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ANALISE TRANSCENDANTE.

Note sur les équations differentielles partielles et sur
les intégrales définies ;

Par M. Frepgric Sarrus , docteur &s sciences , professeur
de mathématiques au collége de Pezenas.
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L'ON a beaucoup multiplié, dans ces derniers temps, I'application
des intégrales définies & l'intégration des équations différentielles
partielles ; mais personne , du moins que je sache, ne parait avoir
songé a renverser la question , je veux dire, a appliquer l'inté-
gration des équations différentielles partielles 4 la recherche des
intégrales définies. Cette maniére de procéder peut pourtant con-
duire souvent au but d’'une maniére fort simple ; et c’est ce que
je me propose de faire voir ici, par un exemple.
Soit la formule

y=/fe"b"Xdx.Cos.ax ,

ou X designe une fonction quelconque de x, sans 2 ni 5, et o
les limites de lintégrale , indépendantes des mémes quantités , sont
d'ailleurs supposées quelconques. En différentiant deux fois succes-
sivement par rapport 2 4 et b, il viendra

d d

—g— =—/fe" ¥ Xzdx.Sin.ax, -é% =—fe~*X2d2Cos.02 ,
a

& e febX27da.C & b XardaC

71;_—_[: 2’d1.Cosaz, — =4-f¢ 2*dxCos.az ;

d'ou



DEFINIES,

255
4>y day —0:
da2 _d_b'; =

équation dont Vintégrale est, en général,
q 8 8!

y=e(b+av=iptte—ay=1),

ainsi qu’on peut s'en convaincre par la diffétentiation et D'élimi-
nation des fonctions arbitraires. De 13 on tire

d _— — —_—
= ={¢(btay T =y (b—ay )}V T
valeur qui se réduit 3
{eB)—V0)v =1,

o & .. .
lorsqu’on suppose ¢=o0 ; mais la valeur de -dz- déterminée ci des-
a

sus prouve que, dans la méme circonstance , ce coefficient diffé-
rentiel doit s’évanouir ; donc ‘

o(5)=V2) , d’od o()=¥?) ,

et, par suite,
y=eolb+ay =1)+o(b—ay =) .
En posant ici a=o, il vient
r=2000) ;

ot , d'un autre cété, on doit avoir, dansle méme cas,

y=/eb*Xdz ;



256 INTEGRALES

de sorte que ; toutes les fois que I'on saura trouver cette dernidre
intégrale, on en déduira facilement la valeur compléte de y-
Si, par exemple, on prend

. X:zl-‘l »
on aura
y=fe~Pzr—1dz ,
dont lintégrale entre =0 et 2= ® est

-b—L" Je—*z""'dz ;

done

230(B)= 5, fe~ta* = da, dod o(B)=31bYerada
et par conséquent
y={1(b4ay/ =) " i(b—ay D) fe 2" e

Si 'on fait ensuite

b=kCos.2 , a=kSinzt ,
on aura
=/fe"b*z"~1dzCos ;zz= Cos.nt Jem*a™dx. g T
Y ‘ kn x== o
on trouverait semblablement
. Sin.nt =0
y=/[e ¥ s"'dzSin.axr= o Jer¥a" da { §
xm== G

k et 2 conservant les mémes valeurs que dans la formule précédente,

La méme marche peul conduire 4 un résuliat que je me crois fondé
a regarder comme intéressant. Soit

Lo
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Jolz, Bda=4) , (1)

Sio(x s bday =1)+e(z, b—ay/ =) da=y ,

I'on en conclura, en général , comme ci-dessus,

dy dzy
o T =0 (2)

et par conséquent
y=Fl+ay =)+(b—ay/ =) ,
F et ¢ désignant des fonctions arbitraires quelconques ; mais , si

Von fait 2=, on devra avoir, en vertu de I'équation (1)

F@)+e)=24(0);

et

d .
d'ott, en observant que a et d_y doivent étre nuls en méme temps,
a

on conclura

F3)y=8(8)=¥2) ,

v

et par conséquent
y=+vb4ay/ =)V (b—ay/ =1) -

On trouverait de méme que, sous la méme condition ,

f¢/x s 5+a‘/-_-'1\)/—:-£(x » b—ay/ =) dr=y,
donne
_ V4o == b—ay/ =) |
y-— . ‘/:; H

ce qui fait voir que 'emploi du passage du réel & I'imaginaire est
permis , toutes les fois qu’il est permis de différentier sous le signe
S des fonctions que ce signe affecte , par rapport aux constantes
que ces fonctions peuvent renfermer.

Les diverses formules qu'on avait obtenues , au moyen de ce
passage , se trouvent, par ce qui précéde, rigoureusement démontrdes,
et ce méme passage cesse dés-lors d’étre regardé comme le résultat

d’une simple induction.
Pezenas , le 8 janvier 1822.
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