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378 QUESTIONS

Addition & la solution inserée & la page 285 de
ce volume ;

Par M. TeEpenar , ancien recteur , correspondant de
l'académie royale des sciences.

LE probldme qu’il s'agissait de résoudre en cet endroit était le

suivant : Quelle est I'équation la plus générale des courbes qui
jouissent de cette propriété que si, par chacun de leurs points ,
on leur méne nne normale, terminée o l'aze des abscisses, cette

normale a méme longueur que l'ordonnée qui a son pied au méme
point de cet aze?

Nous avons prouvé, en lendroit cité , que Iéquation géncrale
de ces courbes avait pour équation

yr=z20(z) ; (1)
pourvu que’ la fonction ¢ fiit de nature 4 satisfaire & I'équation
2¢(2)+[¢/(2)]*=2¢[z+¢(2)] , (2)

ol ¢/ désigne, comme 2 lordinaire, la fonction dérivée de o.
En différentiant cetle derniére, il vient

2¢/(2)+-2¢/(#)e(#)=2[ 1t ()¢ [2+¢/(2]] ,
ou, en transposant et décomposant,

[1++o"(2)]{¢/(2)—e/[24¢'(2)]} =0 ;

équation qui se décompose en ces deux-ci:
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¢/(g)=~1 , 3
¢/(z)=¢/[z-}¢/(2)] @
L’équation (3) donne, en intégrant,
o x)=A4Bzx—:x* ;
c> 5. donne, pour I'équation de la courbe cherchée,
y*=2442Bz—a* ,

éguaiiue 7 in cerele d'an rayon quelconque , ayant son centre en
Fun coeicengue deo points de V'axe des .
Quait 2 'Yquation {4), elle donne évidemment ¢/(z)=o0, d’ou

olx)=A4,
ce qui donne, pour ldquation de la eourbe cherchée ;
y'=34 ,

équation de deux paralléles 3 T'axe des z, également distantes de
part et d’autre de cet axe.

Nous avions déja prouvé , @ posteriori , que ce cercle et ces
paralléles , qui d’ailleurs résolvent évidemment le probléme , satis-
faisalent aux équations (1, 2); mais nous n’avions pas su alors en
déduire directement les équations de ces deux lignes.

La question serait présentement de savoir si une équation de la forme

Y(z) =V[z+¥(2)]

peut admettre d’autres solutions que la solution ¥(z)=o0; et, au
cas qu'clle en admit d’autres, quelles pourraient étre ces solutions ?
mais c’est une question que nous livrons & la sagacité du lecteur.



