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PARALLELOGRAMME DES FORCES. 26r

STATIQUE.

Démonstration analitique du parallelogramme des
Jorces ;

Par M. B. D. C.

la " Sla Vi Tl Vo Vio W, Vo Vo V)

SOIENT X , Y deux forces appliquées , dans des directions
perpendiculaires I'une & I'autre, 4 un méme point fixe. On démontre
sans difliculté, que ces deux forces ont une résultante, déterminde
de direction et d'intensité , appliquée au méme point, comprise
dans leur plan , et dirigée dans lintérieur de Vangle qu’elles
comprennent.

Soit Z cette résultante , et soit z l'angle que fait sa direction
avec celle de l'une des ecomposantes, celle de X, par exemple 5

elle fera conséquemment, avec la direction de ¥, un angle
=

— —2z. Si donc X et ¥ sont données, il devra étre possible d’en
2

conclure Z et z ; de sorte qu’il doit exister deux équatiens de
relation entre ces quatre cuantités.

Supposons ces deux équations de relation connues; on pourra alors
renverser le probleme et demander de déterminer X , ¥ en fonction
de Z, z. Or, on sait que, si lintensité des forces X, ¥ croit ou
décroit proportionnellement , lintensité de la force Z croit ou
décroit dans le méme rapport, sans que sa direction éprouve aucun
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.. . X Y . .
changement ; d’ou il suit que - €t E—dowent sure de simples

fenciions de l'angle donné z; on doit donc avoir

X=2Z¥z) , Q)

et 'on aura, par conséquent,

Y=2v (—E— —-z) H - (2)

¥ étant une fonction dont il s'agira d'assigner la forme.
Obscrvons, avant d’alier plus loin, que si I'on avait Y=o, on
devrait avoir Z=X et z=o0; et que si , au contraire, on avait

. . x . . , .
X=0, on devrait avoir Z=Y et z=— ; d’ob il suit qu'on doit
2

avoir
Yoy=1, ¥ (; )‘.-:.o.

Cela posé, imaginons , par le point d’application des forces X,
Y deux droiles indcfinies, perpendiculaires cntre elles, mais d’ail-
lears ‘d’'une direction tout-a-fait arbitraire. Supposons seulement ,
pour fixer les iddes, que I'une d’elles passe entre Z et ¥, et
désignons par ¢ l'angle qu’elle fait avec la direction de X. Nous
pourrons concevoir chacune de nos forces X, ¥ décomposées suivant
ces deux droites; les composans de X scront, par ce qui précede,

X0, X-J«(-;—p) ,
et celles de ¥

’ L
Y«%(: ..,,) R O

.
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en désignant donc par ¥ la somme des composantes suivaunt 3
premiére direction , et par Ula somme des composantes suivant la
seconde, nous aurons

V=X 4T (; —v) ,
U=X¢( T e )T

mais , en décemposant immédiatement la résultante Z suivant les
deux mémes directions, on' doit parvenir aux mémes résultats; de
sorte qu'on doit avoir aussi

V=2Zy(p—2) , U=Z"~P[-:—--(v-—z):] ;

égalant donc ces valeurs de 7" et U aux précédentes , nous aurons
ZYe—)= X0+ Ty (£ =)
Z«:«[: = -—(v—-z)]::X«l«( - _.,,> —F) ;
ou, en mettant pour X, ¥ leurs valeurs (1, 2) et divisant par Z,
we—=vobatt (5 =)o (I ), 3)

v [ z ___((V—-z)]:‘&:z)'& ( = _,,) — ()t (4} -——z) .@

Ces équations doivent se vérifier pour toutes les valeurs de
I'angle z, qui est tout-a-fait arbitraire ; faisant donc dans la
premiére ¢=2z, on aura
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¥(0) ou x=§¢;z)}=+g¢(_2’i_z)§’ ; (5)
prenant ensuite la somme des quarrés des €quations (1, 2) et A
ayant égard i celle-ci, il vient
X-1=2" on Z=yXaxx:;

c’est-d-dire que Za résultante de deuzx forces perpendiculaires 'une
8 lautre est représentée en intensité par la diagonale du rec-
tangle dans lequel deux cotés d'unméme angle représentent les intensités
des composantes (*).

(*» On parvient aussi assez simplement & celte premiére relation ainsi quil
suit : soient décomposées X, XY chacune en deux forces, l'une suivant Z et
Pautre perpendiculaire 4 sa direction ; soient x , y les composantes respectives
de X, Y suivant Z , et soient &/, y’ leurs composantes perpendiculaires a sa
direction ; les trois systemes

X,Y, 2z,
x,x, X,

Yy Y,

sont évidemment des systemes semblables , dans lesquels conséquemment les
puissances homologues , qui sont ici celles de méme rang, doivent é&tre pro-
portionnelles, On a donc

! X y'___Y
Yy z ° X~z
x_X —y‘—-‘—z.
X~z Y z '

c'est-a-dire ,
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» . kel .
Si, dans I'équation (4), on change v en —~ = elle devient

o= =y (£ =)+ (£ —2) - (©)

Si, dans [P’dquation (3) , on change respectivement ¢ et z en
g4z et z-+Z, son premiei‘ membre ne devra en éprouver aucun
changement , et conséquemment son second membre devra demeurer
le méme, et il en sera de méme dans la seconde, si l'on change
3 la fois v et z en ¢4~ et z—7 ; il faudra donc que , dans le

, XY ) XY

s=Z . Y=
X2 Y

= Y=g

Les deux composantes &/, y/ sont donc égales; et, comme elles sont direc-
tement opposées , elles doivent se détruire, comme on pouvait hien d’ailleurs
le prévoir, puisque les quatre composantes x, y 5 &/ , ¥/ doivent finalement

se réduire 3 la force unique Z, et que déji les deux premiéres agissent suivant
sa direction.

On doit donc avoir , d’aprés cela,

Xa Y2
Z=aty= 7+ >
et conséquemment
Z=X4-Y? .

Clest i cela finalement que se réduit le raisonnement de M. Laplace.

En mettant , dans cetle équation, pour X, Y leurs valeurs (1, 2) et di=
visant par Z2, on retombe sur I'équation (5).

J. D. G.
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développement de leurs seconds membres , les cocfliciens des di-
verses puissances de 7 soient séparément nuls ; ou, en d’autres
termes , il faut que la somme des dérivées particlles du second
membre de I'éqaation (3), et que la différence de eelles du second
membre de I’équation (6) , prises par rapport & ¢ et z , soient
égales & zéro; ce qui donne

¢:v>¢f<z>+«:l(zw<v>-—¢(% = W (S )= 2 -2 ) (T-r)ros

YY)V ()= 2) ¥/ (0)+¥ ( Z——v) 'z <Ei-—z> -4 (-z —z) v ( Z? - V) =o,

d'ol1, en prenant la demi-somme ,

W @—y (2= (2 —)=0.0)

ou bien

(* Si, dans cette équation, on fait y==¢, elle devient

K@= ( 2=2) (L =2)=0
v+ [ (2 =] =k

On trouve ensuite k=1, ce qui raméne encore i l'dquation (5).

qui donne
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‘A cause de l'indépendance de z et ¢, chacun des deux membres

de cette derniére équation devra étre égal & wune constante que
nous pourrons désigner par —4 , en sorle que nous aurons

Y(z)
'4/( —: ——z)

mais I'équation (5) donne

M (-Z- —z | =V 1=HG@r ;
donc

R <) N
Vi—w@z: 7

ce qui donmne, en intégrant
¥(z)=Cos.(4z+B) ;
or, on a
Ho)=1 et ¢(-:- )=o.
done
A=1 , B=o ;
donc, on doit avoir simplement
Y2)=Cos.z ;
et par conséquent (1)
- X
Cos.z= =

Cest-a-dire que Za diagonale du rectangle consiruit sur les droites
gui représentent en intensité dewz forces perpendiculaires Vune &
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Pautre, 6! que nous avons déjd vue représenter leur résullanie en
intensité , représente également ceite résultante en direction.

Il est d’ailleurs connu que le théoréme une fois démontré pour
deux composantes rectangulaires , rien n’est plus facile que deI’¢tendre
a deux composantes formant entre elles un angle quelconque.

Au lieu de considérer & la fois les deux fouctions ¥(p+4-z) et
¥ p—2z), on peut n’en considérer quune seule, en égalant i zére
soit la somme, soit la différence des dérivées, prises successivement
par rapport a z et ¢, du second membre de T'une ou de l'autre
des équations (3, 6), suivant celle qu'on voudra employer; chassant

alors ¥/(v) et ¥/ (;—-z> de I’équation résultante, au moyen des

dérivées des deux équations

st [ =9 pors(3=]J

on obtiendra, comme ci-dessus,

Yo ‘V<‘£ "">

¢ (;_z) - NG

Si l'on ajoute membre 2 membre les deux équations (3, 6),
il viendra

Yoo b He—)=29()4() -

Développant le premier membre suivant les puissances de z , et
divisant par 2¥(z), on trouvera pour résultat final, sans le secours -
de T'intégration, et par un calcul trés-simple que I'on peut voir &
la page 14 du 1.® volume de la Mécanigue de M. Poisson,
4. z)=Cosez. ’
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