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34IPOLYGONES RËGULIERS. 

On reconnaît ici les équations fondamentales de la trigonométrie
sphérique.

Il n’aura pas au surplus échappé au lecteur que toutes les

formules que nous venons d’obtenir , et beaucoup d’autres que nous
aurions pu en déduire j, sont des formules de trigonornétrie sphérique,
auxquelles peut-être on parviendrait beaucoup rnoins facilement en

employant les voies ordinaires. 

GÉOMÉTRIE.

Théorèmes relatifs aux polygones réguliers ;
FRANÇAIS

IL a été fait mention , dans le IV.e volume de ce recueil ( pages 70 et I33)
d’une communication faite par M. Legendre à feu M. Français, au sujet de la

nouvelle théorie des imaginaires de M. Argand. Ce qu’on va lire est la subs-

tance d’une réponse à cette communication , datée de La Fère, 7 novembre 1806.
M. Français mande à M. Legendre qu’il était, dès l’an X , en possession des

théorèmes que sa lettre renferme , qu’il en supprime les démonstrations , pour éviter
les longueurs ; mais qu’il pense qu’elles doivent se rattacher facilement a la nou-

velle théorie. Il termine ainsi :

« Je suis intimement persuadé que la Géométrie de position va enfin voir le

" jour. Depuis Leibnitz, plus d’un siècle elle fut annoncée aux savans. C’en est

" fait, je crois, elle va naître ou elle est née : gloire à son auteur ".
Nous aurions .pu tenter de donner les démonstrations de ces théorèmes ; nous

avons pensé qu’il était plus convenable de laisser au lecteur le plaisir de les
découvrir.

Dans tout ce qui va suivre , nous représenterons constamment
par SI , S2 , S3 ,.... les sommets d’un polygone régulier ; C sera
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son centre ; r , r’ seront respectivement les rayons des cercles cir-
conscrit et inscrit ; P sera un point placé à une distance a du centre,
et dont nous indiquerons la situation dans chaque cas ; m et n

seront des nombres abstraits, entiers et positifs ; et 03C9 sera la demi-

circonférence du cercle dont le rayon = I. Nous ferons connaître

les autres notations à. mesure qu’elles nous, seront nécessaires. 

THÉORÈME I. Dans tout polygone régulier de m côtés , où
le point P est quelconque; n étant m ; on a.

t’intégrale étant prise, dans le second membre , depuis 03B2=0 jus-
qu’à 03B2=03C9.

Corollaire I. P et P’ étant deux quelconques dés points de la-

circonférence d’un cercle concentrique à notre polygone, et: n étant

toujours m; on a 

Corollaire II. Deux polygones réguliers SIS2S3...Sm, S’IS’2S’3 ...S’m
étant inscrits au même cercle ; si l’on a nm et n’m ; on aura,
P étant quelconque

Corollaire 111. P étant toujours quelconque ; soit mené au cercle
circonscrit le rayon CD , perpendiculaire à CP , et. soient joints
PD ; en aura, 

Corollaire IF. P étant un quelconque des points de la circon-
férence du cercle- circonscrit au polygone et n. étant toujours
m; on a. 
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Corollaire V. P étant encore quelconque sur la circonférence du

cercle circonscrit , et 2m étant le nombre des côtés du polygone ; en

supposant toujours nm ; on aura

THÉORÈME II. P étant toujours quelconque, sur la circon-

fére.nce du cercle circonscrit, et le nombre des côtes du polygone
étant 2m+I; quel que soit le rapport de m à n ; on aura

THÉORÈME Il. Deux polygones réguliers SIS2S3 ....S2m+I et
S’IS’2S’3 .... S’2m-I , de 2m+I et 2m2013I côtés étant inscrits an même
cercle ; et P, pl étant deux quelconques des points de la circonférence de
ce cercle ; PQ étant la corde qui divise l’angle SmPSm+I en deux
parties égales ; si l’on a 2n2m2013I , on aura

THÉORÈME IV. Deux polygones réguliers SI , S,, S3 ....S2m
et S’IS’2S’3 .... S’2m20132 , de 2m et 2m20132 côtes étant inscrits au

même cercle ; et deux points P, P’ étant pris quelconques sur la
circonférence de ce cercle ; en supposant n2m2013I , on aura

THÉORÈME V. Le point P étant queleonque , et m étant le

nombre des côtés du polygone ; soit AB le diamètre du cerclé

circonscrit passant par P ; soit pris, sur la circonférence de ce,

cercle, à partir du point A, un arc AE=m.ASI ; si de plus on
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prend. sur ce diamètre AB , ou sur son prolongement, un point F
tel que l’on ait CF=am rm-I, et si enfin on joint EF , on aura

Corollaire 1. Le point P étant pris arbitrairement sur la direction
de CSI, et le nombre des côtés du polygone étant toujours =m ;
on aura

suivant que le point P sera intérieur ou extérieur au polygone.
Corollaire II. Le point Pétant qnelconque, sur la circonférence

du cercle circonscrit , et m étant le nombre des côtés du polygone;
si l’on prend, à partir de P , l’arc PSIG=m.PSI , et qu’on mène
la corde PG ; on aura 

THÉORÈME VI. Tout étant ici comme dans le Théor. V, si

ce n’est que le nombre des côtés du polygone est supposé =2m ;
si l’on prend , sur la direction du diamètre AB, un point F’, aussi
éloigné du centre que l’est le point F, mais du côté opposé ; en
joignant F’E, on aura

les points F , F’ étant tels que CF=CF’= -; et le point E étant
tel que l’arc ASIE=m. ASI.

Corollaire I. Deux points P , P’ étant quelconques, sur la cir-

cenférence d’un cercle concetitrique à un polygone régulier de 2m
côtés ; on a 

Corollaire II. Le point Pétant quelconque, sur la direction de

CSI;
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CSI ; suivant que ce point sera extérieur ou intérieur au polygone,
supposé de 2m côtés, on aura

On aura aussi, quel que soit P sur CSI ,

Corollaire III. P et P’ étant quelconques sur la direction de

CSI et 2m étant toujours le nombre des côtés du polygone; on aura

les signes supérieurs devant être pris dans les deux membres , si

P et pl sont intérieurs au polygone ; les signes inférieurs , s’ils lui

sont tous deux extérieurs ; enfin le signe inférieur du premier membre
devant être pris avec le signe supérieur du second , si P est exté-
rieur et pl intérieur.

Corollaire IV. Deux polygones réguliers de 2m côtés étant con-
centriques , et ayant leurs côtés respectivement parallèles; et Pétant
quelconque sur la direction CS’ISI ; on aura

Les signes supérieurs devant être pris , dans les deux membres 
si le point P est extérieur aux deux polygones ; les inférieurs,
s’il est intérieur à tous deux ; enfin, le signe supérieur du premier
membre devant être pris avec l’inférieur du second si le point P
est situe entre les deux polygones.

Tom. V. 46
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Dans tout ce qui va suivre HI , H2 , H3 ...... seront les pieds

des perpendiculaires abaissées du point P sur les directions des côtés

SIS2 , S2S3, S3S4 ,..... respectivement; TI , T2 , T3 ,..... seront
les points de, contact des mêmes côtés avec le cercle inscrit.

THÉORÈME VII. Le point Pétant quelconque, et le nombre
des côtés du polygone étant m&#x3E;n ; on a

l’intégrale étant prise entre 03B2=0 et 03B2=03C9.

Corollaire I. P et P’ étant deux points quelconques d’une cir-

conférence concentrique à un polygone régulier, dont le nombre

des côtés est m&#x3E;n; on a

Corollaire II. Le point P étant toujours quelconque, et m , m’

étant les nombres de côtés de deux polygones réguliers eirconscrits
au même cercle ; on aura

’Corollaire III. Quel que soit le point P et le nombre m des

côtés d’un polygone régulier ; on a

Corollaire IF. P étant quelconque sur la circonférence du cercle
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inscrit et le nombre des côtés du polygone étant toujours m&#x3E;n;
on a

Corollaire, V. P étant toujours sur la circonférence du cercle

inscrit , et le nombre des côtés du polygone étant encore m&#x3E;n;
en aura

Corollaire- VI. Tout étant comme dans le précédent corollaire,
on allra encore

r étant le rayon du cercle circonscrit, et l’intégrale devant être

prise entre 03B2=0 et 03B2=03C9.

THÉORÈME. VIII. P’ étant quelconque , et-m étant le nombre
des côtés du polygone ; en posant l’angle PCTI=03B1 , on aura

Corollaire I. Si , par un point P extérieur à un polygone régulier
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de m côtés on mène au cercle inscrit une tangente PT , le
touchant en T ; en posant l’angle CPT=203B2 , et conservant à 03B1

sa précédente valeur; on aura

’Corollaire Il. Si le point P est au contraire intérieur au poly-
gone ; en élevant a CP en P une perpendiculaire PK , terminée en.
K à la circonférence du cercle inscrit , menant le rayon CK et

posant l’angle PCK=203B2 ; on aura

Corollaire III. P étant sur la circonférence du cercle inscrit ; on a

Corollaire IV. Si, au contraire, P est sur la circonférence du
cercle circonscrit ; on aura

Corollaire V. Deux polygones réguliers de m côtés étant l’un

SIS2S3 .....Sm circonscrit et l’autre S’IS’2S’3 ..... S’m inscrit a un

même cercle, d’un rayon r, de telle manière que leurs côtés soient

respectivement parallèles ; et P étant un point quelconque de la

circonférence ; on a , abstraction faite des signes des perpendiculaires

PHI .PH2 PH, ....PHm+PH’I .PH’2.PH’3 ....PH’m=4(I 2r)m .

Corollaire FI. Si, au contraire, les sommets de l’inscrit répondent
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aux mlileux des côtés du circonscrit ; on aura , en faisant toujours
abstraction des signes des perpendiculaires,

Corollaire VII. Le point P étant sur la circonférence du cercle

circonscrit à un polygone régulier de m côtes ; on aura

THÉORÈME IX. Les côtés d’un polygone régulier de an côtes

étant prolonges jusqu’à la rencontre d’une transversale quelconque
en LI , L2 , L3 ,..... Lm ; et la perpendiculaire CP abaissée du

centre du. polygone sur cette droite étant supposée =a ; en dési-

gnant toujours par 203B1 l’angle T’CP forme par CP avec le rayon
CT’=r’ du cercle inscrit qui se termine au milieu T’ du premier
côté SIS2 ; on aura, si m est impair ,

et, si m est pair,

abstraction faite des signes.
Corollaire I. Si la transversale est tangente au cercle inscrit ; et

si, ayant pris l’arc PT’E=m.PT’, on mène par E une tangente
EL, rencontrant la transversale en L ; en faisant toujours abstraction
des signes , on aura , si m est pair , 

PLI.PL2.PL3 .....PLm=r’m ;
et si m est impair,
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PLI.PL2.PL3 .....PLm=PL.r/m-I .

Corollaire Il. Si la transversale est tangente au cercle circonscrit
en P ; en prenant , à partir de P , l’arc PSIE=mPSI , menant
au cercle , par E, la tangente EL rencontrant la transversale en
L ; on aura, toujours abstraction faite des signes , si m est impair /1,

PLI.PL2 .PL3 ..... PLm=PL.rm-I ;

et, si m est pair.,

PLI.PL2.PL3 ..... PLm=EL2.rm-2.

Corollaire Ill. Enfin la transversale étant supposée passer par-
le centre du polygone ; si par l’un M des, points ou cette droite

coupe le cercle inscrit, on mène à ce cercle une tangente perpen-
diculaire à la transversale , et si, après avoir mené le rayon CA,
parallèle à cette tangente , et pris l’arc AT’E=m.AT’=m(I 2 03C9-MT’),
on mène le rayon CFN par le milieu F de l’arc AT’E, et pro-

longé jusqu’à la rencontre de la tangente en N ; on aura, eu faisant
encore abstraction des signes, si m est impair,,

PLI.PL2.PL3 ....PLm=CN. (2r’)n-I ;

et, si m est pair ,

PLI.PL2.PL3 .... PLm=CN. (2r’)n-2 . (*)

(*) Il serait curieux de rechercher si les polygones étoilés de M. Poinsot, ou
même ceux qui ont été considérés par M. Argand, a la page 189 de ce volume
ne jouissant pas de quelques propriétés analogues ; en supposant toutefois , pour
ces derniers, ou que leurs sommets sont uniformément distribués sur une cir-

conférence de cercle, ou que leurs côtés sont tangens à un même cercle, et

ont leurs points de contact avec lui uniformément distribués sur la circonférence.,
J. D. G.


