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EQUATIONS LINEAIRES. 269

ANALISE TRANSCENDANTE.

Meéemoire sur lintégration des equations linéaires ;
Par M. Henxri GERNER ScHMIDTEN,

[a Zla o Vla “ Ve 2 Ve Vi

L’INTEGRATION d’une équation différentieclle ne consiste, 3 péoPrement
parler , qu'd trouver la fonction la plus générale qui satisfasse a
I’équation proposée ; et des cas particuliers peuvent seuls donner nais-
sance i des questions relatives 4 I'évaluation de cette fonction. Pour
résoudre ce dernier probléme , il faut, en eflet, absolument con-
nattre la valeur arithmélique de chacune des quantités dont se
compose la fonction dont il s’agit; et alors il faut avoir autant de
méthodes d’évaluation différentes qu’il peut y avoir de relations diffé-
rentes entre ces mémes quantités.

Dc 13 nait D'impossibilité de donner des méthodes d’évaluation
qui soient propres i des équations générales , ainsi que celle de
parcourir l'infinie variéié des équations particuliéres qui peuvent s’y
trouver implicitement comprises; d’ou il parait naturel de conclure
que l'unique moyen d'avancer cette partiec de I'analise et de sur-
monter les difficultés qu’elle présente, est de trouver des méthodes
propres a développer la méme fonction sous plusieurs formes
différentes, parmi lesquelles on puisse choisir celle qui conviendra
le mieux & chaque cas particulier. Ces [onctions doivent d’ailleurs
étre aussi simples que la nature des équations qui leur donnent
naissance peut le comporter ; et les séries qu'elles forment doivert
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270 L QUATIONS
en outre offrir une loi facile & saisir. La méthode qu'offre la
série de Taylor (jusqu’ici la seule géncrale que nous ayons ) n’étant
d’ailleurs applicable qu'a des cas trés-particuliers ; comme il est
naturel que les intégrales se compliquent, de plus en plus , A
mesure qué les équations sont plds générales : on se trouve fondé 2
considérer I'intégration des équations non lindaires comme surpassant ,
généralement parlant, les forees de Panalise.

Soit , en effet, y une fonction d’un certain nombre de varxables
indépendautes , donnée par 1'éguation différentielle

o.y=Ff.y;

¢.y étant ume fonction qui contient les cnef'ﬁcicnf différenticls ou
anx différences- de D'ordre le plus élevé qui soient dans I’équation
proposée, et fy &tant une aatre fonction quelconque des variables
iz}dépgndantes des. cocfficiens differentiels ou aux différences; on
,a_yura) Véquation intégrale

e 1 .

i . .r . ’ v .
’x signifiant la fonction .inverse de ¢ ; et X étant la fonction la

p'us générale qui satisfasse i l'équation ¢.X=o0.
Au moyen de cette relation implicite , on trouvera facilément la
valear explicite de y, par des substitutions successives ; ce sera

y=X4— (X4 X+ — [(X Ao

Maintenant , il se pent que chaque substitution ranpmrhe cette
série de la vemable valeur de y; mais il se peut aussi qu’elle Pen
€loigne ; et alors on devra donner une antre forme & la série ; ce
qui est toujours possible d’autant de maniéres differentes qu 11 ¥
en aura de partager Iéquation entre les deux termes ¢. yetf.y,
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‘On  voit oepcndant- que la valeur de ¥ restera; en géndral ,
trés-compliquée , a moins que ¢.y ct £.¥ nc soient linéaires: par
rapport 4 ¥, ce qui embrasse déja une classe d’¢quation tres-
étendue et trés-importante : celle des dguations linéaires.
. On a, dans ce cas, :

i I 1 1 I 1
e L CLI L CH L)

et je me propose d’en exposer les principales conséquences, en
commencant par la partie la plus simple , qui sert .en méme
temps de base au reste,

§. L

Des équations différentielles & deux variables.

Le résultat le plus général qu’on ait obtenu sur.ces équations;
est lc théoréme de Lagrange , ‘au moyen duquel on sait ramener
I'équation la plus générale a une autre qui ne renferme pas de
terme indépendant de la fonction inconnue. De plus, on intégre
sans difficulté , par des fonctions exponentielles ou algébriques les
équations de la forme

da® dxn—1 dxti~2

dn —~1 d
= 148 y+....+g-d—£-+7zy=

dl{y a d""“y‘ b dn-—zy

— e .
dan x dxn—1 = x2 dpn—3

F == ——-+—-—

x""‘ 1 dx

et par des intégrales définies celles de la forme

(astbor) 2 +Ha+2, 2) fors A (a3022) Tl k(e 4B,2) =05

datt=2

mais les méthodes qu'a donné Euler pour intégrer les équations ,
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par l'introduction d’'uné nouvelle variable , ne s'emploient avec succes
que lorsque les intégrales en sont deja données par des scries; et
Yon n’a pas ‘de moyen direct de trouver la forme de la scrie qui
satisfait 4 une équation proposce.

Dailleurs , on voit facilement qu'en général il doit étre impossible
d’intégrer une équatiop sous forme finie , puisqu’il n’y a qu'une
suite infinie qui pnuisse embrasser , dans sa généralité, toutes les
sortes de transcendantes que Dintégrale peut comporter , et dont
un petit nombre senlement a- €té introduit dans le. langage.
anahuque. .

Si l'on savait transformer I’équation proposée en une différentielle
compléte , on la ramenerait ainsi 3 une autre d’un ordre moins
élevé ; et , en continuant de la méme maniére, on parviendrait
enfin & I'expression générale de la fonclion inconnue, I s’agirait
donc de mettre 1’équation proposéé

dny d"—lyt P L sy-
dxn +P d.i:"'-s-"l dxn—2 +,--.+M'y""

dans laquelle P, @,......M, N sont des fonctions'de & , ‘sous
la forme

T d. x* d. 7/ X, d d.
__<___.—— R Byl Xy))....))=
.Xn dx Xn_bl dx Xz dx , dx

X, X,, X,,.....X, étant des fonctions de = qu’il faut déter-
miner en effectuant les différentiations , et comparant ensuite les
coefficiens A ceux de lequatxon proposée.. Cette méthode conduit
4 un systéme de n équauons simultanées , et toutes non lindaires ,
3 lexception de celle-ci

X, , aX,. ax,

P o S
T Xz T Xpdz T Xodw !

et par conséquent beaucoup .plus difficiles i résoudre que 'l'é’qua‘-:
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tion proposde. Ces opérations ont guelque analogie avec celles que
P'on fait, avec tout aussi peu de succés, sur les équations algé—
brijues des degrés supérieurs, a une seule inconnue , dans le dessein
de les résoudre. Ccpendant on est parvenu, par des considérations
particulieres, a présenter, sous forme finie, les racines des quatre
premiers degrés de celles-ci ; mais il faut observer que cela ne
sexécute qu’au moyen de transcendantes particuli¢res pour chaque
degré, auxquelles, a raison du fréquent usage qu'on en fait, on
a cru devoir affecter des symboles particuliers, qui leur donpent , .
du moins , quant aux notations, l'apparence de fonctions finies.
Ainsi, par exemple, la racine quarrée est déja une transcendante
4 I'égard de la racine de I’équation du premier degré; de sarte
que l'on ne doit chercher, par aucunc analogie, i présenter I'in=’
tégrale de I'équation du second ordre sous forme finie, au moyen
des fonctions exponentielles qui représentent , en général, celle du
premier ordre. En' effet, si I'on compare les quantités X, , X,
avec P, @, dans I'équation du second ordre, on aura

P— dX, dX; _d aX; - dX, dX,
T X,dx X dx '’ Q-— dx X;dm+ Xdoe X,ds '
en posant donc
' ax,
Xdxe !
ec qui donne
dz 5 .
= +zP—22=0Q ,
si I'on fait ensuite
. a
=i

il viendra
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dzy

dx2

d
4P ch--;-QyL_-o , (1)

c’est-3-dire D'dquation proposée. En faisant, au contraire

X, _
Xyde 27
on aurait
dz dP
— % — —
dx Pz+z dx Q ’
d'olt, en posant,
Y
- ydx ’
on conclurait
dzy dy ap
—p = — —0 . 2
dx2 dx + Q dx y=o ( )

Ainsi Pon fait dépendre I'équation (1) de (2) ; mais ce résultat n’est
que trés-particulier, et ne donne pas lieu & d’autres tran(ormations ,
attendu que le méme procédé, appligné & (2), reconduit & (1).

On pourrait encore former des équations par les quantités données
X,, X,, X, «., comme on forme des équations algébriques au
moyen de leurs racines ; mais ces recherches ne conduisent qu’a des
cas particuliers et peu utiles. Cependant , il nous sera facile de
découvrir les cas les plus généraux ou la détermination des quantités
Xy X, X e, dé[.)end seulement d’opérations algébriques. 11
nous suflit pour cela de considérer I'equation du troisiéme ordre ,

pour laquelle on aura , en employant les notations de Lagrange,
les relations suivantes :
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x, X, . X
Pe= — 2 3 ;
x, X, !X,

x5+

r= (2 (2 x))

1 faut donc, par exemple, qu’on ait

X’; X,l

— ’ N — €3
5(‘—;'-—-6"'3(—]—, dou X3—53.X,

on aura de méme -

X,=5,X"2;

Z,,¢;,,5,, ¢, étant des constantes. On doit encore ayoir

% (0 =5 5

V’équation

qui revient &

X ca(c2 !1 (€3~ 1) Xy
X/ + — ,__'—o,"
X 1—c, X :

¢, étant une nouvclle constante. ‘Posant done

c4(ra=—1)=(c3—1) _

—aJ

1“64
on ausa

X,°X) =k, et X,=(g+(3\+1):r)&-*:-7,

forme qvi devient exponentielle, lorsque y=—r.
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Cette forme est seulement deduite de la considération des deux
coefficiens ; mais on trouvera facilement que, pour un ordre quel-
conque , la relation entre les quantites X,y X, X;,. ..., que
nous avons établie, réduira chaque coefficient & une quantité algé-
brique , multipliee ou non par une puissance de la variable indé-
pendante telle que Veaposant est toujours —m , celui de la diffé-
rentielle correspondante étant 2—m. La détermination des quantités
inconnues dependra, en tous cas, d’une équation du degré n;et,
si Pon sait résoudre celle-ci, on a I'integrale de I'équation

‘_1_"‘1_ a dn— Ty 5 dn-zy

da x dan—1 | xa dan-2

ot & 8 =x,

ou de celle-ct

dny dn=1y -
e e + pp— +....+gy-.X

comme on le sait depuis long-temps.

On voit ainsi que l'introduction des quantités X, , X, , X ,uu;
auxquelles, par analogie, on pourrait donner le nom de racines,
ne facilite l'intégration que dans des cas particuliers, et qu'il faut
modifier le procédé pour obtenir des résultats généraux. En obser-
vant que la determination d’'un nombre 7z de ces quantités que nous
appellerons pour un moment racines , conduit 4 une équation de
Yordre m ; on pourrait partager I'équation proposée en deux parties,
3 chacune desquelles on donnerait la forme de différentielle par-
faite , par le moyen d'équations des deux ordres m et n—m. En
effet, soit I'équation proposée

a" dll- 1 y

dx,, dxn" t

4055 o 7+ +My=N

on lul donnera la forme
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( & A X: d X d’f"'my
Xin Xr -3 dx " dar X: dﬂ? \ dxn-m )) })

. 4 d / Zpem 4. i \
._N+Z =3 - E;—(.m.... T {Z.y;));

Shemm zll»'-rnf— ¥

et faisant, pour abréger, le second membre =f(y), on aura Vin-

N

tégeale géndrale.

=a,ta, 24,2 ey, 2T

( n1=m n-m X
+am i_ d&;nnm_i_am_ 1 7—- —"' d“nnm+x+" ‘e
I

o / " f f Znot X f(r)da"

@,, Opay s Gu-y e @y 6tant des constantes ; de sorte que, si'lon
représente ‘par « la partic indépendante dg y , on aura

y_.@+ f f/%’”—— ﬁmf(a}dx"
n-m nim X, ) n

L—‘ “o . . - - - - ° . . 3 - ° - - - . o . .

Comme on peut choisir 72 & son gré, on peut trouver un grand
nombre de formes différentes , par le seul changement de cetie
quantité; et Yon trouverait une infinité de formes différentes, en
partageant autrement I’équation proposée. Par exemple , si 'on savait
la partager en deux du méme ordre, dont chacune fut facilement

intégrable , on lui donnerait la forme

Tom. XI. 37
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‘ I d‘ Xll d. (_10 Xz d.
X, dx ( Xymy d (""'&; X, d= :}’)) ))
1 d. Z,, d. - d. Zz d.
= N+ Zu dx u- 1 dx (uh —é‘.’; Zl dx y )) >)

et Von en trouverait 'intégrale compléte de deux maniéres. Ces re-
cherches n’ont, comme I'on voit, aucune difficulté; et c’est pour
cette raison que jo ne m’arréte pas & discuter les formules génd-
rales, dont l'usage s’entendra beaucoup micux par des exemplés
particul ers. -

Quoique l'on ait), dahs ce qui précéde, une méthode ‘générale
et directe pour trouver , d'une infinité de maniéres différentes,
Pintégrale d’une équation proposée; on trouve encore de grandes
difficultés relativement i Pévaluation de cette intégrale , sur- tout
lorsque I'équation est d’un ‘ordre un peu élevé. )

“Foutefois - cette. méthode embrasse sous un seul point de vue
toutes. celles qui ont été données jusqu’ici, et résout., d’une ma-
niére satisfaisante , un grand nombre d’équations qu’on ‘ne saurait
intégrer sans son secours , ou.du moins dont on n’obtiendrait I'in-
tégration que par des titonnemens _plus ou moins. heureux. Au
surplus , aprés avoir présenté les mtegrales sous la forme de séries,
onpeut tenter d’employer la méthode d'Euler, pour les ramener
d des intégrales définies, mais ces recherches étant de leur na-
ture trés - pa:ticulieres , ce ne saurait étre ici le lieu de s'en
occuper.

Je vais maintenant appliquer ces principes généraux A Péquation
du premier ordre , dont la forme est

dy
’E"'P}’:Q ’

d’ou l'on formera celle-ci:
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) 4

d. -
X @ Kn=0

~e

én comparant; on aura

X, )
—d—; =P.Xx 2

dont’ l’intégrale est
X,=a+/PXdx

Y i

c’est-a-dire ,
X,=a{14 [ Pdzx+4 [P [Pdz*/PfP[Pdz’}:...0...)

a étant une constante arbitraire; et , aprés avoir trouvé X, , on aura
=+ — /X,Qd
= — x
Yy X, X, 3 H

¢ étant une nouvelle constanteggmais I'intégrale n’en contient pour-
tant qu’une , attendu que @ disparait dans le second terme.

Telle est donc l'intégrale compléte la plus simple de I’équation
du premicr ordre, et 'on voit qu’elle se présente nécessairement
sous la forme d'une série infinie , & moins que l'on n’adopte quel-
que nouveau symbole pour représenter la valeur de X,. On trouve,
en effet,

X, =a

s 1+‘/’de 4+ (/f Pdx)> + (/S Pdx)3 o E ;

! 1 1.2 1.2.3

ce qui revient i
S Pdx
ae ’

suivant le signe qu'on a adopté pour la fonction exponentielle;
qui est la transcendante la plus simple qui , en général , puisse-
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représenter l'intégrale de I’équation du premier ordre. Malgré cette
forme , qu'on a employée avec beaueoup de succés , on trouve
encore des difficultés trés-grandes , et méme insurmontables , a
évaluer les intégrales de cet ordre; et si I'en observer combien ces
fonctions , que Yon connait sous le nom de gwedraiures, sont li-
mitées vis-a-vis des intégrales des ordres. supérieurs, I'on doit sat-
tendre 4 d’autant moins de succés pour l’évaluation de ces derniéres.
formes. Aussi, je ne m’occuperai presque pas des équations supé-
rieures au second ordre qui ne conduiraient & des résultats satis-
faisans que dans des cas trés-particuliers ; ct d’ailleurs les applications
les plus importantes de l'analise'me conduisent, en général , qu'a
des équatmns du premier ow tont au plus du second ordre.
Lmtégrale générale de I'équation du second ordre doit étre re-
gardde comme une transcendante irréductible, qui ne #abaisse aux
quadratures que dans des cas trés-particuliers ; mais ici je me pro-
pose seulement de dévelepper quelques-unes des formes générales
les plus remarquables qu’on peut lui donner; et alors les cas ol
elles sont susceptibles de simplification se montrent facilement,
Soit I’équation

dry - +P +Q y=R ;

on. peut lui donner la forme

3}2% = (X y))—

Mais nous avons déji observé que , dans ce cas, la détermination
des racines X, , X, méne & une équation de la forme

dy " &y -
¥ (om 2 yme

ou & une autre qui est ce que devient la proposée , dans le cas
de
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de R=o0. Nous avons donc trés-peu gagné , et par conséquent ,
nous mettrons de préférence I’équation sous cette forme -

d.
% & (%X)=r—0r,
qui donne
X.::efpd’ ’
et ensuite

d
y=a0+?/—5(?-§f%ﬁxﬂdx’-féﬁﬂydx’ i

4, et g, dtant des constantes! arbitraires. En posant done

‘dx ‘ b4 . )
a,,-{—af -5(--;;/' < fRX,dx =U,
il viendra '
y.—:U-—;/:—XI—- fX,Qde’+ f = ﬁ,q f = fX,QUdz‘-.....:.

On trouve une forme qui est quelquefois plus simple en posant
Péquation

d=,
% i XN+Ey=R

d'olt, en comparant,

dax, P &2,
Xdoe  a ? Xat Xidaa =Q;
eu
Pix P ap
X;:d‘/ : ; 'X2= —— ey ot s

En intégrant, on aura
Tom. XI. 37 s
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X.y=a,ta,a-/* X, Rdz*— X, Xiyda" ;
d’ol1, en posant

a,4-a,2+/ X, Rd2*=U ,

on tirera
y= o (U—P X, Uz +f X, X, U= X, X, [X, Uds )

Si les fonctions P, Q sont soumises ala seule condition de rendre
X, égale a une constante ¢*, on trouve facilement

y= = { Sin.(ez-+-£)+ Sinsz f /a'mm.,x,zzdx

« et g étant de nouvelles constantes arbitraires.

On pourrait encore*parvenic a4 un grand nombre d'autres for-
miles ; mais, ces recherches n’ayant aucune difficulté, d’aprés ce
qui préceéde, je ne donnerai plus qu'un seul exemple, dontl'em-
ploi devient néeessaire dans des cas particuliers , comme je le [erai
voir ensuite. En mettant l'equation proposée sous la forme

dzy dy _ dzy dy
E.;:T+P d—x+9}’—7'+s den +p. E;"I'qx)') ’

et supposant d'ailleyrs que chacun des deux membres s'intégre
facilement, on fera

Xz da.(X{ (X‘-"))“‘H'z, : z, = ‘7'))

d’ol
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2 e, ‘X,
-—’55"‘"‘3(" dx+ X, ﬁ rdzs
1 X, X,s d.
txJ S Z e\ = (Z 7))“ 5

représentant ensuite par U la partie indépendante de ¥, on aura

X X, d. Z,
y=vt - [ f i dx( = (z U))dx v

On verra facilement que les grandes difficultés attachées & cette
méthode tiennent principalement aux signes d’intégration, lorsque
les fonctions X,, X, , X, ,.... sont un peu générales ; mais on
trouvera , en méme temps, qu’il doit nécessairement y avoir de
ces signes dans l'intégrale compléte , qui ne saurait sans cela con-
tenir des coustantes arbitraires. Donc, §'il y avait des questions ou
Pon n’etit besoin que d'une intégrale particuliére, on parviendrait
bien plus aisément a DPexpression de la fonctien inconnue , en met=

tant 1’équation sous la forme
R r d. 2
r=o—mr (% =),
Q QX, dx dx

Pd
X,:cj * H

dans laquelle

en ewsployant alors les notations de Lagrange , on aurait

SO ()

11 scrait facile aussi de présenter un grand nombre de formes

y:"—
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pour les intégrales des équations supérieures ; mais les raisons que
j’ai données plus haut me les font passer sous silence ; et je vais

fn’occuper de quelques exemples particuliers qui sont plus propres
a montrer l'usage et Pesprit de la méthode. .

Nous avons va quelles sont les équations les plus générales qui
s'intégrent immédiatement , sous forme finie, par des fonctions ex—~
ponentielles ou par des puissances; je vais faire voir maintenant
quelle est I'équation la plus générale dont Pintégrale se développe
par une ou plusieurs séries de puissances ascendantes ou descendantes
de la variable indépendante. -

Pour cela, il faut que I'équation soit réductible 3 la forme

-—y , O

PR (.....(x“"'“‘(x“'y)/y.....yy
= uxb-{-ax‘_ﬁ"(x s ((z's' -—#‘( xhy)/)’ w )Y s

d’ol l'on trouvera facilement

Y """nx +‘7n- ¥ ‘.+!+cn-—n x—¢,+2+ wke :_“"+n—1

axb+n

Ot Do o 2t )

o+

-y

-}-,}.1 fx T e x‘+“" ﬁ"( ,s,,.._,( - (a:ﬁ'y)’....)’)’dx' ;

par des substitutions successives, on aura n-1 séries , dont cha-
cune, divisée par une certaine puissance, procéde seulement sui-
vant' les puissances ascendantes de 2°. Pour abréger, et attendu que’
toutes ont la méme forme, je n’en développe qu’une seule, savoir :

—cty g Xﬁn“'l"n'{‘")(ﬁn- g =eg=n—-2).. (Br=—ex;)
Cul 1 " 2
(p==syfet—tivf=1) (% 5 =yt ti2) s
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4 e (e )
(oo =@ —n—1 ) 28{0—a =5 =11 ) o0y

"" . . . . . . . . o . . . §

En commengant lintégration par rapport au second membre de
]’e’quation , on obtiendrait n-4-1 séries semblables , qui procéderaient
suivant les puissances descendantes de a*. On trouvera d’ailleurs

facilement que I'équation revient a celle-ci:

(oo Bty 1 g At

daxn x dgn—1x

A 4B, xt dt=zy A+4B, xt
I — b -
- o e y=aat

Ags A, 4, ,000.4,,B,,B,, B, ...... B, étant des constantes.
Pour le cas o =2, on a présenté l'intégrale de cette équation
par un procédé quil ne serait pas difficile d’étendre i celle-ci;
mais encore , dans ce cas , la méthode directe a des avantages ,
comme je le ferai voir par un exemple. Soit I'équation trés-simple

dy | o dy >
—_— PRS- Yap—
e T T HERy=eat,
on aura
' O+2 ) y
a, 1= T e e
7 S P — —— dz? -
r=a—i2% T omerr .f MR
d’ou

Bzﬁ”l—z ﬁxz?+4

y=a‘§ = (r+2)(rta41) + (v42)r44) (rtad1) (294243) T 5

+

ao:r"‘"‘gI a7tz prp2¥+e
G2 013=%) | )i pto-a) G- )
Tom. XI. 38

J w—r
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+ cxdt2 { 1-- px?+2
(+2) (et Or44) O+ v4-3-+)

+ [3:st+ 4 _ } .
(y+5+4)(27+3+b)(é\+y+go.i.J)(§+2y+“+5) CLIIL G

ce quon trouverait aussi par la méthode des coefficiens indéter= ]
minés; mais, dans le cas ol =1, on n’y reussirait pas; car alors
il s’introduit des quantités infinies dans la serie , ce qui annonce
un changement de forme ( Calcul des fonctions, lecon XVIIL) ;
il s’agit donc de savoir quelle est la forme de la valeur de ¥ qui
répond a ce cas; or, on trouve alors

M2 1 - y~4-1
y=a,—a,Log.z+ %-—fz)—‘ —‘ﬁj/‘-;c—ﬁ ydz* ,

c’est-a-dire
~ T * ,

Y42 2 g 2944, 3,396
y=(a,}a.Log x) { 1— &2 ol - L7 +ore }
G422 T 12 (rfa)t 1,22.32(y42)0
_ /jlﬁgv—-l-z _ 42@s$=7+4+ A;ﬁ3x37+6 _ )
- 423 2103042)6 | 31225 427§
) ’x3+ 2 § le ﬁp&‘y*"-“ ﬁlmt'yd“‘ g
(r¥2> Orrtd®  CFodprOodror 7

3

A, A, ,...40 dtant. des constantes qui se déterminent par l'équation
< - ¢

~+7r
‘4n+l =" Aptz,

n

2
-¢4n=n2 ;; H

¢e qui denne.
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A=2, A4,=6, Ad,=11; 4,=%2,......;

Cette équation se recommande particuli¢rement 3 vaison de I'appli-
cation a la physique qu’elle peut offrir. Si, en effet, on y suppose
y=o0, =0, on obtient celle qui détermine la figure d’une large
goutte de mercure abandonnée a elle-mdme sur un disque de verre
horizontal ( Yoyez le Supplément @ la théorie de l'action capillaire) ,
et 4 laquelle M. Laplace satisfait par une intégrale définie , sans
constante arbitraire , qui revient & la derniére des séries que nous
venons de présenter. L’on voit que la difficulté consiste seulement &
trouver la forme que prend lintégrale cherchée; car , aprés cela,
les coefliciens se déterminent aisement par la méthode des diffé-
rences, comme M. Lacroix I'a présenté ( Traité des différences et
des séries , pag. 216 et suiv. ).

Je n’ajouterai plus qu'un seul exemple qui suffira pour éclaircir
les principes , qui n’ont d’ailleurs aucune difficulté ; et I'on verra
qu'én général les équations, qui ne sont pas trop compliquées, ont
déja des intégrales trés-prolixes; c’est pourquoi je me bornerai seu-

3

lement & faire voir les formes que celles-ci doivent avoir , et &
indiquer la marche qu'il faut suivre pour déterminer les coefliciens.

Soit done I'équation

dzy df — Bx,
— 7 yx .
dmn +-z ) (56 ~-ce )y‘ 3

on aura
y=a°+alc_“x;-l— Se 1 2> 4 ceyx)ydx‘ »
dodx



Y=€, {

-
,

+a.e'”{

288 EQUATIONS

Bx 2,2 0%
1‘-i._' 56 + 5 ¢ p { * s0 00 s 0080 +5mAm,oeme+“”

Ble+=) | Bop(ita)(aite) |
ce”® I —_ ! ) b,.g(ﬁ+‘7)f 5"1- 1 ~
—_—— cA. eltmm)p+2la L.
vt iﬁ(ﬁ+“> D r(rte) <ﬁ+wcfs+w+u>+ + 1 +
PENC
I.c‘.ln-....+........ eve e on
vy r4-e)(2r+«) +
+5m—nbnAm,ne[(m-n)ﬁ+ny]x+”
+oo-......_..
+c"ldm,mem?x+ veree
bePx B2p2Be \

Bf—a) = R.2p(fmma)(2f—2)

v " . (B+7)x
+ce +( bee e reereareeees ]

7(r==) zﬁ(ﬁ-—M) + y(ym=a) § (B+v)(Btv—e)

,.:I,z'yx =

'I % 6000 68 4 08 0 0 28 o8 s te e

72y (y=—a)(27=2) )

ol il faut remarquer que chacun des termes de la derniére séiie
se deduit de son correspondant dans la premiere, par le simple
changement du signe de «. Quant aux coefliciens 4, , , Amy1 s veoe Am ms
ils se détermnent, en geueral , au moyen de lequation

4"1 "+ 4’”9""'!
Lon—n, f(u 1)y oy m—n) (1) 7]

Am+h"+ 1=

dont l'inte-rat'on entraine d«ji des caliuls assez Jongs. On pourrait
Iuaintenant tenter de ramener les series obtenues A une forme finie,

v,
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par des intdgrales définies; mais ces recherches, comme je I'obser—
verai , sont d'une nature trés-particuliere ; d'autant plus que la
me hode d’Euler exige toujours que les constantes satisfassent 2
certaines conditions arithmétiques , au défaut desquelles elles ne sont
-pas applicables.

Il faut observer que Vintégrale précédente devient incompléte
Eassque =0 car-alors les deux series sout identiques, et l'inté-
gr#ie doit par conséquent ch;mger de forme. En effet, on trouve

pour ce cas

y=a,ta.x4[/(be**+ce¥*)yda®

ce qui introduit nécessairement des puissances de la variable indé-
pevdante. Le cas de g=o0 ou de =0 annonce aussi un changement

de forme ; car alors P’équation proposée prend la forme trés-simple

(. m -
dfe™d ((x(n m)JCV)} = cely+mixy, -
dx? Yo

1

ce qui réduit i’intégrale 4 des séries & simple entrée.

Mais un autre cas donne lieu & des calculs trés-compliqués ;
savoir: celui de g+y=o0 ou y=—ps, pour lequel il s’introduit dans
Pintégrale des puissances de la variable indépendante , dont les coefli-
ciens ne se déterm-nent que par des équations aux différences finieg
3 trois varizbles. En effet, pour ce cas qui se présente aussi sous

1a forme.

y=a,ta.e" e fe**Sin.(sx-+y)yd2? ,

la premiére des sérics que nous avons trouvées devient, abstraction

faite du multiplicateur a,,

z(ﬁx 51{,2,616

S L g2 mbs
) ﬁ.zﬁ\,8+w)(2ﬁ+u)+ Fo " a0

1~
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ce— P 2bcr .
m"“ :@:;7) ~Htb2m xf(Azm,r,o‘!"A;m,,,lx)e’("'"‘)‘“"
cle— 2%
ﬂ-ﬁ-ﬂﬁ(ﬁwu)(zp-“) + . - . . L ] - . - - . . . .

+5m5m(Azm,m,o+Azm,m, 14 --+Azm,m,ﬂrzm)
+5m“cm+‘(‘42m,m+:,0+Azm_,m+x,xx+"-+l4:m,m+n,m-:)g-zﬁx
e el T T T SN
+c~im‘4:m‘zm’°e-hzm’px

B A amngey L
H‘kmc(Azm{-x,z,o+Azm+x,1,xx,3(zm_"sx—l-. T e e e .
e T T T

A" +Ecm(*4 amt 1 mot A rms R Tl o 0 NG L Pl SN

+5mcm+ ‘(Azm.‘.. L=t ,Q+A2m+ T,m—-1,1 $+....+.{42m+ 1M1 ’mxm)e-ﬁ»t-l—"-:&
L oI T T S S A

:'l—&czm(dzm-i-:,zm,°+‘4:m+1,1mxx)e(’-lm)ax"i"‘ L T B B

+czm+ t/‘sz-i"3)3!71"!''»)08--.('2”14- I)BZ'+ * s e e o o & ¢t s e
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On trouvera que I'équation aux différences finies ; d’ou dépend“
la détermination des coefliciens, devient assez compliquée, quoiqu'elle
ne soit p:s difficile a former ; et que les difficultés de son inté-
gratian , qui’ tienvent sans doute 4 la nature du probléme, consistent
principalement dans Pextréme longueur des calculs. C'est pourquoi
je me dispense dentrer ici dans le détail de ces opérations, qui
n’offriraient d’ailleurs aucun principe ou artifice de calcul digne d’étre
remarquds , et qui ne pourraient conséquemment mériter de l'intérét
que par les applications.

Les principes que j'ai exposés au commencement de ce mémoire,
et que je viens d’appliquer al'intégration des équations différentielles,
conduisent aussi 3 celle des équations aux différences finies , ainsi
que je vais présentement le faire voir.

§. IL
Des équations aux différences finies & deux variables.

Les équations aux différences finies & éenx variables peuvent
éwre envisagées sous deux points de vue , dont I'un répond pro-
prement au mom qu’on. leur donne,. tandis' que l'autre les repré~
sente comme exprimant les relations entre. des valeurs successives
d’'une méme variable. Cest sous ce dernier point de vuoe que La-
grange ( Calcul des fonctions, legon XVIIL) les'a considérées: corvme
éiant. dlune nature tout-i-fait-différente de celle des: dquations: difkés
rentielles. Aussi cette forme conduit-elle aux résultats les .plus gé-
nérqux et les plus wutiles. qu'on. puisse obtenir. €ependant:,:ik e
sera peut-étre pas inutile-d’exposer ceux qu’offre laspremicre formes

soit- pour choisir , dans. des cas particuliezs , celui,gui:. convient le
" micwx A I'objet gn'on.a en vue, seit pour. réunir:sous un!-pomtds

vue unique des. méthodes qui , au premier aspect , ' pourraiens
sembler différentes.
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" Dans ce cas, on -peut envisager la différence et lintégrale finie
comme des fenctions lindaires de la différentielle et de [!'intégrale
qui y répond ; et cette relation a donné lieu a une infinite de
formes créées par I'analogie, et puis rigoureusement vérifies par
des considérations générales, Mais , comme ces recherches sortent
de mon sx}jet, je me permets seulement d’exposer ici une liaison
entre la diﬁérgntieile et la difféercnce , qui correspond parfaitement
3 celle qui existe entre les fonctions expouentielles et les puissances,
indépendamment des expressions en séries.

En effet, si I'on -observe que l'équation

i

di(enxy) — n_ dy n(n=—1) dzy
SFERTE §y+ 1.2 dx 1273 dx2 ""g ’

par la supposition de n= o, se change dans celle-ci:

1 d"(e""y) ‘ 1 de dy 1 diy
T g =Tt g T T
qui revient &
1 d%ey)
n".e"x ' dx" =y+Ay b

on trouve que la génération de cette derniére quantité a beaucoup d’ana-

logie aveé’celle d‘e'f = (n+z)u

» 2 etant = co.
m

Comme les intégrations aux dxfferences finies sont , en géncral
beaucoup plus difliciles & effectuer que celles aux différentielles ;
on verra que la méthode générale exposée au commencement de
ce mémoire s’applique , avec d’autant moins de succés , aux équa-
tions qui nous occupent présentement , que la considération des
valeurs successives, qui réduit l'intdgration a des éliminations, offre
des résultats plus simples et plas généraux, c’est pourquoi ]e ne
traiterai que briévement de cette espéce d’équations.

Soit done l'équation
Al‘lx



LINEAIRES. 203
Aty PA ™yt QA™ )+ oMy =N

on en aurait l'intégrale compléte, si I'on pouvait trouver » quan-

titds X, X/, X, .. A™, qui satisfissent & I'équation

-

ALXOAX O DA AKX ). ))) =X DX, =0, XV, XN

Xm étant =(1-4A)"X, suivant les notations adoptées. Mais on
s'assurera facilement que la comparaison entre les coefficiens res—
pectils de Am=ty , Am=24 . conduiraient , en général, 3 des
équ-lions trés compliquées, et par conséquent , qu’il faut laisser
un cu iasieurs cocfliciens indélerminés suivant le méme procédé
que vous oons employé plus haut. ,

Liéuation . greniier ordre s’intégre, en général , sans difficulté.
Seit , en efiet,

Ay4-P,y=0Q, ;
en faisant

AX'y)=X'Qu ;
on aura, pour déterminer X/ » I’équation

AX'=(AX+X)P,, on X,=—

1—P,

- -

d'olt 'on tire, en prenant les logarithmes et intégrant;

x /=e—2Log.(1-Px) ;

ce qui revient A
=1
X=[1—=P,_.] ;

suivant la notation de Vaudermonde.
Maintenant , on trouve aisément

Tom. 1X, 39
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Tm—1z

[~P,_.] [i—P, 03

« étant une fonction dont la différence =o.
L’équation du second ordre ne s’intégre que sous Ja forme d’une
série infinie; et, pour les raisons que j’ai développées plus haut,
je me bornerai 3 un seul exemple. Il faut d’ailleurs observer que

cette équation s’intégre d’une maniére trés-élégante par les frac-
tions continues.

y= “ + S'Qx[‘ —-P,,__,] s

Seit donc la proposde
Ay+PAy+Qy=E, ;

en fera

A(X'Ay
"S'X',I—y) +Qy=~8. ,

ce qui donnera

AX x=1
X-—,l—= v 2 ou X’=[I—-Px_l] H

et 'on aura

3

”® I
y=t+3— I IX\R—2 < ZX.0y .
Faisant dong la partie indépepdante de y égale & Z, pn trouvera

Y=Z =B 3N, QEHE 5 EXQE = X QB
Un exemple trés-simple est
Ary=(a—1)Ay+cl"y ;
on a, pour ce cas, , ‘
/ R T

et, en supposant « et s constagtes,
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+ («‘b' + c2bax

y— ie g I (b_a)(b_l) (bz—a)(bz—x)(‘]}__a)(b_l) +olu }
aa*—1 ; cb* chox ’

-+ a—;l { a(ab—l)(b-q) +aﬁ(bza.—.l)(bz___x)(bd_x)(b_l) +uu§ .

Cectte intégrale change de forme lorsque b=a,e=10u b=1; et,
dans ce dernier cas , on sassurera aisément qu’elle se réduit 3
la forme finic, comme toute dquation linéaire a coefliciens constans,

11 faut encore jeter un coup-d'ccil “sur les équations qui ren-
ferment a la fois des differences et des différentielles par rapport

a2 la méme variable.
§. IIIL

Des éguations auzx différences mélées & deux variables.

L’équation aux différences mélées de l'ordre » renfermant en
général (n=4-1)*4-1 termes, je ne consideére ici que celle du pre-
mier ordre, dont lintégration comporte encore de grandes diffi-
cultés. Il est d’ailleurs facile de sassurer que lintégration d’une
équation quelconque , & coefliciens constans, dépend seulement
d’opérations algébriques.

Soit donc l’éguation du premier ordre

& & -5
A do +P-AJ’+Q;\"‘1';+B,)/'-—S~ H

il faut ticher de la rendre en différences ou en différentielles
complétes ; mais on verra qu'en général cela est impossible ; car
la forme la plus générale qu’on puisse lui donner est

d(Nx)’)
A(M,, t )
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par laquelle on ne saurait satisfaire a trois conditions. En effet;
en comparant , on trouve

A de
dN,4, _p - _A(MN,) = M, Az
Nyt dw v Mx+xNx+l Myt Nypr ®e

On tire des deux premiéres

Pd L
P -N4+1=3j ’9 MN,= [I'—'Q...:j. ’

, pour satisfaire & la dernitre relation, il faut mettre I'équation
sous la forme

ded
A{M ) } =M, N, (P, +(Q-1)P,.-. Baly »

d’ott on tire, en représentant par 7, le coefficient de y dans
le second membre,

«dx dx ; I dx
y,__ _._.+— A +——- ESM"P!N-’C’H‘S‘ITFE ﬁ;zTuyi

¢ étant une constante , et « une fonction telle que Az=o0. Si ensuite
on représente par Z la partie indépendante de y, on aura, en.
- sous-entendant les indices,

Z+—f~2Tde+~/M E—fM TZdz e

On trouve facilement une seconde forme générale , en mettant
I'équation proposée sous la forme d’une différenticlle compléte ;
mais , dans tous les cas , la succession alternative des signes f et
= soumet ces formules générales & des difficultés qui font ressortir

les avantages des travaux de MM. ont et Polsson sur le méme
sujet. !
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Aprds avoir développé les principales conséquences des principes

généraux , relativement aux équations a4 deux variables, il me reste
maintenant a traiter des équations aux différences partielles.

§. 1V.
Des équatz'ofzs lindaires auz différences partielles.

Parmi le petit nombre des résultats généraux auxquels on est
parvenu , relativement & l'intégration des équations linéaires , il faut
principalement remarquer celui qui raméne l'intégration d’une équa-
tion quelconque a ne dépendre que de celle d’une équation quine
contient pas de terme indépendant de la fonction inconnue. Cependant,
on ne sait que rarement intégrer immeédiatement, sous forme finie,
une équation a plusieurs variables , pas méme dans les cas analogues
4 ceux ou lon intégre les équations & deux variables , par des
fonctions connues, comme , par exemple , lorsque les coefficiens
sont constans. L’introduction de mnouvelles variables conduit quel-
quefois & des résultats satisfaisans , qui sont pourtant trés-particuliers,
et exigent le plus souvent que l'intégrale soit donnée en série in-
finie , seule forme A laquelle toute intégrale soit réductible. On
sait que la série de Taylor donne le moyen d’intégrer les équations,
soit & deux, soit & plusieurs variables; mais nous avons vu qu’cn
géudral elle est inapplicable a celles-la, et- & plus forte raison i
celles-ci. C'est pourquoi on a formé des séries qui procédent suivant
des différentielles ascendantes , forme beaucoup plus avantageuse et
toujours possible , & ’exception de quelques cas particuliers, ana-
logues & ceux ou la série de Taylor se trouve en défaut; mais,
quelque élégans que soient les résultats obtenus par cette méthode,
on peut se demander si elle conduit toujours aux formes les plus
simples des intégrales, qui se développent , comme on sait, d’'une
infinité de maniéres différentes. Il est donc important d’avoir une
méthode générale et directe pour cet objet, et c’est une telle mé-
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thode que je me propose d’exposer suivant les principes établis
au commencement de ce mémoire ; mais il faut commencer par
la discussion du cas ou. I'équation s'intégre immédiatement sous
forme finie , ou du moins par celui ol son intégrale se raméne 2
celle d’une équation du premier ordre; et l'on verra “ainsi pour-
qum on ne peut obtenir cet avantage que dans des cas particuliers.
Supposons , pour abréger, qu'une équation de lordre m, i n
variables indépendantes , contienne les variables indépendantes dans

tous ses termes ; elle renfermera , en général , un nombre de cocffi-
ciens exprimé par

’ m-br mid2 m-3 m-n

» — n — e

1 2 3 n ?

et il s’agira de lui donner telle forme que Pon parvienne i l'in-
tégrale compléte par lintégration de m équations du premier ordre;
mais chacune de ces équations ne 1enfermant, en général, que n
coefficiens , il m'est pas possible d'introduire , de cette manicre ,

plus de mnr quantités indéterminées dans I'équation proposée; et,
3 moins qu’on n’ait

m-4-1 md2 m+3 m-fn ‘.

_‘2
3 n ?

mn >

x 2

il devient impossible d’y satisfaire , en général. En effet )
fait , pour abréger,

+ myx d +Pm 2 """+""+ m,uz-D[Pm,rn z] ’

\

2

Pri iy Pnyyen «Pp, étant des fonctions quelconques des variables
mdependantes on formera I'équation

D[Pm,n b D[Pm—x,n F D["“'D[Pl,n} Z]u--.]’]]-"-o »

s

si Fon
K4
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qui renferme mn quantités mdetermxmes. Dans tous. les cas par-
ticuliers ol elles satisfont aux coeffitiens de I'équation proposée ,
on sait ramener celle-ci 3 des équations du premier ordre. Il est
d’ailleurs facile de voir qu'un terme indépendant de z ne changerait
en rien ce procédé. Mais I'équation & deux variables est la seule
qu'on puisse toujours mettre sous cetle forme , quoique la déter-
mination des quantités P, ., P,_, ,,... méne, en général a des
équations plus difficiles & traiter que la proposée elle-méme , ainsi
que nous I'avons déja vu; mais I’équation générale du second ordre

. n—1IL ..
a déj Z. conditiens de trop ; et plus les ordres sont élevés,

1

et plus aussi le nombre des conditions surpasse celui des. quanmgs
& déterminer. Pour satisfaire a toutes les conditions, on mtrodmt
souvent avec succés de nouvelles variables, par rapport auxquel]es
on obtient alors des intégrales définies on indéfinies ; mais, le plus
souvent, ces recherches conduisent & des équations plus difliciles
que celles quon s’était d’abord proposées. 11 faut dailleurs ob-
server que , pour le cas des coefficiens constans , les quantités .
P,,, Ppey,s ;e prennent les mémes propriétés que de simples
facteurs , comme 1’a fait voir M. Brisson.

Maintenant, aprés avoir observé combien sont particuliers les cas
oll une équation s’intégre immédiatement sous forme finie, je vais
reprendre le principe général , pour exposer les principales modifi<
eations qu’il doit subir pour devenir applicable aux équations par-
tielles, et, en particulier , 4 celles qui ne renferment que deux
variables indépendantes. Il s’agit seulement de partager I'équation
de la manitre la plus avantageuse , .et pour cely, ce qui paraitls
plus simple est de détepminer autant de coefficiens que poqsibj;a ,
par des équations du premier ordre , comme nous venons de
1"e;pg~se;',‘.ét puis de transporter les termes indéterminés de autre
e6té, ce qui donne a l'éqyation proposée la forme

D[Pm,u ’ D,[Pmu,n; D{"\‘?D{P,;u ’ z].,,.;j]]:fz R
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fz étant une fonction quelconque linéaire de z, ct le premier
membre étant du premier ordre par rapport a

D[Pm“!,n’ D[“"‘D[P:,nt z]""']] .
On trouve facilement celle-ci, en fonction de fz, avec une fonction
arbitraire de n—1 variables ; et, en continuant ainsi, on parvient
3 la valeur de z en fonciion de fz, avec m fonctions arbitraires.
Soit alors

z=N4-9(z) , :
on trouvera

z2=N-4o(N)4o* (N4l

Il est facile de voir que les quantités Prns Py ocseiee se
déterminent d’'unc infinité de maniéres différéntes, et, par consé-
quent , donnent lieu 4 autant de formes différentes; mais il est
impossible de donner des régles générales pour le partage de I'équa-
tien , et chaque cas particulier indique , sans difficulté, le partile
plus avantageux que 'on puisse tirer du principe général. Cependant,
il existe, dans tous les ordres, une classe d’équations qui donne
lieu & des considérations trop étendues pour ne pas les exposer ici.

Soit donc I’dquation

fz=0¢z ;

fz et ¢z étant des fonctions quelconques linéaires de z , telles seu—
lement que les coeficiens différentiels et les variablesindépendantes
qui sont contenues dans la premiére ne doivent pas se trouver dans
la seconde. Alors on trouvera facilement qu'il est toujours possible
de satisfaire a l'équation par une série de la forme

:Ale"":Asz-l-A;B,’l‘:ao:l.;o-ct
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A A, , 4, ;. élant sevlement fonctions des variables indé-
pendantes renfermées dans fz, et B,, B,, B, ,.... des fonctions
des variables indépendantes renfermées dans ¢z ; mais on voit, en
méme temps, que cette forme ne peut étre générale que lorsque
fz ou ¢z me contient qu'une seule variable indépendante ; car l'in-
tégrale générale doif contenir des fonctions arbitraires de toutes
les variables indépendantes moins une, ce qui n'est possible ici que
dans le cas que nous avons indiqué. C’est pourquoi je suppose que
fz ne contient qu’une seule variable independante, et alors l'inté-
grale peut étre générale , comme on s'en assurera facilement par
le principe des substitutions successives ; mais aussi je ferai voir
quon peut satisfaire & l'équation proposée de beaucoup d’autres
maniéres. En effet, pour déterminer les quantités 4,, A, , A5,
B, B,, B, ,...,onna que la condition

A, 0B 44, 0B} et Am0 Bt =B fA4B 4 4 A Bnfd Fone

Or , pour avoir lintégrale compléte , il faut avoir m fonctions
arbitraires , m étant I'ordre de Péquation proposée ; il faut donc
absolument qu'un nombre m des quantités B, , B, ,... soient in-
détermindes , A4, , 4, ,.... étant senlement fonctions d’une variable,
ce qui est impossible , & moins qu’on n’ait _

fo———O 9 fAzzo ,......-:..fAm'-_—'O 3

’

conditions qui introduisent m counstantes arbitraires , assujetties seu—
lement 4 ne pas rendre égales entre elles deux des quantités 4, ,
A, .. 1l Sagit donc seulement de satisfaire aux équations

‘41¢Bx=Bm-\-: E‘—’{m--‘l--x ’ Az¢Bz=Bm+zfAm+l ) ssetserce
ce & quoi on parvient facilement en supposant

- Bm-'—l:?Bl 1 -Bm+z=¢Bz 3 Bm+3=PB3 peeecice
Tom. XI. 4o
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et =4, , fdnp,=4,, (4y =4; ,

les relations entre A4, , 4, , Ay étant des équations ordinaires
de l'ordre m, pour lesquelles il s'agit seulement d’avoir une in-

€
. 1 ..
tégrale particuliére ; désignant donc par n la fonction inverse de f,

on aura ainsi

et l'intégrale compléte

z2=A,B+A,B,+}........+AnB,

+-¢B, . -:—; Al+¢Bz.-g—.42+....-Fchm.-fl Ay
+ ¢2B1' E:- A[+¢:B1 0% Al+-ton.o-

+¢3B,.f—;-.41+.....

1 » A 1 .
?* Et'fz— étant la méme chose que oo et T'If—”et ainsi  des

autres.
Par le théoréme de Parseval’, on peut encore ramener chacune
des séries

A,B,+¢B: . ':TA1+¢°BP%B:+‘"" >

5 4
AZBZ+¢BZ . T Az+¢sz'?:- Bz+uon s

3 ne dépendre que de celles-ci:
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A+ -;—A.ﬂ—{;dl-i—..... ,

Bi4oB 40 Bt vvvvne.n.

dont la dernitre conduit & une équation & z—1 variables indé-

pendantes , la proposee en renfermant 2 ; mais les imaginaires que

cette methode 1ntroluit 11 1endent peu susceptible d’application.
On peut encore satisfaite a la forme

ABAA,B, 44,8, 4 uu.......

de beaucoup d’autres mamilres ;Mainsi , si l'on ne veut pas de
fonctions arbitraires , la- manitre la plus simple de satisfaire &
Pequation

BLAAB, (A Y uui=A 0B, 4,08, ...

sera de faire

B.fA,=A B, , B.,f4,=4,0B, , ...

or , ces €quations étant toutes semblables , il suffira de considérer

celle-ci : ;

'Bl‘fdr=‘4r¢Br » ot f
2 laqnelle on satisfera de la manitre la plus générale, en posant

A B 4

Br= r¢Bf‘ ] fAr=—" A

¢, étant une constante arbitraire ; et l'on trouvera , en intégrant
ces équations ,

Brzr(lx‘;) 3 Ar:n(cr) .
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Soient donc ¥, , ¢, ,..... des constantes arbitraires, et C;, C,,:on
des fonctions quelconques de celles-ci; on peut faire

2=C,X6,)J1(c,)4+C, T(e, ) TIe e

ou , si I'on veut ,
2=8CI'(c) I1(¢c) ou JSTe)I)elc)de ,

¢(c) étant une fonction arbitraire de o,

1l est sans doute superflu de faire voir la variété infinie qu’on
pourrait donner aux intégrales de I’équation proposée, en laissant
indéterminées deux ou un plus grand nombre de quantitds A,,
B, , .y ct en comparant de différentes maniéres les autres termes
de la série, L

Il faut encore observer qu’il n’est pas nécessaire que les fonctions
fz et ¢z contiennent seulement des diffé'remienes' pour que les
méthodes précédentes soient applicables ; elles le sont encore , lorsque
ces fonctions contiennent des différentielles négatives , c’est-a-dire ;.

mais ce cas donne lieu 2 des observations qui ne

des intégrales ;

s’expnsent pas d’une maniére assez claire lorsqu’on demeure dans
les généralités, ainsi que je le fais ici; et, comme elles se pré-
sentent d’ailleurs d’elles-mémes assez facilement, je n’en parlerai
qu’en traitant, en particulier, des équations A trois variables; et
alors je ferai voir 1'usage des facteurs pour ramener une équation
A cette forme, lorsque cela est possible. Je parlerai aussi , plus
bas, du cas ot les coefficiens sont des fonctions queleonques de
la somme des variables indépendantes. Je ne ferai ici qu'une seule
observation sur l’équation 2 coefliciens constans. Elle comsiste en
ce que si l'on pose I'équation

fz=M ,

fz éiant une fonction linéaire quelconque de z, & coefficiens cons=
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tans, et M une fonction quelconque des variables inde’pendantes;
en représentant par N la fonction la plus générale qui satisfasse

a I'équation

fN=o ;

on aura, par les principes qui ont été suﬂisamment développés
par M. Servois ,

z=N+%M,

» qui a la forme d’un polynome , pourra étre développée par
toutes les méthodes connues pour le développement des fonctions
purement algébriques; et l'on parviendra ainsi directement , d'aprés
ces principes, a tous les résultats de M. Frangais. o

Je vais présentement m’occuper de I'dquation 2 deux varlables
indépendantes , et, en particulier, de celle du second ordre, afin
d'éclaircir mieux les considérations générales que je viens &’ exposer.
En général , toutes les équations du premier ordre se raménent
a des équations ordinaires, et il serait ainsi inutile d’y appliquer
immédiatement le principe des substitutions successives , quoiqu’il
devienne nécessaire pour intégrer celle-ci.

Soit donc I'équation

d’z
dx‘ dxdy

dz
+19 dy, +ar 395; Fiz=e

«, 8, 5,3, s, ¢ éant des fonctions quelconques de x et y;
il sagit de lui donner la forme

.__+p +Qu=o ,

R slpposant
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u*—--——+P’, ‘+Qz.

Pour cela, on trouvera les conditions

dPu

«=P+P,, #=PP,, y= T +P-+PQAP.Q,

.

3\=Q+Q, ‘, = —9—"—3'—}-.? dQ[ +QQ, .

Or, comme’ en généfdl , il est impossille de safisfaire & toutes
ces conditions ’, il est nécessaire de meure Fequation sous une
dutre 'forme oo

Fawsons, par exdmple ,

ot aondiz + dz2z ..F-g d2z 1
—_— 0 e
da2 dxdy dy* dy

on 'poyrfa toujoyrs déterminer v.de maniére que toutes ces condi-
tions soient remples, Apres avoir ntegie les deux equations du
premier “ordre , on aura un resultat

i+,>-ﬂ- +sz-a+"z

z=U+1fz ,

U renfermant d8ux fongtions arbitraires, et fz étant une fonction

linea re qu1 contient des signes d’integration par rappoit a x ct y;
on aura, en congequence ,
N\ i *

-

e=U4 U+ U4BU 4. .. ;

mais on tombe souvent sur des difficultés insurmontables, sur tout
lorsque I'intégrition des cquatons du premier ordre conduit a des
equations non linéaires ; c’cst pourquoi je considere encore I'equa~
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tion générale du second ordre sous un autre point de vue. Par la
methode que M. Laplace a mdlquee » On sait ramener toute cqua-
tion du second ordre & T'une des formes suivantes :

'

123 ﬁ ¥

dady +p_d—+9 "*‘+’z=3 ’ A)

dz ] (B)

Epy Ipdx lqa brz=s ; )

X

ol p, ¢, r, s sont des fonctions quelconques de z et y qui se
deduisent des variables independantes de I'equation proposee par
I'intégration de deux éqnat%ons du premier ordre.

Je commence par la premiere ; et, en faisant

Jpdy Jyd dp
e =n,eqy=mn,pq+—d—;—-r=p,

je lui donne la forme

dgm d;nz)}
T =mns-mnezg
b -
On voit que celte équation s'intégre imniédiatement sous forme
finie lorsque ¥=o0. En supposant respectivement ¥ et @ fonetjons

arbitraires de # et g, et faisant ,

. ¢ 1 ® I |
,;"'l""‘,""'/:,; d}’+;f‘;ﬁnsdydx=f;
on trouvera
b4 IR
z=T+;J'£ﬁnV3dydx »

c’est-a-dire ,
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Yy x
z=T+—:7 il ﬁandydr

m
4+ -::-jf—:;- :/n;v.y/,-:; j]r;zandy’dx’—l-..: (1)

1l est facile de trouver, pour cette intégrale, une infinité d’autres
formes plus ou moins simples ; mais je n'en présenterai qu’une
seule, qui est quelquefois préférable a celle-ci.

En faisant

— r x y
m=e Spdy ’ n:-'-c‘f? Y , U=v4- m¢dx+ﬁf%dxd7 ’

¢ et ¢ étant des fonctions arbitraires de y et de & respectivement,
on aura

d v dz
™ m dx g d(nz)
§om e
dy n dy ’

d'ou

*fY £ q dnU)
=U— fn f 5 dodyt (2)

La forme la plus simple qui intégre I'équation (B) s'obtient de la
maniére suivante : faisant

—fpdx r4d
n=e fp, ’ m=e'/1’ 4

4
U= == fimdy ,

¢ dtant fonction arbitraire de 2 on aura

1 dz

d d. — S——

X mz n dx
m day dx

d'ou
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2= %/’qu (2o )ay
42 /"’" (= ( ( v )) Ay e

les dérivations se rapportant & . Cette forme, quoiqu’elle con-
tiezne seulement une fonction arbitraire n’en est pas moins générale ,
corme l'on sait; et il était facile de trouver une autre forme qui
en cootint deux. Poar ccla, il fallait commencer lintégration par
rappert a .

Mawmtcnant , aprés avoir présenté des formes générales , pour
I'intécration des eqgoations & trois variables, il peut étre intéressant
de discuer les cas les plus étendus qui soient susceptibles de sim-
plificasion. Les methodes dom on se sert pour cet effet consistent
3 introduire de nouvelles ‘variables , par rapport auxquelles on
obtient des intégrales , définies ou indéfinies ; et les plus générales.
sont celle de Parceval et celle qux conduxt a lintégrale compléte
par une somme indéfinie d’intégrales particuliéres. Cependant, ces
méthodes en laissent toujours & désirer d’autres , dans le cas ol
il est possible d’en avoir; aussi connait-on, pour certains cas par-
ticuliers, plusieurs autres méthodes fort élégantes.

Prenons I'équation

\

a;a;'*‘P = oo 5 Hre=o ;

-

P, g, r étant des fonctions quelconques de #~y ; alors on trou-
vera facilement , pour la forme (1), et en observant qu'en général

S MeYdy === Me'™Hdy

qu'une valeur z=ue™ satisfait & I'équation proposée , de méme que
Tom. XI. 41
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g=etY , u et o tant des fonctions indétermindes de #-y. Faisant;
pour abréger, z4y=¢, et observant que

du du du dw de de

- — =

J' dv ! dx_d_y dv ’

en aura, pour déterminer z et ¢, les équations & deux variables
dau du
37 Feptg) o H =0,

et 5 [ Hugtne=o
En faisant
u=F(@,d), o=ip,?,

et représentant par T, T, des fonctions arbitraires de ¢, on aura
z=/fe*TF(v, t)dt4-fe" T,y , 2)ds .

Si la quantité s, de la forme générale, était une fonction quel-
conque de ¢, on trouverait aisément que la série qui la renferme se
ramenerait & l'intégrale de I'équation

dv, +(p+q) — +rz-s ;

sans constantes arbitraires. Il fant observer que ces principes s’ap-

pliquent & une équation d’'un ordre quelconque , entre un nombre
quelconque de variables.

Soit I'équation

d2z Y
dxdy +% 3y +5’z ’ (&)
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v, o, w dtant des fonctions quelconques de ¥, et ¢ une fonct'on
quelconque de z. Quoiqu’elle n’ait pas la forme fz=zpz, que nous
avons traitée plus haut, il est facile de la lui donner par des
facteurs. En effet, on a, par la formule (2),

dz o d(nz)
- —_— ’

gdx mn dy

m et n étant des fonctions de y; et, par lintroduetion des fonc-
tions arbitraires et par les substitutions successives, on en trouve
facilement lintégrale compléte

@ d(ny) » d. o d. \
s=p e [ S0yt i oo S (a5 3 ity

m fodz-+-[% ﬂaxanf = d(mn) i

séries qui se ramenent & la forme finie, par le théoréme de Par-
seval et lintégration des deux équations du premier ordre & deux
variables.

On peut encore intégrer P’équation proposée par une infinité d’in-
tégrales particuliéres , comme nous I'avons dit plus haut. En effet,
si I'on fait

ax @
z=XY , on aura Y5;=anm;.d(nY) >

d’ou
_ ax (XY \_ » .
cXda= 5 cd\ )._- — d(_nY) ;

de 13 on conclura facilement, en substituant les valeurs de m et n,

, cod-m WalTl =]
Ve fc__idy , z=/ecf£dx+ —a Yo )dc .

X =ed§dx

?
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On ne peut, que dans un cas particulier, savoir , lorsque &==1}
appliquer & (4) la méthode par .laquelle nous avons reduit (@)
une equation du second ordre a deux variables.

Pour donner un exemple de lintégration par d'autres mérthodes,
il faut nécessairement choisir une équation moins générale. Je vais
employer les principes donnés par Euler, pour intégrer les équations
a deux variables et par lesquels on peut aussi intégrer quelques
équations partielles, sans les réduire auparavant a des équations
ordinaires du second ordre. Soit donc l'equation

dzz « dz g dz B=—1

Gix = @ TE 4ty 2=o;

«, B,y €tant des constantes , et £ une fonction de #. Alors on a
2=V [ gday®f Py dy
+f 8/ 4dary " ey y H b ey (yrdyydys
2
Yy

todan CEDETTER F2y oo,

+y°‘¢+

Maintenant il faut observer qu’entre les limites o et 1, on a
f( t") ’Y‘x (l+1 ne-X dr= Y (y4-n)esee fy-{-in) ‘
P (r4p4n) e (y4-pin)

en supposant que les constantes sont telles que l'intégrale ne de-
vienne pas infinie entre ces limites, et que les mémes conditions
sont remplies dans le présent probléme. En faisant

u=0-4-1Py P rod x4 12Py>Bf ¢ [10d ...

on aura, cntre ces limites,

L
S(a=2" )y ¥rde

ot~ o i iota
o o -+
+( +71‘(‘;'}’ ﬁ)y’ﬂjgfﬂ’dxa‘*'""
&n SUPPOSﬂnt
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1
C= fmy e a0

[J
umgt ¥ 4l fe-zﬁyﬁ/gdxcp, iz |

ou ¢’ est la fonction dérivée de . pour trouver la valeur de la
premiére serie , on fera

d’ot on conclura

m y4m  pfm (y4m) (v4m-3-p) . .'
=4, g)’ -+ —— y ' JSidat (m—a-i—ﬁ)(m—u.l.zlg)f (/i 'l'"-';r

et, en observant que

B R YL e

et faisant de plus

on aura

s, Bmym j( 1 =B )"" u—%-yt?‘l'ﬂh zet A Y ?f«fdx :2.Am37’m+ m‘y—-tz ﬁym+€/§dx+ “‘}

et en faisant
SBny"=I()%, ¢/'=M(z) ,

on aura ensuite

Ry T P L VIR e S (BT BT TR

Iintégrale étant prise entre =o et /=1I.
Prenons encore 1'équation
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d2z dz
dxs =t dx b +wwz >

2, @, v, o &tant des fonctions quelconques , les deux premicres
de z et les deux derniéres de y. Alors, en faisant

m:ef-z_dy , n=e‘f€dx

2
on aura

AR EECEONE

Par le théortme de Parseval, et })ar la méthode générale exposée
plus haut, on réduit cette série a lintégrale d’une équation ordi-
naire du second ordre; mais, dans un cas assez étendu , elle se

réduit 4 la forme finie, par la méthode qu'a indiqué M. Laplace
( Journal polytechnique , cahier VIII).

En effet, lorsque ==n*, on a

== (ST GEE)) )

et, si 'on donne & la série

¢+»—‘P’+ x—:-a ;(— ¢J+xz3 n( <—¢, )+“"

la forme

£ fndz+a) ,

Cest-d-dire d’une fonction arbitraire de fndz--« ; en observant
que , entre a=—w et «=-+ o, on a

2 1. 3(21/—‘)
fe"“ e?*Ydu= —— ‘/-u' , /e"“ «2¥~1du=0 s

on trouvera facilement que l’imégrale de léquation
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dz n3 dz dz
— R e —— 2y 3 ~
el Pl Kl PR LR

ol 7 est une fonction quelconque de 2, devient
z=8-f%dyjé‘“zf(fndx-'-:qu.dl) de ;

I'intégrale étant prise entre a=-—m o et «=-} cr.

Dans ce qui précéde, je crois en avoir dit assez pour éclaircir
le principe duquel je suis parti ; et il me parait superflu d'y ajouter
plus d’exemples et de développemens, sur-tout pour les ordres
supérieurs , qui doivent naturellement avoir des intégrales trés-
compliquées ; & moins que les équations ne soient trés-particuliéres;
les raisons que j’ai déduites plus haut me dispensent également de
traiter des équations aux différences finies & plusieurs variables. K
est d’ailleurs impossible de donner des régles pour les cas parti-
culiers qui admettent des simplifications dans les méthodes géné-
rales ; mais ces simplifications se présentent d’elles-mémes sans
difficulté. Depuis long-temps on se sert du principe des substix
tutions successives , comme d’une méthode d’approximation , fondée
sur des valeurs particuliéres des quantités qui entrent dans I'équa-
tion proposée ; et on I'a employée, faute de méthodes plus rigou-
reuses ; c’est pourquoi je me suis sur-tout atiaché & I'exposer sous
un point de vue qui doit la faire considérer comme la seule mé~
thode générale qui existe pour l'intégration des équations ; j'ai tiché
ensuite d’en déduire les principa]és conséquences , indépendamment
de la nature particuliére des fonctions qu'on a introduites dans
la langue analitique, par des motifs le plus souvent étrangers a
cette branche de l'analise ; et , conformément aux idées de M.

Lacroix ( Cale. diff. et intég., tom, 11 , pag. 576 ), jai indiqué
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les classes qui ont des propriétés communes , et qui jouissent de
Pavantage de se ramener & d’autres plus simples. Jai, plus d'une
fois, observé que, dans certains cas, on parviem plus brievement
au but par des considérations particuliéres ; mais il n’en est pas
pour cela moins pécassaire , suivant la remarque de lillustre La-
gronge , de généraliser et -de réduire les théories , 4 mesure que la
science s'élend et senrichit de procédés nouveaux.

e camiona
.




