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QUESTIONS RESOLUES.

Démonstration des deux théorémes de géométrie
énoncés @ la pag. 182 du XIX.™° volume du

présent recuell;

Par M. Crova, professeur de mathématiques spéciales an
collége de Perpignan.
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TIIEORE ME I. Les milieux des cordes interceptees par une ligne
du second ordre , sur des droites issues d'un méme point, sont sur
une aulre conigue qui lui est homothétique et qui passe par le point
dont il s agit.

Demonstration. Soit pris le point donné pour crigine des coor-
doanées auxquelles nous supposerons d’ailleurs une direcuon quel-
conque, et soit alors l'équation de la courbe proposée
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Azx*+By +20xy+ 2D.1:+2E)'+I*:'7': . (1)

Soit alors y=max I'équation de I'une des droites dont il s'agit; on
obliendra les coordonnées de ses points d’intersection avec la courbe,
en considérant leurs équations comme celles d'un méme probléme
déterminé , ce qui , en déliminant » entre elles donnera , pour
avoir les valeurs de & qui répondenl i ces intersections , I'équa-
tion du second degré,

(A+4+Bm*+2Cm) "+ 2(D+ Em)x+-F=o0 <

Si I'on représente par x/la valeur de x qui répond au milieu de la
corde interceptée , celte valearsera , comme I'on sait , la demi-sommie’
des valeurs de x données par cette équation. Or, dans une
équation du second degré , sans coefficient 3 son premier terme,
le coefficient du second terme, pris en signe contraire , est égal
a la somme des racines , d'ou l'on voit qu'on aura ‘

D4-Em

Y S
= A4Bmrg-2Cm  °

ou bien encore
.Bx’m’—i—(sz/-{—E)m-{—(A(x/—i-D):o .

Si, de plus , on représente par »/ la valeur de » qui répend a ce
milieu, on aura

y/=mx/ ;
&liminant donc m entre ces deux équations , I'équation résultante

Ax*+4- By’ 4 2Cx'y'+Dzx'4-Ey'=o0 , (2)
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sera celle du lieu des milieux des cordes interceptées par la courbe
proposée sur toutes les droites issues du point donné. Or , cette équa-
tion est du second degré, d'ou il suit que la courbe dont il s’a-
git est une ligne du second ordre; cette équation est privée du
terme indépendant de x et de », dou il suit que la courbe en
question passe par lorigine , c’est-a-dire, par le point donné ; en-
fin les cocfficiens des termes du second ordre dans 1'équation (2)
sont les mémes que dans I'équation (1) ; d'our il suit que'la nou-
velle courbe est homothétique avec la premicre.

THEOREME II. Les milieux des cordes interceptées par une surface
du second ordre , sur des droiles issues d'un méme point de lespace
sont sur une aulre surface du second ordre qui lui est homotheii-

que et qui passe par le point donne.
Démonstration. Soit pris encore ici le point donné pour origine des
coordonnées qui pourront d’ailleurs avoir des directions quelcon-

ques , et soit alors
Ax*4By* 4 Ca34-2Dyzd-2Eznt 2 Fxy426Ga42Hy 42Kz L=0 , (1)

V'équation de la surface dont il s’agit. Une quelconque des droi-
tes issues du point donné aura des équations de la forme

r=—mz , y=nz .

Si, considérant ces trois équations comme celles d'un méme pro-
bléme déterminé , on élimine entre elles x et », l'équation ré-
sultante en z donnera les valeurs de z qui répondent aux deux
extrémilés de la corde interceptée. Cette équation est

(Am*4Bn>4pC+42Dn4-2Em~+2Fmn) 2342 Gm+-Hn+4 K):+L=0 .

Si I'on représente par z/ la valeur de z qui répond au milieu de
cette corde , pour les mémes raisons que ci-dessus , on aura
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Gm+IIh+-K
Am*4 B~ C4-2Dn42Em~4-2Fmn

y—

3

o1 bien

Adm* 4 Bi/nrd 2 Folnmt (2 E<'4-G)m4-(2 D/ H)n-(C2/4-Kj=c .

Si, de plus, on représente respectivement par &/ et » les valeurs
de & et » qui répondent. 2ux mémes milieux , on aura

x/=mz , ' =nz ;
<liminant m et n entre ces trois équations , I'équation résultante
Az By - Co* 2Dy s 2 E/a’ 2 Fa/ly'4- G/ Hy ' Kz/==0 , (2)

sera celle du liew des milieux des cordes interceptées par la sur-
face proposée sur toutes les droites issues du point donné ; or,
cetle équation est une équation du second degré , dépourvue du
terme indépendant de 2/, »’ et z/, et dans laquelle les coefficiens
des termes du second ordre sont les mémes que ceux de I'équa-
tion (1); donc le liew dont il s’agit est une surface du second
ordre , homothétique avec la surface proposée , et passant par le
point donné.




