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3242 INTERPOLATION

 ANALISE.

Application de la methode des moindres quarrés &
Uinterpolation des suites ;

Par M. GERGONNE.

—

v

LORSQU’UNE fonction d’une seule variable est donnée , on peut
toujours déterminer rigoureusement et directement les valeurs, tant
de la fonction que de ses divers coefficiens différentiels, répondant
3 une valeur donnée de la variable indépendante ; tout comme, lors-
qu'une ligne courbe est donnée , on peut toujours, pour 'une quel-
conque de ses abscisses , construire I'ordonnée , la tangente , le
cercle osculateur, etc.

Mais , de méme qu’au lieu de donner une courbe , on peut donner
seulement un certain nombre de ses points, on peut aussi , au lieu
de donner une fonction d’une variable , donner seulement les valeurs
que prend cette fonction pour un certain nombre de valeurs de la
variable indépendante , et demander ensuite d’assigner les valeurs,
‘tant de cette fonction que de ses divers coefliciens différentiels ,
pour une autre valeur quelconque de cette variable ; tout comme
on pourrait demander quelles sont , pour une abscissec donnée , 'or-
donnée, la tangente, le cercle osculateur, etc. , d’'une courbe dont
on connaitrait seulement un certain nombre de points. C’est en cela
que consiste le probleme de Vinterpolation des suites.

Ce probléme se réduit évidemment & remonter des valeurs données
4 celle de la fonction & laquelle elles appartiennent, ou des points
donnés au tracé de la courbe sur laquelle on les suppose situés :



DES SUITES. 243
or, par 12 méme il est indéterminé ; car, par des points donnés ,
non consécutifs , méme en nombre infini , on peut toujours faire
passer une infinité de courbes différentes (*).

Ces courbes pourront fort bien , dans certaines parties de leur
cours , différer les unes des autres d’'une maniére notable ; ct la méme
différence devra sc faire remarquer aussi dans les ordonnées, tan-
gentes , cercles osculateurs, étc., qui répondront 4 une méme abs-
cisse. On congoit pourtant que , si les points donnés sont assez voisins
les uns des autres, les courbes qui les comprendront ne pourront
différer notablement , dans lintervalle embrassé par ces points, du
moins si aucune d’elles n’a dans cet intervalle une asymptote paral-
lele a4 T'axe des ordonnées; on eongoit méme que ces points pourront
toujours étre supposés assez multipliés, et, en méme temps , assez
voisins les uns des autres , pour que les différences entre ces courbes
deviennent pour ainsi dire insensibles. Les ordonnédes qui répondront
4 une méme abscisse , comprise dans les limites de ces points, seront
donc sensiblement égales ; mais la différence entre les tangentes pourra
étre plus sensible, celle entre les cercles osculateurs encore d’avan—
tage , et ainsi de suite.

Concluons de 1a que , si des fonetions de formes diverses prennent
les mémes valeurs, pour certaines valeurs détermindes, et voisines
les unes des autres, de la variable indépendante , sans devenir in-
finies pour aucune valeur comprise entre celles-la ; ces fonctions
prendront des valeurs peu différentes , pour d’autres valeurs de
cette variable, comprises dans les limites qu'embrassent les premiéres ;
mais il n’en sera plus de méme des coefliciens différentiels successifs
qui, d’une fonction & l'autre, pourront différer de plus en plus,
3 mesure que Pordre en sera plus élevé.

On pourra denc, sans erreur sensible , adopter indistinctement et
arbitrairement l'une des fonctions pour la fonction cherchée ; tout

(M On peut consulter sur ce sujet une dissertation qui se trouve a la page 252
du V.© volume de ce recueil.
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comme , lorsque plusieurs courbes qui passent par les mémes points
ne présentent cntre elles que des différences insensibles , on peut
en regarder une quelconque comme étant réellement celle dont ces
points font partie.

La courbe et la fonction pouvant ainsi étre choisies d’une infinité
de mani¢res différentes , il sera convenable de s’arréter aux plus
simples, c’est-a=dire , & la courbe parabolique et & la fonction ra-
tionnelle et enti¢re qu'elle représente graphiquement. Ce choix sera
d’autant mieux fondé qu’il est connu que toute fonction quine devient
infinie pour aucune valeur finie de la variable dont elle dépend,
est toujours développable en série procédant suivant les puissances
ascendantes de cette variable. -

Le procédé auquel nous venons d’étre conduit est aussi celui qu’on suit
communément ; on suppose que Vordonnée de la courbe cherchée est
une fonction compléte, rationnelle et entiére de 'abscisse , dans laquelle
on admet autant de termes qu’il y a de systémes de valeur donnés;
les coefficiens de ces termes sont inconnus , et on les détermine
en exprimant que la courbe passe par les points donnés. Ces coefliciens
une fois déterminés , rien n’est plus facile ensuite que d’assigner
Pordonnée et les coefficiens différentiels qui répondent & une abscisse
quelconque ; mais on ne peut compter sur les valeurs que la formule
leur assignera qu’autant qu’on n’en fera I'application qu’d une abscisse
comprise entre celles des points donnés, et méme ne se rapprochant
pas trop de la plus grande ni de la plus petite.

Cette méthode qui , en particulier, a été employée par M. Laplace,
dans son mémoire sur la Recherche des orbites des cométes (*),
renferme une source d’erreur, dans la suppositien, tout i fait gra-
tuite , d’une courbe du genre parabolique. Néanmoins , si I'on peuvait
compter en toute rigueur sur les valeurs données de la fonction ,
et si ces valeurs étaient trés-multipliées et trés-voisines , ce que

() Voyez les Démoires de Uacadémie des sciences de'Paxis, pour 1780.
nous
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nous avons dit ci-dessus, montre assez que l'erreur résultant de cette
supposition ne serait jamais bien considérable.

Mais il n’en va pas ordinairement ainsi; les valeurs discontinues
de la fonction, sur lesquelles on s’appuie pour construire la formule,
sont communément déduites d’expériences ou d’observations suscep-
tibles d’une exactitude assez bornée ; et il arrive alors, comme M.
Legendre I'a fort bien observé (*), que les erreurs qui les affectent
peuvent avoir d’autant plus d’influence sur la formule finale et sur
les résultats qu'on en déduit, que ces valeurs sont en plus grand
nombre.

Concevons , en effet, qu’on ait tracé une courbe quelconque, et
qu'on lui ait mené plusicurs ordonnées peu distantes les unes des
autres ; si 'on vient 4 faire subir 3 ces ordonnées des altérations,
trés-légeres d’ailleurs, tantét en plus et tantét en moins , et qu’en—
suite on tente de faire passer une courbe continue par les extrémités
de ces ordonnées ainsi altérées, on s’apcrcevra aisément que , si les
altérations qu’elles ont subi n’ont qu'une faible influence sur Ia
grandeur des ordonndes intermédiaires , il n’en est plus ainsi & I’égard
de la direction de la tangente qui souvent pbur une méme abscisse
aura pu subir un changement trés-notable ; la différence pourra étre
plus sensible encore & I"égard de la grandeur du cercle osculateur.

Ces apercus graphiques peuvent facilement étre confirmés par le
ealcul. Supposons, en effet, un nombre impair d’ordonnées données,
toutes équidistantes , et dont la distance commune soit prise pour
unité. Soient o l'abscisse et & 'ordonnée du milien; 1, 2, 3, ...
les abscisses et &/, &7, b/, ... les ordonnées qui les suivent; —1,
—2, —3, ... les abscisses et 4,, 4,,, &,,,... les ordonnees qui les
précedent ; et cherchons les coefliciens différentiels qui repondent A
I'ordonnée du milieu ; nous trouverons, pour le cas de trois ordonnées
seulement ,

(") Voyez ses Nouvelles méthodes pour la détermination des orbites des cométes,
Paris , 1806, (pag. iv)

Tam. ¥1. 36
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dy _ b= dzy
—= — = (& —2b ;
dx 2 ? dx2 ( +5/)
pour le cas de cinq ordonnées
dy __ 8@'—=bp—"—b,) dy 30b=16(/—b )= (b5, .
dx & ? dx2 12 ’

pour le cas de sept coordonnées

d?’ 45 (Bl —b )=y (B! ==b ;) |- (5" "“51/4)

dx 6o 4 !
dzy . 49ob—270(b/4-b)A-27("4-b,)==2. (0" ) .
dwz 180 ?

et ainsi de suite.

Or, supposons que , toutes les autres ordonnées étant d’ailleurs

exactes, l'ordonnée 4/ seule soit en erreur d’une quantité g, et dé-

d ‘y d?y . !

signons par E':i— , E-d—2 les erreurs qui en résulteront sur les
X X

coefficiens différentiels ; il est aisé de voir qu’on aura, dans le cas
de irois ordonnées ,

dy d:

E. E.-Z

@ = Eegg

dx

3.

dans le cas de cinq coordonnées

- by dzy
E—-=3, E-g;; =18 ;
dans le cas de sept ordonnées
dy dzy
E.——dx =g, E'—_dxz =2 ;

de sorte que les erreurs sur le coefficient différentiel du premier
ordre croissent comme les nombres ;, %, I, 2 .., et tendent ainsi

sans cesse a devenir égales & I'erreur méme commise sur I’ordonnée & ;
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et que l'erreur commise sur le coefficient différentiel du second ordre
est constamment double de celle-]a.

M. Legendre a donc €12 fondé i dire qu’en multipliant les donndes
on s’exposait a faire croitre aussi les creeurs dans la méme propor-
tion. Il est pourtant juste de remarquer que c’est en supposant qu'il
n’y a qu’une scule ordonnée fautive, ce qui exclut toute possibilité
de compensation d’erreurs ; et en supposant de plus que l'ordonnée
fautive est précisément celle dont la valeur, exacte ou non , exerce
Pinfluence la plus notable sur nos deux coefficiens differentiels.

Quoi qu’il en soit, cette source d’erreur parait n'avoir point échappé
3 lattention de M. Laplace. Voici, en effet , comment il s'exprime
( Mécanique céleste , tom. I, pag. 201 ): « Ces expressions sont
» d’autant plus précises, qu’il y a plus d’observations, et que les
» in}ervalles qui les séparent sont plus petits ; on pourrait done
» employer toutes les observations voisines de l'époque choisie , si
elles éialent exactes; mais les erreurs dont elles sont touvjours
susceptibles conduiraient a un résultat fautif; ainsi, pour diminuer
Uinfluence de ces erreurs , il faut augmenter Uintervalle des obser-

¥ ¥ ¥ ¥

vations extrémes , @ mesure que l'on emploie plus d observations. »
1l serait peut-étre plus exact de dire qu’z/ faul employer des obser-
vations de plus en plus distantes entre elles , é mesure qu'on cn
emploie un plus grand nombre ; et nous allons voir, en effet, qu'avec
cette attention , on peut , & volonté , atténuer les erreurs. Soit @
Vintervalle , supposé constant , qui sépare les valeurs consécutives
de x ; intervalle que, ci-dessus, nous avions pris pour unité. Nos
résultats deviendront alors

: . d . B dy _, B

Pour 3 observations, X —=:=, E 4 Bl
d.Xr' L dxz az

. d}’ o B8 n ‘;2}’ —a i .

Pour 5 observations, E:l; =37 LE s tas
. dy [ L dy B

Pour 7 observations, E, - =? - | O 9 ta
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Pourvu donc que nous prenions pour @ des nombres qui croissent
plus rapidement que ceux de la suite 2,2, %,... nos erreurs iront
continuellement en décroissant, & mesure que nous aurons recours
3 un plus grand nombre d’observations. Supposons, par exemple,
que nous fassions croitre les valeurs de @ suivant les nombres de la
suite naturelle ; et prenons pour unité la valeur de cette quantité
qui répond au cas de trois observations, nous aurons alors

Pour 3 observations , E.;8 , E.Zg ,
b

Pour 5 observations , E.is , E.is ;
Pour 7 observations , E.2e , E. 1

2
d’olt Ton voit qu’alors les ecrreurs sur les coefficiens différentiels
du premier ordre décroitront comme les inverses des nombres na-
turels , et que cclles qui affecteront les coefficiens différentiels du
second ordre décroitront suivant la progression, plus rapide encore,
des inverses des nombres triangulaires. La méthode de M. Laplace
est donc , du moins de ce c6té, tout i fait & l’abri du reproche.
Mais , supposons qu’on ait, enfre deux limites fixes données, des
observations assez nombreuses pour rendre trés-petite la différence entre
les valeurs consécutives de w. Suivant ce qui_ vient d’étre dit, on
devra rejeter un d’autant plus grand nombre de ces observations
, dy Ay
qu'on en voudra employer davantage dansla recherche de - T
Or, c’est 14 un inconvénient assez grave, sur-tout si 'on n’a aucun

motif de suspecter plutét les données que I'on rejette que celles dont
on se propose de faire exclusivement usage ; puisqu’on se prive ainsi
des compensations d’erreurs sur lesquelles on pourrait compter en
les employant toutes.

En réfléchissant sur ce sujet, il m’a paru quil était possible de
tout concilier , au moyen de la méthode des moindres quarrés (*),

*) On sait que la méthode des moindres quarrds repose sur ce principe que
Ia valeur moyenne, la plus probahlement voisine de Pexactitude , d'une quantité
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et d’arriver par elle a toute la preécision qu'il est possible d’espérer
dans la recherche qui nous occupe. Voici pour cela de quelle ma-
nitre je congois qu'on en doit faire usage.

Solent @, @/, a’,.. des valeurs de #, en nombre quelconque,

et soient &, &/, b” ... les valeurs données et correspondantes de y.
Soit posé

y=A4Ba+Cx*4-Dz’H-.... ; (1)

en prenant dans cette fonction autant de termes seulement qu’on
en admettrait si, suivant ce qui vient d’étre dit ci-dessus, on ne
se proposait d’employer qu'une partie des valeurs correspondantes
de x et de y; il Sagira de déterminer les valeurs des coefliciens
A, B, C, D,... Si leur nombre était égal a celui des obser-
vations , on pourrait leur assigner des valeurs qui rendissent les
erreurs touf i fait nulles; mais la chose sera{impossible dans le cas

actuel , et il faudra se contenter de rendre minimum la somme de
leurs quarrés,

Ces erreurs étant respectivement
A+4Ba 4Ca *4-Da ....—~b ;
A-4-Ba! +Ca’ *~-Da/ 34-.o..~b/ ,
A~4=Ba/'4-Ca'*4Da!Pdsoeo—b"

© o e s ® s s 2 @ s 8 e o e 8 0 4 v s 3

il faudra faire

dont on a plusieurs valeurs approchées, est celle qui , étant supposée tout i fait
exacle , rendrait minimum la somme des quarrés des erreurs dont les autres seraient
alors affectées. Le premier ouvrage imprimé dans lequel il ait élé fait mention
de cette méthode est le mémoire de M. Legendre, déja cité dans une précé-
dente note ( 1806). Dans un ouvrage publié eu 1809, M. Gauss a déclaré faire
usage d’une semblable méthode depuis 1795 ; et M., Laplace a démontré posté-

rieurement que cetle méthode est rigoureusement conforme a la doctrine des
probabilités.
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(Ad+Ba +Ca *4-Da P 3?3
F(A4-Ba’ +Ca’ *+Da’ *+ure.o—b' )?
(A~ Ba/'~4Ca'*+-Da'* 4 ur..o—b")?

e e e e e .
¢’est-a-dire , en diffécentiant par rapport 3 4, B, c, D,..
(A+Ba +Ca *~+..e=b Ydd-+}a dB4a *dCH-...)
~-(A+Ba! +Ca’ *A-....—b' ) dd~+-a’ dB4a’ *dC+-. ..)-
(A~ Ba''4-Ca!*~....—b'"(d A4}-a"d B+ a*d C4-....)
e R s e e st aae e

A cause de lindépendance entre 4, B, C, ... les multiplicateurs
de d4, dB, dC ... devront séparément étre nuls; faisant donc
en général, pour abréger,
Sat =g o/ "o/ "-....... .- s
Sa"b=amb+a" b ta! T e
en aura cette suite d'équations

S0t A+Za B+3a*.CH+2a3 D+....=Za0b I

=minimum ;

=00

Za .A+-3Sa* . B4-2a . CH+-20t . D+-....=Za b ,

200 A5 BBt (425 Db msah , | O

.
® o * & o+ o ® & s s s e e v o e o o &6 & s & o s g

en nombre pré ‘sément égal 4 celui des coefliciens 4, B, €, D,...
qil s'agit de dcterminer; et, tandis que les methodes ordinaires
donnent pour y et ses coefliciens differcniiels des valeurs d'une pré=
eision toujours un peu inferieure & cele des donnees d’apres les—
quelles on les calcule , on pourra le plus souvent espérer ici de
l’emportcr en precision sur ces données elles-mémes.

Le cas le plus simple, ct en meéme temps le plus fréquent , est
celui od les valeurs de # sont en progression par differences; il est

alors permis de substituer & celte progression ia suite naturelle des
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nombres. Soit 2n-1 le nombre des valeurs connues et correspon-
dantes de x et ¥, on pourra numéroter o la valeur de z qui se
trouvera occuper le milieu, de maniére que le numérotage soit

—n, —(n—1), w.=3,—2, —1, 30, 41, 42,43 ,t(@=1), tn

si alors on désigne par Zr™ la somme des m.™* puissances des
nombres de la suite naturelle, on aura

Za°=2n+1, Bg=o0, Za*=23n*, ZBa’=o0, Zat=23n*,..;

au moyen de quoi les équations (1) deviendront

(et 1) A4-22n.CH-....=3b , 2Zn*.B423nt D4 =322 b,
235 0%, Ad-25n* C¥n.=20b , 2304 B+22n5D4-...=2a°0 ,
2Ent. A422n0.CHn=2a%h , 238 B4-28n8 D+....=2a% ,

.
€ ® e o & 2 & : <« © s 6 s & s O + o 8 8 & 8 s 0+ o 2 8 s s e s e s s s g

ainsi, outre que les sommes de puissances semblables des nombres
naturels sont données par des formules connues et générales , on
aura ici l'avantage de pouvoir caleuler séparément les coefficiens de
rangs pairs et ceux de rangs impairs, ce qui simplifiera le travail
d’'une maniére notable.

Dans le cas méme oU ni les valeurs de # ni celles de y ne
marcheraient en progression par différences, on pourraitencore profiter
de ces simplifications , en procédant comme il suit: on supposerait
que 2 et ¥ sont toutes deux fonctions d’une troisiéme variable z,
dont les valeurs , tout & fait arbitraires , pourraient étre numérotées
comme nous l'avons dit ci-dessus a l'égard de x ; on chercherait

. 2 2
par notre procédé , les valeurs de g—:— , % ) -3—5 5 g?{-,....; et
on aurait ensuite par les formules connues, relatives an changement
de la variable indépendante ,
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dy de  dwy dy dex
dy dz dzy ___5; dz® dz_dz2
dx ~ da der dx . ’
dx dz

cette méthode me semblerait préférable & celle qui consiste & inter-
poler entre les observations , afin de les rendre équidistantes ; attendu
qu’il peut étre dangereux , dans un probléme d’une nature aussi
dclicate , de dénaturer les données avant d’en faire usage.

Il nous parait que lintroduction. des procéddés que nous venons
d’'indiquer , dans la méthode de M. Laplace, pour la détermination
des orbites des cometes , ne peut qu’ajouter beaucoup i sa précision ,
du moins dans le cas ou P'on peut disposer d’un grand nombre d’ob-
servations ; mais cette méthode , comme beaucoup d’autres, aura
toujours le grave inconvénient de w'étre, au fond , qu'un tatonne-
ment bien dirigé.

I resterait ici au surplus un autre probléme & résoudre, lequel
pourrait étre énoncé comme il suit: On sa/t que des points donnés,
en nombre quelconque, sont a peu prés situés sur une courbe para-
bolique d’un degré déterminé , mais inconnu; et l'on demande de
découvrir quel est le plus probablement le degré de cette courbe P
La solution de ce probleme leverait compléte'ment I'incertitude du
calculatenr qui, voulant appliquer la mdthcde de M. Laplace, se
trouve pouvoir disposer d’'un grand nombre d observations.

TRIGONOMETRIE



