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ANALISE TRANSCENDANTE.
Note sur les conditions d’intégrabilité;

Par M. B. D. C.

CONDITIONS D’INTÉGRABILITÉ.

SOIENT x et y des fonctions quelconques d’une troisième variable
t ; et soient représentés , en général , pour abréger ,

quel que puisse être d’ailleurs le nombre entier positif k. Soit P
une fonction quelconque de

x , xI , x2 , x3 , ..... xm ,

y , yI , Yz , y3 , ..... yn ,

où on suppose que m soit tout au plus égal à n, et posons

Si Vdt est une différentielle exacte, on aura, comme l’on sait (*) ,

(*) Voyez la page 197 du présent volume.
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X=o , Y=o ; et réciproquement, si ces deux équations ont lieu,
Vdt sera une diRérentielle exacte ; et telles sont les conditions
nécessaires et suffisantes pour l’intégrabilité de la fonction différen-
tielle Vdt , lorsque x et y sont deux variables indépendantes l’une
de l’autre.

Mais si , au contraire, y était une fonction de x , c’est-à-dire
si l’on avait y=~(x) , il est clair qu’alors une seule condition serait
nécessaire et suffisante pour rendre intégrable la fonction différen-
ticlle Vdt. Mais quelle devrait être cette condition unique ? C’est
ce que nous nous proposons ici de rechercher.

Désignons en général par ~k(x) la dérivée de l’ordre k de la
fonction ~(x) , prise par rapport à x , quel que soit le nombre entier
positif k ; à -catise de y=~(x) , on aura , en différentiant ,

Désignons par V’ ce que devient V lorsqu’on y substitue ces valeurs
en x , xI , x2 ,..... xn pour y , yI , y2 , ..... yn ; en posant

X’=o sera évidemment l’équation de condition qu’il s’agit de
déterminer. 

Or,on a
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ce qui donnera, en substituant,
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Considérons , dans ce développement , la colonne dont le rang

est i+2 , laquelle est, comme on le voit ,

en la développant et ordonnant suivant les différentielles successives de

dV dyi , on pourra lui donner la forme suivante :

Or, les. coefficiens des termes,
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de ce développement, égalés séparément à zéro, ne sont autre chose
que les équations de condition qui exprimeraient que yidti est une
différentielle exacte de l’ordre i ; ces coefficiens doivent donc être
nuls d’eux-mêmes , puisque y1dti est en effet une telle différen- 

tielle ; ce développement se réduit donc simplement à son dernier terme

dyi dxi di (dV dyI) dti; c’est donc aussi à ce dernier terme que se réduit

la (i+2)me colonne du développement de X’ ; d’où il suit que
ce développement lui-même se réduit à

mais il est visible que

donc , on aura

puis donc que la condition d’intégrabilité est, dans le cas présent,
X’=o, cette condition sera 

Cette conclusion est exactement celle de Lagrange dans sa 2I.e
leçon sur le Calcul des fonctions (*).

(*) Voyez la page 4I2 de l’édition in-8.° ou la page I2 du supplément
in-4°.


