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BINOME DE NEWTON, 205

ALGEBRE ELEMENTAIRE.

Démonstration abrégée du Binomr peE NewToN , pour
le cas de l'exposant entier et positif ;

Par M. L. C. Bouvier , ex-officier de génie, ancien €ltve
de l'école polytechnique.
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SOIT , paur abréger,

m me—1 me=3 Mme—gef-2
po— o - L LTV TS =f m .
I 2 3 H—I (7 H) ’

il sagit de prouver que le terme général du développement de
(z4a)™ estfm, pla¥ta™"#+r , ou, ce qui revient au méme , que

(4o, =Z{{(m , pate=tam-tt1] (1)

en développant le second membre depuis p=1 jusqu'a p=w.

Cette assertion se vérifiant facilement pour les quelques premiéres
valeurs de m, tout se réduit & prouver que l'équation (1) aura
lien si I'on a

(raymt =2 {f(m—1 , pJa*= 2T r] ; ©)

or, on tire de 1a , en multipliant de part et d’autre par z-+z,
Tom. XIV. ) 28
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- (z4a)" = (v+a) S f(me—1 , p)at" ™8] 3

d’oti il suit , en comparant (3) & (1) que tout seréduit & prouver que.
(-+a)Z [ , pate=t 5™ # Y} =3 [ f(m, o=t am=t e (4)

Or, en faisant, tour 3 tour, la multiplication par x et par @,

et prenant les termes généraux correspondans des deux produits,
on trouve

2B (s, pYak=ram=r) =B {flmrmr i plakt= g st Y,
GE{ (et , )at | =B fmmr e Yo P ammE R
donc , en ajoutant
(ka2 )at = amFy=E [t ) {101 b= L)
or, il est trés-facile de s’assurer que
fm—1 , p)+Lm—1, p—1)=1(m , p) 5.

donc l'équation (4), et par suite I'équation (1) se trouve pleine-
ment justifiée (*).
\

(*) On a déja donné dans ee recueil ¢ tom. 11, pag. 207 ) une démons-
tration de la formule du binome, indépendante, comme celle-ci, de la
théorie des combinaisons,

J. D, G.



