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ANALISE TRANSCENDANTE.

Note sur les équations différentielles partielles et sur

les intégrales définies ;

Par M. FRÉDÉRIC SARRUS , docteur ès sciences, professeur
de mathématiques au collége de Pezenas.

INTEGRALES

L’ON a beaucoup multiplié, dans ces derniers temps, l’application
des intégrales définies à l’intégration des équations différentielles

partielles ; mais personne, du moins que je sache, ne paraît avoir
songé à renverser la question, je veux dire, à appliquer l’inté-

gration des équations différentielles partielles à la recherche des

intégrales définies. Cette manière de procéder peut pourtant con-

duire souvent au but d’une manière fort simple ; et c-est ce que

je me propose de faire voir ici, par un exemple.
Soit la formule

où X désigne une fonction quelconque de x, sans a ni b, et où

les limites de l’intégrale, indépendantes des mêmes quantités, sont
d’ailleurs supposées quelconques. En différentiant deux fois succes-

sivement par rapport à a et b , il viendra

d’où
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équation dont 1’intégra]e est, en gétréral,

ainsi qu’on peut s’en convaincre par la différentiation et l’elimi-
nation des fonctions arbitraires. De là on tire

valeur qui se rdduit à

lorsqu’on suppose a=o; mais- la ’valeur de dy déterminée ci des-da 

sus prouve que , dans la même circonstance, ce coefficient, diffé-
rentiel doit s’évanouir ; donc 

et, par suite,

En posant ici a=o, il vient

et, d’un autre côté on doit avoir, dans le même cas ,
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de sorte que J toutes les fois que l’on saura trouver cette dernière

intégrale, on en déduira facilement la valeur complète de r.
Si , par exemple, on prend

on aura

dont l’intégrale entre x=o et x= ~ es$

donc

et par conséquent

Si l’on fait en-suite

on aura

on trouverait semblablement

k et 1 conservant les mêmes valeurs que dans la formule précédente.
La même marche peut conduire à un résultat que je me crois fondé

à regarder comme intéressant. Soit

fe
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et

Fou en conclura, en général, comme ci-dessus,

et par conséquent

F et 03A6 désignant d.es fonctions arbitraires quelconques ; mais, si
l’on fait a=o, on devra avoir , en vertu de l’équation (1) 

’

d’où en observant que a et dy da doivent être nuls en même temps,
on conclura 

et par conséquent

On trouverait de même que , sous la même condition y

donne

ce qui fait voir que l’emploi du passage du réel à l’imaginaire est’
permis, tontes les fois qu’il est permis de différentier sous le signe
f des fonctions que ce signe affecte , par rapport aux constantes

que ces fonctions peuvent renfermer.

Les diverses formules qu’on avait obtenues , au moyen de ce

passage se trouvent, par ce qui précède, rigoureusement démontrées,
ét ce même passage cesse dès-lors d’être regardé comme le résultat
d’une simple induction.

Pezenas, le 8 janvier I822.
Tom. XII. 35


