the Tj -positions coincide

with the points on the tree, and that the values of n and ’~’ are the same at all these positions .

In particular, they are the same at the vertex . Hence

{z} ( U) = w = (TI) [(y) (y is an T)-position 20132013&#x3E;

T) is locally correct at Y) - Y)(Yo) = w]
- (Eil) [(y) (y is an T)-position

p is locally correct at y) &#x26; = w]

Thus, by remarks 6, 7 and manipulation of quantifiers, we see that if {z} (n) is defined, then

where I and J are primitive recursive in the indicated arguments. Consider now the case {z} (M)

is not defined. There may be an infinite branch on the tree, or there may be a point at which the

computation description {y} ( 6 ) is defined, but y has not the form of an index number for a schema

with the arguments b . In the latter case let us conveniently continue the branch indefinitely by simply

repeating the computation description at each successive point, so that in either case there is an

infinite branch. Now there must be a lowest such branch, p say, such that any branch which passes

through the lower point, at a node where p takes the upper point, does reach a tip. Hence a value

is defined for all points below (points of) p, and will be correctly given by any r¡’ which is locally
correct at all p’-positions lying below p. And the computation descriptions along p will be cor-

rectly specified by the function Xn. pn , for any such Tll. Here the branch p is iden-

tified with the infinite sequence p. of positions along it. If r&#x3E;2, then p can be taken to be of type

r-2 ; if r = 2, then p will be of type 1.
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Hence

{z} (n) is defined = (11) (p) [(y) (y is an n-position below p-&#x3E;

11 is locally correct at y) - (En) specifies a tip)].

Now it can be shown that :

y is an n-position below p = (En) (Tr-3) R(z,M.o, 1; r-3, Y. 
with primitive recursive R. Also ’x specifies a tip’ is primitive recursive.

Thus for all r ~ 2 we have

{z} en) is defined = (a’-’ ) (Eyr-2) M(z, u , (2, 3)

with primitive recursive M.

Alternatively

{z} (11.) is defined =

(ET)) [(y) (y is an is locally correct at y)
&#x26; ( p ) (En) (P(p~) specifies a tip] .

If r &#x3E; 2, then this can be reduced to the form

If r = 2 it can be reduced to the form

where A and B are primitive recursive. In general it cannot be further reduced, but we remark

that if Ei is primitive recursive in u , then the second term of the conjunction can be reduced to

a primitive recursion in z , T)l, 11., and so we have

{ z} ( u ) is defined = (E T) 1) C (z , w , T) 1) ; (2. 6 )

(the numerical quantifiers (x) is of course equivalent to a primitive recursion in E and hence also

in E 1 ).

3 - FURTHER RESULTS ABOUT RECURSIVE FUNCTIONALS

In this section we shall suppose that r = 2 - i. e. that no variable in the list n has type

greater than 2. (The results can be extended to the case r &#x3E; 2, but to do so a specific well-ordering

of the objects in type r-2 must be assumed).

There is then a natural extension of the relation below. Namely, we say that a point R on the

tree for { z} ( u ) is beneath the point S, if R is below S or if there is a branch point P such that

R is on a branch through Q1" S is on a branch through Qj, and i  j. Then the relation ’beneath

or beyond’ gives a total ordering of points on the tree. If {z} (11.) is defined then this is a well-

ordering. If not, then there is a ’furthest down’ branch p , such that every branch which (eventually)

goes beneath p comes to a tip. In this case the relation ’beneath or beyond’ is a well-ordering of

all the points on the tree which lie beneath p ; and a unique value is assigned to all these points .

Thus whether {z} (M-) is defined or not, there is an ordinal 1 {z} (B)] which gives the order type of
the well-ordered part of the tree. We define |{z} (u )1. This is a rational notation, because

z
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it can be shown that if we adapt Kleene’s system of ordinal notations, or Spector’s notion of recur-

sive well-orderings, by substituting ’recursive in u ’ for ’recursive’, then the supremum of the or-

dinals represented by such notation is wIn as defined above. Note that we could replace u by u ’ , "

for it is only the non-numerical part of u which is relevant.

The notion of the ordinal of a computation proves to be a very useful tool, especially if one

also uses Kleene’s E. In particular, suppose one has compared a given ordinal with the ordinals

of the computations at the points Q, immediately to the right of a branch point P ; then using E

one can also compare it with the ordinal of the computation at P. Given two computations from u ,

at least one of which is defined, there is a method which is recursive in u and E for comparing

the ordinals of the computation. (The method is fairly elaborate ; details will appear in ROG1 ) .

And from this one can obtain the following theorem :

3.1, There is a p. r. f. v (z, n , Ea) which satisfies

Of course the existence of such selection operators for partial predicates in recursive function

theory is well known. An analogue of 3. 1 for r &#x3E; 2 can also be proved, but then a well-ordering

of the type r-2 will appear as an argument of v and E will be replaced by a functional E r which

represents the existence operator for predicates with type r-2 arguments.

Theorem 3. 1 obviously has a particularly simple form if E is recursive in u ; ; and this will

be the case in the applications we shall make. For the rest of this section we therefore assume that

E is recursive in u -

In what follows we are going to be concerned with formulae in which the quantifiers are limited

in range ; this will be indicated by placing ’IC’ (where C is the range) after the binding occurence

of the variable. We shall also apply this notation to the notation of Addison-Mostowski-

Shoenfield (N.B. A = x n E). For example Spector’s theorem mentioned in the introduction can be

written as HA. If the recursive predicate which is the scope of the quantifiers involves

constant functionals, these will be exhibited in parentheses. In the same parentheses, and separated

from the constant symbols by a colon, we may place numerals to indicate the types of the argu-

ments ; (we shall not need to indicate the number of arguments of a type - if this were required

it could be done by giving each type numeral a subscript). We shall normally omit the numerals

for all types except the highest. For example, we write 7t}(l) for a predicate of numbers and func-
tions - though in many contexts we could omit the ’ (1 )’ ; it is obvious that E2 (1 ) = E1 1 (E 1), while

El 2 (2) ~ 2). Spector’s theorem can be written 11:~ (0) = (El 1 t HA) (0), but ’0’ cannot be replaced

by 1’, and it would therefore be misleading to omit the ’0’.

Finally, we write [ u] to mean the set of all objects - possibly of a prescribed type - which

are recursive in the list of functionals u ; ; of course the numerical part of is irrelevant. It will

never be necessary to distinguish between functionals and predicates, but, as in the previous pa-

ragraph, it may be necessary to exhibit the (highest) type (s) of the arguments ; we use exactly

the same notation as above. Thus (0) means the set . of all number-theoretic predicates Qr func-

tions which are recursive in u . Theorem 2.1 can be expressed by [u] (r) C p~-1 ( u : r), where the

list u may be empty, but must not include functionals of type greater than r.

Now we can state some corollaries to 3,1 :



3.11 (Axiom of choice for [11.]). I f R is recursive, then

That the right hand side is included in the left hand side follows from 3.11 ; the converse is shown

by examining the proof of 2.1, and establishing that all the bound variables may be limited to [ 1 ] .

3.12 is an analogue of the familiar equality

(*) Recursive = A§

Indeed, we shall continually find that when type 2 objects appear as parameters, then a function

quantifier limited to functions recursive in those parameters is the analogue of a numerical quan-

tifier in ordinary recursive function theory. For the particular case n = E, the basis of this ana-

logy has been investigated by Kreisel (in GK2 and GK3). He proposes that the analogue of a natural

number should be taken to be a hyperarithmetic set (or an index for it) ; the analogue of a recursive

set is the jntersection of a hyperarithmetic set of functions (or numbers) with the set of all hypera-

rithmetic functions (or notations for them) ( 1 ) , For ease of expression we will take for the analogue
of N the set of all hyperarithmetic functions (rather than sets) ; this change is evidently of no im-

portance. Then Kreisel’s analogue for (*) can be written :

where (1 ~ t C) means that the predicates are to be restricted to type 1 arguments in [C] - but the

predicates must still be defined for all arguments in type 1. Now the methods of proof of 3.12 also

suffice to prove

which is just the generalisation to an arbitrary u. in which E is recursive of Kreisel’s analogue

of (*).

A further corollary of 3.1 is that there is an undefined computation {z} (n) whose ordinal is

(jj~. This may be compared with the fact that there is a recursive linear ordering whose initial

well-ordered segment has ordinal And just as the latter fact leads to a proof of Spector’s

theorem (see ROG2 ), so does the former lead to a proof of :

(where, as in the introduction, D(x ; 11. ) == {x} (11.) is defined). This theorem shows that the remarks

which were made in the introduction about obtaining a diagonal predicate for E by means of quan-

tification from below also apply to any type 2 functional in which E is recursive. Hierarchies based

on this idea will be discussed in section 5.

By using 3. 1 it is easy to show that Àx. D(x ; 11.) is a complete predicate for (Z § ? [ u ] ) (11. : 0) ,

Let us denote by D[ 11.] the set of all predicates x ranges over N ; we adopt the

same conventions as before for indicating the (highest) type (s) of the arguments. Then :

(1) Kreisel’s analogy is incorrectly stated. In our notation his analogue for a recursive set is

a E [E] &#x26; {z} (a,E) = 0 , I

where the p.r.f. {z} (a, E) need only be defined for hyperarithmetic a. This arises naturally in the consi-
deration of w-models, whose hard core consists of the hyperarithmetic functions.

However for our purpose the analogy described in the text is easier to handle, and is sufficiently suggestive .
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3. 21

and also :

3. 22

The class of predicates denoted by either side of this equation is the analogue, in our generalisation

of Kreisel’s analogy, of the class of recursively enumerable predicates.

4 - THE HIERARCHIES [E] AND [E1]

We first give proofs of some of the more important properties of the hyperarithmetic hierarchy

using ’recursive in E’ as the definition of ’hyperarithmetic’. We do this to provide illustrations for

the theorems and notations of the last two sections, and also to single out those theorems which

form the basis of a partial analogy to be explored in the final section.

4.1 Primitive recursive in E = Arithmetic.

This is true both for predicates of numbers and of functions. The proof either way is a straight-

forward inductive one ; it can be found in SCK1.

This is an immediate consequence of 2.1" 2.2 and 4.1

This is an immediate consequence of 4.1 and 2, 3.

4. 4. For any type 2 functional F and any function ex,

Àx. D(x ; a , F) is complete for ’~i (a ; : 0) .

For simplicity we shall omit all reference to a in our proof. Let a 11:~ predicate ( ~ ) (Ey) R(J3(yLa)
be given, and let S~ be the set of non-past-secured sequence numbers for R(u , a). Now by the re-

cursion theorem we can find an index number e which satisfies :

Recall that there is a primitive recursive substitution function S2 satisfying

I claim that

Consider the tree for the computation {e} (1 a, F). Corresponding to each u E S~ there will

be a branch point on the tree, and conversely. Further the computation at any point beyond which

there are no branch points will surely be defined, since it must be a part of a computation according

to the top clause in the definition of {e}. Thus the tree has infinite branches if and only if there

are unsecured infinite sequences ; this proves the theorem.

4, 5 D[E] (I) = 7~(1) .

This follows immediately from 4. 3 and 4. 4. Since [E]) is Kreisel’s definition of the analogue
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of ’recursively enumerable’, we were justified in calling ] (1 t [ u ] ) the generalisation of his

analogue.

This is a consequence of 3. 21.

This follows from 4.5" 4. 61. Evidently we may interchange ’1t’ and ’Z’. Therefore

This is an instance of 3.12 ; it shows that any class of functions which is generated by applying

hyparithmetic operations to a finite set of functions provides a model for the ð~ comprehension
axiom with free function variables.

4. 9 (1) .

This is an immediate consequence of 4. 7 and 4. 8.

We now turn to the hierarchy [E1], We can give some idea of the extent of this hierarchy as

follows. Let R be a number-theoretic well-ordering relation, which is recursive in E~. We can

define what it means to apply the hyperjump operation times starting with the predicate Bx.x=x~

where R~ is the ordinal of R. Evidently the result of this process is a predicate which is recursive

in E1. (We do not here discuss the degree of invariance of this process for constant ~R~, but va-

rying R). Thus the extent of can be approciated by considering what ordinals are less than

We define an initial ordinal to be one which is wi for some number-theoretic predicate A, or
which is a limit point of such ordinals ; we denote by c~ the initial ordinal. If w~  then

so is W1l+1. Hence w’1  for n E N ; indeed these are just the ordinals of well-orderings which

are primitive recursive in E1. Further if we can construct recursively in E1 a sequence of notations

for an ascending sequence of initial ordinals each  then its limit point will be  Hence

if r~  then also w’1  W:l. So w~, c~,~, , . , , are  And it is not hard to see that if we

call any solution of the equation C = Wt a C-number, then if T)  then so is the C-number.

An so on 1 We may remark that the ordinals defined in Addison-Kleene A-K are certainly all less

than (indeed, they are probably all less than [For ’probably’ read ’not’. W. H. Richter

tells me (March ’64) that he has proved that W2 is the least ordinal not represented in the Kleene-

Addison second number class. This suggests the conjecture that the Kleene-Addison ordinals are

precisely those less than ]

We now investigate the quantifier form of predicates in [E1]. It is known that [E1] ç (see TT

and JRS). We give a new proof of this fact, based on ideas which will be used in the next section .

We denote an arbitrary list of variables of types 0 and 1. We suppose that a standard

system of indexing has been adopted for all predicates of ð~ (1) so that the two formulae and the
number of type 0 and of type 1 arguments can all be primitively recursively determined from the

index. To distinguish between this index and that for a p. r. f. we shall if necessary refer to the

former as a A-index. We write Q n] (c) for the predicate whose index is n. We shall also speak

of the index of a function or functional, meaning thereby the index of its graph, and we shall write
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Enl (c) for the value of the function. Evidently there are primitive recursive substitution functions

(analogous to Kleene’s S functions) which determine the index of the predicate which results from

a given predicate by substituting particular numbers, or functions with particular index numbers ,

for some of the arguments. It makes perfectly good sense to speak of an index number for a pre-

dicate of no variables.

5.1. There is a primitive recursive function (D(z , f) such that, if F is a functional with A -index

number f, then

We first prove this when z is an index for a primitive recursion. The construction of ~ is

by induction on the construction of z (considered as an index). We illustrate the definition of ~ by

considering three cases.

S. 7 : We must define ~(z ~ f) so that

this is easily done.

S.4 : We require

We have merely to bring the LHS to E~ form, thus defining ~(z , f) in terms of f),
O(z2f).

S.8 : We require

The right hand sides can be brought to El 2 and 14 form respectively, thus defining ~(z , f) in terms

of 4D(z, , f). Evidently, in each case, the defining equations for ~(z , f) can be expressed as a pri-

mitive recursion.

Thus we can obtain A-indices for the primitive recursive predicates I, J, M and A which appear

in 2.1, 2. 2, 2. 3, and 2. 5, for the case in which we are interested (viz. r = 2 and F the only type 2

object ). Then, using 2,1 and 2. 3 for the II12 form, 2. 2 and 2. 5 for the E12 form, we obtain
the required index, ~(z , f) for the predicate :

{z} ( ~ , F) is defined &#x26; {z} ( ~i, F) = w. Q, E, D,

5. 2, If F E å2, then [F] and D [F] 

For D(z ; F) - (Ew) [ (D (z , f)] ( c, w) .

Since El E A , 2 it follows that [El] is included in aid does not exhaust A’ 2, as was to be shown.

We close this section with a rather interesting theorem about [E1] .
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For, let be an arithmetic formula whose only free function variables are a and .

It is well known (see e, g. SCK 2) that

The RHS is recursive in E1 and ; hence

for suitable recursive R.

Therefore

and, since we can then replace II by E, we have

From this 5.4 follows by 3. 12. Notice that in 5.4 we could replace E, by any list of para-

meters with types not greater than 2 in which E1 is recursive.

As a matter of fact, is the least class C of functions and number-theoretic predicates

which is closed with respect to the hyperjump and satisfies (A’ 2 t C) (0) = C ; this will be proved

in ROG1. From this it follows that [E1] (1) provides a minimum B-model (i, e, a model which is

standard with respect to well-orderings of the natural numbers - see AMI) for a system of second

order arithmetic whose strongest comprehension axiom is that for A’ 2 (with or without function

parameters).

6 - THE SUPERJUMP OPERATION

In the introduction it was observed that the passage from recursive operations (on type 1

objects) to the jump operation E, and the passage from there to the hyperjump operation E1, can

both be thought of as the result of diagonalising on a class of functions recursive in a type 2 func-

tional. They are both instances of what we shall call the super jump operation :

F --~ ({x} (a , F) is defined) .

Now there are good reasons for stopping at the jump operation ; but there seems no particular

reason for admitting the hyperjump, but not the hyperhyperjump (i. e. the result of applying the

superjump to the hyperjump) ; and so on.

It therefore seems natural to pass straight to the hierarchy of type 1 and type 2 objects which

are recursive in the superjump. We proceed to an investigation of this hierarchy.

We need a type 3 functional which is of the same recursive degree as the superjump operation .

Two candidates suggest themselves :

- 1 otherwise
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6D is obviously recursive in the superjump operation ; and since E is also, we see that

is ; thus £ is recursive in the superjump operation. Conversely that operation is recursive in 6D

and using 3. 2, it is not hard to show that it is also recursive in S (3).
The generalisation of Kreisel’s analogy which was discussed in section 3 suggests that if we

raise the types of all variables by one, and replace E by 8, in the theorems of section 4, then

new theorems should result. For a reason to be discussed, this is not always the case ; but the

analogy is certainly more fruitful in suggesting theorems than it would be if we simply replaced

E(= E ) by E3 , the representing function for XF . (E a) (F(a) = 0). The reason why our analogy is

imperfect may be exhibited as follows. Consider

where V is partial recursive. According to Kleene’s definition, this computation is only defined if

~( a , 8 ) is defined for all functions a ; ; but the value of the computation depends only on the values

of 4D for those functions which are recursive in ~.a , ~ (a , 8). Kleene’s definition is thoroughly im-

predicative ; for example, using Mostowski’s undecidable sentence (sec AM2) one can construct a
(1) recursive in E which will be defined for all a in some w-models (and indeed in some well-

founded models) of set theory, but will not be defined for all a in any w-model of the theory ob-

tained by ajoining the axiom of the existence of inaccessible ordinals. We cannot expect therefore

that Xz. D(z ; S) should be capable of a definition ’from below’ ; and so we cannot expect that the

analogue of Spector’s theorem (4. 26) should hold. But whereas Kleene was concerned with recursive

functionals having arbitrary type 3 arguments, we are here concerned only with the particular ar-

gument 8. It is therefore natural to seek a looser definition of is defined’, which will apply whenever

we can assign unambiguously a value to (*).

Let It., be a partial functional of type 2, and let it be a list of objects of types 5 2 ; we say,

naturally, that {z} (u , F) is defined if it is defined in Kleene’s sense, and whenever the computation

---------------

(3) To show that the superjump is recursive in 9, it will be sufficient to show that (Eal [F] ) R(a , F) is recursive
in F , 8. Let G be defined by :

Evidently G E [F] and F E [G] , so that [F] = [G] ,

Then

which gives the required recursion.
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requires an application of F (by S8), the value of F is defined for the argument in question. We

say that F is recursively satisfactory if

(z) [(x) ({z} (x , w , F) is defined)2013-~F(Bx.{z} (x, F)) is defined] .

Now we say that {z} (n , 8 ) is 14inímally de f ined, and write n, 8 ) if it satisfies the clauses

of the inductive definition given by Kleene when z refers to a scheme other than S83, while for that

schema the clause is :

(zil (a , u , 1&#x26;» is defined if and only if ( a , n , 8 )

is recursively satisfactory.

We write S) for Kleene’s definition ; evidently

But the converse implication is false. However :

6.1. There is a partial recursive functional such that :

The definition of X is by induction up the computation tree ; the crucial point is that we can define

a recursive relation F) which satisfies

(E ex í [F]) (F(a) = 0) == (E a f [F] R(a , F) ,

and which is defined for all a whenever F is recursively satisfactory. We shall not give the proof

here. 6.1 shows that the extent of the class [8] (2) does not depend on which definition of ’is defined’

we adopt.

Before investigating the analogues of the theorems of section 4, we shall examine the relation

between [8] and A§ ; 5. 2 leads us to expect that [8]~ C ,02, and we shall show that the inclusion is

proper.

6, 2. Let c be a list of objects of 1. There is a primitive recursive function o such that

(Kz) will be defined by means of the recursion theorem ; let e be an index for (~. If z refers to

Sl-3, S7, then is determined outright. If z refers to S4" we write :

where the primitive recursive function a is determined by the manipulations necessary to bring the

RHS to ~~ form. So in this case w(z) = 6(z, e).

If z refers to S9, we write
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say, with an easily determined primitive recursive T ; in this case 4)(z) = i (e), and so is deter-

mined outright - a fact which explains the possibility of giving a primitive recursive definition for ~ .

Towards S8 : let F be the functional whose graph is Xaq. [f] (a , c , q) ; so that F depends on

the parameters c . Then there is a primitive recursive function e(f) such that

The proof of this is very similar to the proof of 5,1, and is left to the reader. Now, when z refers

to S8, we write

say, with primitive recursive p, and set (Kz) = p (e, z).

Thus is determined primitive recursively from z and e, and so (~ itself is primitive

recursive. Q. E. D.

We shall not give the proof. The crucial point is that in deciding if D,in (z ; c , 9) holds, one

only needs to consider a computation tree with countably many branches at each branch point ;

further the local correctness of a proposed evaluative function T) at a branch point is described by

a A’ 2 condition. Thus one can imitate the analysis described in section 2 for the case r = 2, using

only A’ 2 formulae.

The inclusion is an immediate consequence of 6. 2, while 6. 3 shows that it must be proper.

For if X c z , (z ; c , 8) E [ .9 1 , we should have a contradiction by the diagonal argument.

Using remark 5 in section 2 and 6.2, it is easy to prove the following Lemma : There is a

number B, such that for all putative positions ’~ which lie below a lowest non-terminatinf branch of the

computation {z} ( c , t6) ,

~B ~ ( c , y , z , b) ae [(b = 0 and y is not a position) v

(b = ~ (Y ))J .

In particular, if the computation is defined, then the above predicate determines the computation

description number b correctly at every position.

Using the above predicate we obtain a 11:~ formula for D... through the equivalence :

D,sx (z ; c , 8 ) _ (p) [(m) (p~ is a position) --j (En) ( po is a tip)] ,

where p is the mth member of the infinite sequence p of putative positions. This proves 6, 5.

6.6 X c c , 8) is complete for ~a (1 )

Since (Ep) A(a , P,, c ) is recursive in E , it is also recursive in 8, and we can therefore de-

fine a primitive recursive function 4S(a), (where a is the Godel number of the arithmetic predicate A) ,

such that :
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Then evidently the computation

is defined (maximally) if and only if ( a) (Ep) c ). Q. E. D,

In particular, therefore, there is a ð~ index for the type 2 functional D~ which represents
a(t + 1 ) , 8), Further C [Di] , Now we can repeat the proofs of 6.2-6.6,

using D), 8, in place of lb, and 11:~ in place of ~2, etc. And this process can then be repeated.

In general, let Df = Xa . 0, and let

Then, for n &#x3E; 0,

These two theorems were announced in ROG3 (4).

7 - THE ANALOGY BETWEEN E AND S

In this section we work out the details of the analogy between E and 8 which was discussed

at the beginning of the last section. In particular, we seek to prove the analogues of theorems

4. 2-4. ?. One might suppose that the analogue of 7~ would be the set C of all predicates :

(4) While revising this paper I have noticed that the results of section 6 can be extended to higher types ; the
only important modification is that the two-function-quantifier forms are replaced by forms with a single
quantifier of appropriate type.

Let ~,i° . 0; let be a recursive one-to-one mapping of type n into (type n - {0°}). Let a:+1
be defined recursively from a°+1 so as to satisfy a~+i(i°) = a°+1(f(i°)). We define a generalised superjump
operator ÖD+3 by :

And we define

Then, for n &#x3E; 1,

The results of section 7 can also be extended ; in particular
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However this will not do (5). Using 3. 2 we readily find a z such that

with a primitive recursive P, by 2.1 and 2. 3. Therefore, on combining quantifiers,

with primitive recursive S by Kleene’s theorem (SCK1 XXXIV) on the reduction of the types of quan-

tifiers. Thus if the types of 11 arse 5 1, then C ç 11:~, while the analogue of 4.2 would lead us to

expect [919 C ; these two are obviously incompatible.
The reason for this failure is that the manipulations by which one arrives at a single numerical

quantifier in the normal form for a 11:~ predicate cannot all be applied to restricted function quantifiers .
The correct analogue of 1t~ is the set (which we shall call 11:~.) of all predicates :

(F) [F, u 1) R(u, 0:1’...’ aQ, F) (types 2) ,

where the  i  n) are a string of alternating quantifiers ; note that in the term [F , u which

restricts those quantifiers, only the non-numerical members of u are relevant.

It is in fact permissible to permute a restricted function quantifier and an unrestricted func-

tional quantifier ; this will be shown in 7. 3. But the reduction to n = 1 in the above form would

require the permutation of a restricted function quantifier with restricted functional quantifier of

the opposite kind. We shall see that ~ti* ~ C ; it follows that the second sort of permutation is not

generally permissible. We first prove two lemmas.

7. 1. There is a primitive recursive P such that :

For,

(T) is locally correct for {z} (t, G, H, E) &#x26; each S.8 point of this computation is an application of H)].

The phrase ’each S. 8 point .. , ’ I can be expressed by a predicate which is primitive recursive in

t , z ; by 3.2" { z} (b, C , H, E) = a (t) can be expressed using an existential function quantifier res-

tricted to [G, H, E] ; and then 3. 11 allows the function quantifiers to be pulled to the front, leaving

the numerical quantifiers to be expressed as recursions in E. This completes the proof.

Let II21+ be defined by replacing ’ f [F , u I ’ in the definition of [F" 11. , E]’ J and allowing
E as an argument of R. Repeated application of 7. 1 shows that n2* 11:~+. But the converse is also

true ; for

(5) At the time of giving this paper I wrongly supposed that it would do. The definition of and theorems
?.1 - ?, 3 are therefore later additions.
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The implication from right to left is proved by substituting E for (F)o . And if F satisfies the con-

dition on the right, then by transfinite induction on the ordinal of the computation for each a in

[F , u I we see that [F’ , u~ 1 (1) = [(F)1, u , E] (1) ; thus (F)o must agree with E for all relevant argu-

ments, from which the implication from left to right follows. Finally, the numerical quantifiers

on the right hand side can be replaced by restricted function quantifiers.

This proves

7,3. Let A(u) be a predicate of arguments of type 5 2 which has a p renex normal form which satisfies :

(a) all type 2 quantifiers are universal and unrestricted ; (b) each type 1 quantifier is restricted to

functions recursive in u and those type 2 variables whose quantifiers precede it ; (c) there are no quan-

tifiers of types &#x3E;2. Then A(.u) E 11:~..

For, classically, 6]) (G) B(a , G) _ (G) [ 6 ] ) B  « , G( a ~ &#x3E;)) ; where  a:&#x3E;

is, say, Xt . 2 a( t ) 3 f3( t ) ). Now we can apply ?.1 to alter the restriction from [ ~ I to [b, G , E] .
In this way all type 2 quantifiers can be pulled to the front, and the result will be a predicate of

7L1and hence also of 11:~..

This is the analogue of 4.2, First, by induction on the index x, we show that the graphs of

primitive recursions in S belong to ~i* . We shall consider only the case that z refers to an ap-

plication of S83. By the definition of ~, we have

By 7. 1 we can obtain an equivalent formula in which the function quantifiers are restricted to [ u , F] .

By induction hypothesis the graph of 8 ) belongs (and we do not need to exhibit

a in the restrictions, since it is itself restricted). So, by 7. 3 we obtain the required n 2* form.

Similarly we can obtain a Z2* form.
Now for general recursions in 8 we apply 2,1, 2, 2, Examination of their proofs for the case

in hand shows that the inner (type 1) quantifier can be restricted as in condition (b) of ’l. 3. Then

a further application of 7. 3 and its dual completes the proof of 7. 4.

This is the analogue of 4. 3. Examination of the proof of 2. 3 shows that here, also, the inner

quantifier can be restricted ; so that the argument of the previous paragraph applies. However,

the inner quantifier in 2, 4 cannot be restricted, since its range must include, if possible, a branch

along which the computation does not terminate. So it is not to be expected that E could replace
11: in 7. 5. We shall soon see that the inclusion in 7. 5 is, in fact, an equality.

Consider a formula of n2* . The scope of the initial quantifier (F) contains only objects and

operations which are recursive in F and the arguments u . The truth of the formula therefore only

depends on the values of F for a denumerable set of arguments. Hence we may expect that the

type 2 quantifier can be replaced by a type 1 quantifier. That this is indeed the case is shown by :
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Let it be a finite sequence of objects of types 1 and 2 ; this will remain fixed throughout the

proof. Let a be a number which encodes a multiplet ao,..., an of numbers, and also indicates a

selection b - perhaps arranged in a different order - from the sequence u . We write {z} (a : u ) )

to denote {z} (a ...... an , n ).

Let a functional G be given ; we say that the function y represents G (with respect to recur-

sions W n , G) if :

Evidently there is an arithmetic formula B( 11. 0’ 11. , y) (where u . is a string of numerical ar-

guments), such that if y represents G, then

Now we analyse the predicate ’y represents some functional’ ; the analysis will be by an in-

duction on computations.

(a) If z refers to schemata Sl -3, S4, S7, S9, then there are clauses which relate y(2Z 3a) to

certain other values of ’~ . These clauses are all recursive in y .

(b) If z refers to an application of S 8 in which, say, a functional F (from the list u) is ap-

plied, then the clause is :

where t* a encodes the result of prefixing t to the list of numerical arguments encoded by a. Here

z and a determine which member of u is to be taken as the above-mentioned F. Thus this clause

is recursive in y , u , and E.

(c) If z refers to an application of G by S8, then the value of y can be freely chosen subject
to a consistency condition :

(y) (y refers to an application of G &#x26; (t) (y(2z’,~*") = y(2Yl 3t.&#x26;)) :-~ y(2Z3&#x26;) = y(2Y 3 a))

(d) If Y satisfies the above clauses for all z, a, then it will determine the value of {z} (a : y , G)

for some particular G whenever that computation is defined. Hence, as in remark 5 of section 2 ,

we can determine recursively in z , a , ’y, the computation description at any point on the tree for

{z} (a : u , G) which lies on or below a lowest non-terminating branch. Thus :

(z) (a) [y(2z 38) = 0 == (Ep) (p is a branch &#x26; (n) (p. is not a tip on the tree for {z} (a : u , G)))]

can be expressed recursively in Y , Ei . And this clause does ensure that y vanishes for all undefined

computations. Thus ’y represents some G with respect to recursions in u , G’ can be expressed by

a recursive predicate Q(’y , u , Ei ). And then the typical predicate of is equivalent to

This completes the proof of 7. 6.

7.7 n , 8) is complete for 7~(E~ : 2) .

For, since E1 E [8] , given any recursive R(a , u , E1) we can find z, so that :
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Then (a , ii , is maximally defined if and only if (a) R(a , u , ,E1). Q, E, D,

This theorem gives an alternative proof of 6.6.

For 7.7 shows that ~i (E1 : 2) C D,_ [8] (2) : and together with 7.5 and 7.6 this gives a circle

of inclusions. This theorem gives the expected analogue of 4. 5. Actually we could add ’= 7~(2)’ to

7. 8 ; but this has only been proved (in 6.6) when the types of the arguments are  1.
It was pointed out in section 6 that we cannot expect to obtain the analogue of 4.6. 

is certainly not coextensive with (E2*1l[E]). On the other hand, I believe that Dmin [@ ] is coextensive

with it. In seeking analogues to further theorems about the hyperarithmetic hierarchy, one must

therefore distinguish between those occurrences (explicit of implicit) of 7t} which depend on 4. 62. ,

and those which depend on 4. 5. The analogue for the former will be D,in [@] ; for the latter D.ax [8]

or, " equivalently, 7~* .
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