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104 THEOREMES -

ALGEBRE ELEMENTAIRE.

Deémonstration de quelques théorémes dalgébre ;

Par M. TreuiL , profésseur de mathématiques au collége
royal de Versailles , professeur de mathématiques et de
physique des Pages du Ioi.

[a 28 Va Via Zh Vil o Vg Mo Vo V]

SOIENT les deux -expressions

HbbyE, bbby T

. b b
sil'ona — = —, on aura
G

(a+b4v ) o'+ 4V wv) a(ate ) @ranats; (D)
. b /4 o .
car , soit — =— =m, il viendra b =sma, b/=ma’, ct de 12

o+t 4ot =a (mty7) ,
oYy T =a/ (1t mty/m)

d’ol1, en ajoutant

(@bt v abjH a4ty o8)=@ta ) (matma’ v/ Gxay(matra) ;

qul,
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qui , en mettant dans le second membre 5 et }/ pour ma et ma’
revient’ au théoréme (I). On prouvera d'une maniére tout-i-fait
semblable que

(a+0+y @)—(a" bty ) = (a—a/J (=¥ AV (= je=0) . (I)

Si, dans Péquation (1) , on suppose que &’ , b/ se changent
respectivement en «/+a//, y/~b", elle deviendra

(ot Tt { (a0 A1)+ TETTT)

=(@ta/ o -GV )4V aFat ) CH T+

. . y b” b, b . 1 Y
mais ,sil'en a — = ~— = —, on aura, par ce qui preeede,
y o o P ’

(@40 YE (U Yy pan@oy=(atbty ) a0y )
donc, en substituant,
(@ +b +vab)

(o b/ TT) | = (ata'+a (348 " )/ @kataly G 4E )
(@b y T

On pourrait présentement supposer que @/ et 57 se changens
respectivement en a”’=a’// et b/"4-4/", et continuer ainsi indefi-

. X i o 1Y b st de
. —_— e — insi
niment, en supposant toujours — — = - 5 et ains

suite ; d’olt Fon voit qu’en posant, pour abréger,

2(atby/ T)= (ot bty T)Ha by T (@ By T
Tem. XILI. | 34
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S(a)=mat-a' 4o 'Y,  EO)=bAY AL A

et supposant d'ailleurs

6 _ b/ _ b/l
Z T T T
on doit avoir
S(atb4y/ ab) = 2(a) +2(B) +y/ T@ED - (1)

On démontrerait pareillement que , si I'on fait

(@ +b +¢c +VicHyiatVas)
o +(a'+&/+c/+V1727+V27a7+§/2757)
=(abdc4 N\ cat+\ab)= _ -
+(a”+b’/+c”+‘/zo—’17’7+v/c”a"+vla”b”)
+ . o L] . . . L] ®
S(d)=a+tata/ A, ED)=b+b4b" S, S()=ctc'4c " .

et quon ait a la fois

a a’
c ¢
on aura

%(aHbAoy/ B v Gt/ 3D)

=220+ 0 z0+V ED @V @) - (V)

Le théoréme (I1I) trouve son application en géométrie. Si, en
effet, @, &, @’ , .. sont les bases inféricures et &, &/, b7, ...
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les bases supérieures respectives des troncs de pyramidesiriangulaires ré-
sultant.de la décomposition d’un tronc de pyramide quelconque a bases
paralléles, en représentant par ¢, ¢/, ¢/, ... les volumes des pre-
miers et par. P le .volume du dernier ; et si;,.en oulre, on repré-
sente par A4, B ses deux bases, on aura

A=%(a), B=%2@®), V=3() ;
mais on démontre , par les élémens que % étantla hayteur du trone
— P
v =(a 40 4y b)-:,: s

o =AY TT) 5

-

p// =(a//+b//+‘/;m) %

-

-
@ &6 o o 5 o B s o 0 0 0 s 0 3

donc
kR
V= { =ty D} 5
mais on a de plus

— T e T aewewe

done
= a4-b+y/ ) =2+ 2(B) -V @ =A+B+V 45

donc enfin

Ve=(A+BAy/ TB) 5 -

Versailles , le 11 juin 18ar.



108 'QUESTIONS PROPOSEES:

QUESTIONS PROPOSEES..
. Problémes de -Géométrie..

L QUEL ést le” plus' grand de tous les: quadrilatéres inserits &
une méme ellipse ?

II. Quel est le f)In; grand de tous les exaddres octogones
inscrits 2 une méme ellipsoide ?

IIL Quelle est la plus petite de toutes Ies ellipses circonscrites
-3 un méme parallélogramme -donnd ?--

1V. Quel est le plus petit de tous les ellipsc;'ides circonscrits &
un méme parallélipiptde donné *

On demande lequatxon la plus générale de la courbe qui jouit
de eette propriété que, si par chacun dé ses points on lui mene
une pormale terminée i l'axe des abseisses , -cette normale ait
méme longueur qué l'ordonnée qui a son.pied au méme point
de cet axe?




