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ANALISE TRANSCENDANTE.
Note sur les conditions dintégrabilite ;

Par M. B. D. C.

T e g W e e Sy s Wt

SOIENT z et y des fonctions quelconques d’une troisiéme variable
¢; et soient représentés , en général , pour abréger,

dEx
:l-t_’;- par Ty

dby
Tk par Fr o>

quel que puisse étre d’ailleurs le nombre entier positif %, Soit V
une fonction quelconque de
Ty, Xy, Ty s Xy seeeeees Tyy

y:)’ra J’g, y;,--odoaoyn,

ol on suppose que m soit tout au plas égal & =, et posons

dV am
&V dr ) (dx, dx;) <dx )
— I 1 + m
X= dx + T dm
dV ) ( ) d"(
dy / dt= des T dim

Si 7ds est une diflérentielle exacte, on aura , comme P'on sait (*),

(*) Voyez la page 197 du présent volume.



320 CONDITIONS
X=o0 , Y=o et réciproquement, si ces deux équations ont lieu,
Fd: sera une difiérentielle exacte ; et telles sont les conditions
ndcessaires et suffisantes pour lintégrabilité de la fonction différen—
tielle #dt, lorsque # et y sont deux variables indépendantes I'une
de Pautre. ‘

Mais si, au contraire, y était une fonction de z , cest-d-dire,
si on avait y=¢(2), il est clair qu’alors une senle condition serait
nécessaire et suffisante pour rendre intégrable la fonction différen-
ticlle 77dt. Mais quelle devrait ¢tre cette condition unique ? Clest
ce que nous nous proposons ici de rechercher.

Désignons en giénéral par o(x) la dérivéde de lordre % de la
fonction ¢(x) , prise par rapportd z , quel que soit le nombre entier
positif £; & cause de y=¢(«), on aura, en différentiant,

y =¢ (v)

¥ =y (#).7y

Y2a=9,(@)24 ¢, (2).2,

¥y =0, (@), 430, (2).0.7, +9,(2).7,

Désignons par 77 ce que devient 7 lersqu’on y substitue ces valeurs
€N Ty Tyy X0y POUT ¥ 5 ¥iy ¥y yemee}, 5 €1 posant

X/___(dl’ <ji,)+d (dx, <§:)+ +d"<-§£->

a din ?

X'=o sera évidemment DPéquation de condition quil s'agit de
déterminer.
Or, on a
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ar ar- dy dV+ dy, dV dy, a¥ v dy, dav.

dz  do dw -&; Ao 'tm da (‘13:: de  dy, °
dy v dy: 4V dy, 477 ill'f_ ar
dx, - 3:;: da, d}’l dx, dj’z ! day d)’n ?
Ay dy, AV dyy AV o gy,, dr
(Ir—; - c—i—x—; de, dy, dx, dy, de, dy, ’
arr av dy, ar
dr,  dz, | dw, dy,
ée qui donnera, en substituant ,
v dy dV dy, 4r d a7 d dV
'X/= ey + ——?:- ——+ i:-' . yz +""+ yt YT
dx dx dy dx dy, dr d_y‘ y‘
( ) dy; a7 d(dy, __dl/:) a dy; AP
dxx dxl dy, _ da, dy, —_— dx; d)r
T o g =
(d” g Yz f.V.) dyi dV)
d.x:g dz, dy, dx, dy
+—-—-—-———-—~_—.~dt2 +nu+ ——-—_—mti J +un
v ly; 4V
af A B ( dyi )
\, d; — dr, dy,
m&;’;m scee di sece
!+-§,,,.. +.ooca’sou--oo
dit ,,i{:_)
e doiy g
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Considérons , dans ce développement , la colonne dont le rang
est 7}2 , laquelle est, comme on le voit,

dy. 14 . v
o a4 7N ( dy; 4V qi+rf 8
i dx, d_y'g I dx 2 dy‘ “"+ dxH_, ;

dx  dy; de e —_ FIE

en la développant et ordonnant suivant les différentielles successives de

ar . .
—— , on pourra lui donner la forme suivante :

dy;
df | ( dy, ) (dyy)
dy; dax; dt‘ "’dx,
dyl) d(‘b’x) d(g&)
dx, \.dx, — dx
{2 de 3 dt Fe
( dyl dz Jyl‘ )
dx, daw
dt: ’ 3 dt2 + e & & e o s .
fdy;
dy_ .. d,—z _Ji
d3 -—5\> . z -1 dx)
N
des
dw( )
+ . . . s o
- dtt—!

af Y )
+ d.’ti
- dei

Or, lescoefficiens des termes,

N4 _gar
v (dy,> d<ij{>' & '(aﬁl

seeea,
dxi de2 ' diimt
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de ce développement, égalés séparément A zéro, ne sont autre chose
que les équations de condition qui exprimeraient que y,d#i est une
différentielle exacte de l'ordre 7 ; ces coefficiens doivent donc étre

nuls d’eux-mémes , puisque y,ds est en effet une telle différen-
tielle; ce développement se réduit donc simplement & son dernier terme

a d‘( )
y L d7‘ ; c’est donc aussi & ce dernier terme que se réduit

la (z-{—-z)me colonne du déve]oppement de X; d'ont il suit que
ce développement lui-méme se réduit a

ar
an(
X/ = dv dx; ) A (dxz > - \ dx,
—'d"""’x 0...:-___ dt"

war e (5) 0 T(G) ot G )

+ i dy  du, dz dx, ~ dix T dew
mais 1l est visible que
dy dy, _ dy, _ dy.
dw—dxl _dx: ~..."'..‘_dx5 2

.donc , on aura

=X+

puis donc que la condition d’intégrabilité est, dans le cas présent,
X'=0, cette condition sera

Xdx+4Xdy=o0 ou Xz, 4+Yy,=o .

Cette conclusion est exactement celle de Lagrange dans sa 21.°
lecon sur le Calcul des fonctions (*).

(*) Voyez la page 412 de I’édition in-8.° ou la page 12 du supplément
in-4°,



