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- QUESTIONS RESOLUES.

Solution .du probléme proposé¢ dans la note de la
page 231 du 1.5 volume de ce recueil ;

Par un ABONNE.

A2 T Y Vi Vo Y Vo Vi 4

P ROBLEME. Par deux points donnés , sur un plan , faire
passer une courbe telle que la portion de ce plan comprise entre
cetie courbe, les ordonnées des deux points donnés et laxe des
abscisses , soit équivalentie & un quarré donné?

- Solution. Avant de nous occuper de cette question en particulier ,
occupons-nous d’une question plus générale. Soit 7 une fonction
donnée quelconque de la variable indépendante x , de sa fonction
y et des coefliciens différentiels de cette derniére. Supposons que
la relation entre x et 4 ne soit pas déterminde, et proposons-nous
de trouver quelle devrait étre cette relation, pour que lintégrale
JVdx prise entre deux limites donndes @ et g fut égale 4 une

quantité donnée A*. ‘
Soit X une fonction de z dont la valeur, prise entre les limites

a et g,soit égale A k*, c’est-a-dire, telle quen. représentant res-
pectivement par £ et G ce qu'elle devient lorsqu’on y fait succes-

sivement x=a,x=g, on ait 4—G=X"; en posant

ax
V=% ™
on aura

Tom. XII, n* XI, 1.°* mar 1822. 44
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JVdz= 1o d#=/dX=X+Const.

qui prise , en effet, entre et g devient égale 3 £*, comme Iexige
le probléme. Or, I'équation (1) est une équation , différentielle ou
non, qui établit entre # et y la relation demandée.

Le probléme se réduit donc & assigner la forme de la fonction
X;or, il est aisé de voir que cette fonction satisfera généralement
“aux conditions auxquelles elle doit étre assujettie, en posant

_ krF(x) .
T Fe—F@ @)

F désignant. une fonction tout-a-fait arbitraire , et méme discontinue
si Pon veut. On conclut de 13, en effet,

_ kF@ ___2F(g)
= Flo—F@) ’ T Fo)—E@ ’
d'ou ‘
A—-G=k* ,

ainsi qu’il était demandé.
On aura donc ainsi

X _ kP
V= & = forG ’ )

F/ désignant, suivant I'usage, la dérivée de F ; il ne s’agira donc.

.que d'intégrer cette derniére , si toutefois elle est différentielle ,
pour obtenir la relation cherchée.

Pour appliquer présentement ces principes i la résolution de la
question proposée , soient (¢, 8), (g, &) les deux.points donnés,
par lesquels doit passer la courbe cherchée, et seit A* le quarré
auquel doit étre équivalent 'espace compris entre cette courbe , les
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ordonndes des deux points donnés et I'axe des z. Supposons , en

premier lieu, qu'on n’exige pas que la courbe passe par ces deux
oints . mais seulement gu’elle se termine i leurs ordonné -
P ’ es, eon

sidérées comme des droites indéfinies;'la question se trouvera donc

ainsi réduite i trouver la relation entre et ¥ qui rend égale 3

&* l'ntégrale fydx, prise entre les limites @ et g; or, on a ici
¥V =y ;l'équation de la courbe cherchée sera donc, parlaformule (3),

_ (@) h
¥y= F@a)—F(g) * 4

Il ne s’agit plus présentement que de profiter de I'indétermination
de la fonction F pour assujettir la courbe 3 passer par les points
(a, &), (g, &). Pour le faire de la maniére la plus générale , soit posé

F(a)= MmN KaH-Pr(s) ,
M, N et P étant des constantes arbitraires; on aura ainsi
F/ ) M/ (5) NV ()P (), .
F (6)= Mo (N (@)4-P5(4)
F (g)=Mo (g)+NV¥ (&)+Px(8) ,

d’ou
F(a)—F(g)=M[¢(a)—o(5)1+N[+(a)=¥(g) 1+ P[#(0}~(s)] 5

mettant donc toutes ces valeurs dans la formule (4) , chassant le

dénominateur , transposant et ordonnant par rapport aux constantes,
il viendra

- M{[e(@)—e(8)]y—Fe/ ()}
-+ N{ [H(a)—4(g) Jy—h¥(2)} } =o0;
+ P { [%(a)—x(g) Iy — k*/(a)}
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‘exprimant ensuite que les coordonnées des deux points (2, 8), (g, %)
satisfont & cetie derniére équation, il viendra '

B [ola)=2o(g To— I o/(a)}
N {[¥a)—Hlo—E¥(a)} (=0,
+ P{[#(a)—x(g)1b—l*/(a) }
M {[o(a)— o(g)Jh—R*¢/(8) } ’
+N{ [Ha— ¥ ) k¥ (g)] b =o0;
AP { [#(a)—(g)Vh—l'/(5) } i

éliminant donc , entre ces deux dernitres et la précédente, deux
quelconques des trois constantes M, N, P, la troisitme disparaitra
d’elle-méme , et il viendra , pour I’équation de la courbe cherchée,

{(¢a-¢g)(¢‘a-x’g-¢’g-z’a)+(4/af¢:g)(z’a-ﬂg-x’g-@a)-}-(xa-xg))¢’a-¢ﬁg-¢’g-¢’a)3y
={k’(¢’a-x’g—¢’5-x’)+(¢a;-~l«g) (hx'a=—by'ag)+(xa—xg) (bzlz'g—ﬁml«’a)}@’#
+ {kﬂ(x’a-e’g-—z’g-¢’a>+(za-;xg>(h¢’a——b4>’5)+(¢a—¢g)(bx’g—hz'a) § Vx
+{k(Pa-dg—0-Va)H(pa—0g) (hVa—bdg)4 (Fam—ig)(be'g—he'a) Yz

équation qui, aux notatiens prés , est exactement la méme que
celle de l'endroit cité.




