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POLYGONES REGULIERS. - 34t

GEOMETRIE.

Théorémes relatifs aux polygones réguliers ;
Par feu Frangais , professeur aux écoles dartillerie.

v AN

IL a été fait mention, dans le IV.® volume de ce recueil ( pages '}o et 133),
d'une communication faite par M. Legendre & feu M, Francais , au sujet de la
nouvelle théorie des imaginaires de M. Argand. Ce quon va lire est la subs-
tance d’une véponse acelte communication , datée de La Fére, 7 novembre 1806,
M. Frangais mande & M. Legendre qu'il était , dés lan X, en possession des
théorémes que sa lettre renferme , qu'il en supprime les démonstrations , pour éviter
tes longueurs; mais quil pense quelles doivent se ratlacher facilement & la nou-
velle théorie. Il termine ainsi :

« Je suis inlimement persuadé que la Géométrie de position va enfin voir le
» jour. Depuis Leibnitz, plus d’un siécle elle fut annoncée aux savans. C’en est
» fait, je crois, elle va naftre ou elle est née : gloire & son: auteur ».

Nous aurions pu tenter de donner les démonstrations de ces théorémes; nous

avons pensé quil était plus convenable -de laisser au lecteur le plaisic de les
découvrir,

Dans tout ce qui va suivre , nous représenterons constamment
par S;, S,, S;,.... les sommets d’un polygone régulier; G sera



34 POLYGONES

son centre s r; 7/ seront respectivement les rayons des._eercles cir-
conscrit et inscrit; P sera un point placé 4 une distance ¢ du centre,,
et dont nous indiquerons la situation dans chaque cas ; m et n
seront des nombres abstraits , entiers et positifs ; et = sera la. demi=
circonférence du cercle dont le rdyon =1. Necus ferons connailre

les autres notations 3 mesure qu’elles nous. seront nécessaires.

THEOREME I. Dans tout polygone régulier de m cotds , ol

Ie point P est quelconque; n étant <m; on a

—— 1L

PS. 4 PS . 4PS, ot DSy = 2 f(ar—2arCosptr . de

Tintégrale étant prise, dans le second membre , depuis =0 jus=
qu'a p==w

Corollaire 1. P et P/ étant deux quelconques des points de la-
circonférence d’un cercle concentrique a notre polygone , et 2 étank
wujours <m3j;ona

n —n
PS +PS e Ay -l-PS,,, -—.P/S +P’S -|— censes -]—P’Sm .

'Corollaire 11.Deux polygones réguliers §.S,8S,...S,,, § S Sy
étant inscrits au méme cercle ; si l'on a n<m et n/<m; on aura;
P étant. quelconque

—‘T‘ an — T e 3 18 —
PS, ++PS, +PS, 4 e +PS,

- —

— 21 !
PS/, +PS’ +PS/ +. PS4,
“Corollaire III. P étant toujours quelconque ; soit mend au cercle:
eirconscrit le rayon GD, perpendiculaire & CP ,. et soient joints:
PD.; en aura :

—_— —1 e—2r —_ —_—
PS,4PS,4PS, 4 e +BS,,=m . PD. .
Corollaire: 1V. P étant un quelconque des points de la circon=

férence du cercle circonscrit. au polygone , et z étant tou;ours’
<m; on a
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-—zn_ 1.3.5.7 cowns (27=1) 2
Ps. "4Ps, +PS "+ v DS, 2.46.8 v 20 +m(ar) .

Corollaire V. P étant encore quelconque sur la circonférence du

«cercle circonscrit , et 2z étant le nombre des c6tés du polygone; en
supposant toujours n<m ; on aura

— T —20 — —12n —— 11 —T1

PS, +PS, +PS; 4. +PS,m.,=PS, +PS, +Pss+ +Ps,,,,

THEOREME M. P étant toujours quelconque , sur la circon-
férence du cercle circonscrit, et le nombre des cétés du polygone
étant 2m--1 ; quel que soit le rapport de m 4 .»; on aura

——(241) ——(2R-} —-—(lfl+:)
PS +PS; + + Tm-x
—(2n41) --—( n-1) ——-(2"+1)

=PS; —+PS “+...PS
THEOREME 1II. Deux polygones réguliers §,S,5, .S,y et

§/,8,8; S iy » de 2m—-1 et 2mem1 cOtés étant inscrits au méme
cercle ; et P, P/ étant deux quelconques des points de la circonférence de
ce cercle; PQ étant la corde qui divise langle S,PS,,, en deux
parties égales; si I'on a 2n<2m—1, on aura

{'——"2” e 2 71 _—1n

PSS, ot DSy Py P s frant P8 J=PQ

THEOREME 1¥. Deux polygones réguliers S, , 8., S; .S, p
et 8/,8/,8, weS ey, de 2m et 2m—2 cOtés étant inscrits au
méme cercle ; et deux points P, P/ étant pris queiconques sur la
circonférence de ce cercle ; en supposant n< 2m—1, ON aura

Je———" Y/ } ——21 — 1

P 1] — 21 —— 211
(B8, PS4t DS g — (P15 AP/, ouA P/, 1y = PO PG«

THEOREME V. Le point P étant quelconque , et m étant le
nombre des cétés du polygone ; soit AB le diametre du cercle
circonscrit passant par P ; soit pris , sur la circonférence de ce
cercle , 4 partic da point A, un arc AE=m.AS, ; si de plus on
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prend. sur ce diamétre AB, ou sur son prolongement ; un point ¥

tel que lon ait CF= ;Z—_;, et si enfin on joint EF, on aura
PS,.PS,.PS, ..PS,=FEF.r"—* |

Corollaire I. Le point P étant pris arbitrairement sur la direction
de CS,,et lc nombre des cotés du polygone étant toujours =m ;
on aura

PS, .PS,.PS, .....PS,=+("—a") ;

suivant que le point P sera intérieur ou extérieur au polygone.

Corollaire 11. Le point P étant quelconque , sur la circonférence
du cercle circonscrit, et . étant le nombre des cétés du polygone;
si l'on prend, & partir de P, larc PS,G=m .P§,, et qu'on mene
la corde PG ; on aura

PS, .PS,.PS, . PS,=PG .71 .

THEOREME V1. Tout étant ici comme dans le Théor. ¥, si
ce n’est que le nombre des cétés du polygone est supposé =am ;
si I'on prend, sur la direction du diamétre AB, un point F/, aussi
éloigné du centre que Vest le point F, mais du c6té opposé ; en
joignant F/E , on aura

PS,.PS,.PS,...PS,, _, =EF ;=1 ,
PS,.PS,.PS...PS,, =EF.r"=t

les points F, F/ étant tels que CF=CF/= r:;_‘ ; etle PointEétan%
tel que I'arc AS,E=m.AS,.

Corollaire 1. Deux points P, P/ étant quelconques, sur la cir-

cenférence d’un cercle concentrique 4 un polygone régulier de 2m
¢olés ; on a ,
{PS,.PS, ...PS,, . }*+{PS,.PS,..PS,,}*
={P/S, . 'S, .. P8, P {P/S, P8, .. P8, .10 .
Corollaire II. Le point P étant cjuel’conque , sur la direction de
CS,;
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CS, ; suivant que ce point sera extérieur ou intérieur au polygone,
suppos¢ de 2m cétés, on aura

PS, .PS, .S, ... PS,n_, =+{CP —C8,} .

On aura aussi, quel que soit P sur C§, ,
—f}  —
PS,.PS,.PSs..PS,,, =CP --CS, .

Corollaire III. P et P/ étant quelconques sur la direction de
CS, et 2m étant toujours le nombre des cotés du polygone; on aura

PS, .PS e PS,,TPS, . PS, i PS,m_,
=P'S, .P/S, . P/S,,P/S, . P/S, \eP/S, 0,

les signes supérieurs devant étre pris dans les deux membres , si
P et I/ sont intérieurs au polygone; les signes inférieurs, s'ils lui
sont tous deux extérieurs; enfin le signe inféricur du premier membre
devant &tre pris avec le signe supdrieur du second , si P est exté-
rieur et P/ intérieur.

Corollaire IV. Deux polygones réguliers de 2m cétés étant con-
centriques , et ayant leurs c6tés respectivement paralleles; et P étant
quelconque sur la direction CS/,S,; on aura

PS,.PS,....PS,,+PS,.PS,....PS, .,

=PS/, PS ;1 PS/ ,y P/ PSPy,

Les signes supérieurs devant étre pris , dans les deux membres
si le point P est extérieur aux deux polygones; les inférieurs,
§il est intérieur 3 tous deux ; enfin, le signe supérieur du premier
membre devant étre pris avec linférieur du second si le point P
est situé entre les deux polygones.

dom. ¥V, 46
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Dans tout ce qui va svivre H, , H, , H, ...... seront les pieds
des perpendiculaires abaissées du point P sur les directions des cotés
S,S,. 5,5;, §;5,,..... respectivement; T, , T, , T, ,..... seront
les points de contact des mémes c6tés avec le cercle inscrit.

THEOREME VII. Le point P étant quelconque, et le nombre
des cotés du polygone étant m >z ; on a

L]

PH, +-PH,4-PH;+ e +PHn= = f(r/—aCos.e)"ds ;

l’intégrale étant prise entre g==o0 et p=m,

Corollaire 1. P et P/ ¢tant deux points quelconques d’une cir-
conférence concentrique a un polygone régulier, dont le nombre
des cOtés est m>n; on a

PH, +-PH,+PH , ..o +PH, = P/H,+-P/H , P H ,4.r. 4+ P/H,, ,
Corollaire I11. Le point P étant toujours quelconque, et m, m/

étant les nombres de cotés de deux polygones réguliers eirconscrits
au méme cercle; on aura

PH,++PH,+PH, + cweere +PH,,

e 71 — —— 71 m!

PH/, 4P ,+PH/, 4. PIT,,

Corollaire 111. Quel que soit le point P et le nombre m des
86tés d’un polygone régulier ; on a

PH,+PH,+PH, +u... +PH,=mr" .

Corollaire 1V. P étant quelconque sur la circonférence du cercle
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inscrit et le nombre des cotés du polygone étant toujours m>an;
on a

—Tt —T1 - 1.3.5.7 i (2n=1)

PH, 4-PH, 4+-PH, + .. SPH,

mr/"’ R

1.2.34 viens 21

Corollaire V. P étant toujours sur la circonférence du cercle
inscrit, et le nombre des cétés du polygone étant encore m>n
on aura

e 1 bt 113 — 1 e ¥ 7E
PT, +PT, +PT, +e-PT,,

fasand (2,~/)u R

e {1 —11 ——

PH,~+PH,+PH,+......+PH,

Corollaire VI. Tout étant comme dans le précédent corollaire,
on ayra encore

] — — 1 g
PH ~+PH, +PH; +-....-+-PH, -—2—[< Cos. — -—-Cos ,e) e

r étant le rayon du cercle circonscrit, et lintégrale devant étre
prise entre g=o0 et g=wu.

THEOREME. VIII. P étant quelconque, et—m étant le nombre
ces cOtés du polygone ; en posant I'angle PCT, =& , on aura

PH,.PH,.PH, ..PH, =

N e A N
]/x+ +}/1—-— R

Corollaire I. Si, par un point P extérieur i un polygone régulier

— 2Cos.2me

<
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de m c6tds on méne au cercle inscrit une fangente PT, le
touchant en T ; en posant I'angle CPT=2g , et conservant i «
sa préccédente valeur ; on aura

PH,.PH,.PH, ... PH,_ =4(; @)"Sin.m(se—g)Sin.m(a4-8) :

‘Corollaire II. Si le point P est au contraire intérieur au poly—
gone; en élevant & CP en P une perpendiculaire PK , terminée en.
K A la circonférence du cercle inscrit , menant le rayon CK et
posant l'angle PCK=28; on aura

PH,.PH, PH,..PH,=(;a)"{Tang."(:=- )} Cot,” (35— 8)—2Cos.2m«}
Corollaire IIl. P étant sur la circonférence du cercle inscrit; on a
PH, .PH,.PH, ....PH,=4(; r)"Sin.*ma.

Corollaire 1V. Si, au contraire , P est sur la circonférence du
cercle circonscrit; on aura

PH, .PH, .PH, ... PHy==am/(:7)"Cos.*me :
Corollgire V. Deux polygones réguliers de m c6tés dtant 'un
8,8.8;.....5,, circonscrit et lautre 8/,8/,8/,....8/, inscrit & un
méme cercle , d’'un reyon r, de telle maniére que leurs c6tés soient
respectivement paralleles ; et P étant un point quelconque de la
girconférence ; on a , abstraction faite des signes des perpendiculaires ,

PH,.PH, .PH, ...PH,+PH/, .PH/, .PH/, ...PH/, =4(r)" .

Qorollaire V1. 8i, au contraire, les sommets de I'inscrit répondent
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aux milieux des cétds du circonscrit ; on aura , en faisant toujours
abstraction des signes des perpendiculaires,

PH, .PH,.PH, ... PH,=PH/,.PH/,.PH’, ...PH/,, .

Corollaire VII. Le point P étant sur la circonférence du cercle
circonscrit 3 un polygone régulier de 7 cotés; on aura

(PS,.PS, .PS, ...PS,)"
PH,.PH,.PH, ...PH,

=—(2r)" .

THEOBEME IX. Les cotés d’un polygone régulier de m cétds
étant prolongés jusqu’a la rencontre d’une transversale quelconque
en L, , L,, L;,..... L,;
centre du polygone sur cette droite gtant supposée =a; en dési~
gnant toujours par 2« l'angle T/CP formé par CP avec le rayon

et la perpendiculaire CP abaissée du

CT/=r/ du cercle inscrit qui se termine au miliew T/ du premier
A 14 . . .
c6té §,S,; on aura, si m estimpair,

PL.PL,.PL,..PL,= {(‘/ ety =2 ) -3/ rfa—\/ riems) ez (20)" G050 24} ;

Szm

et, si m est pair,

PL,PL, PL,; . PLy=———{(/ 7ot/ 7=a) (/i Fa=y/ 7=2s) * Temm2(2a)"Cos.2mm4} §

(sz ma)?
abstraction faite des signes.

Corollaire 1. Si la transversale est tangente au cercle inscrit ; et
si, ayant pris l'arc PT/E=m.PT/, on méne par E une tangente
¥L, rencontrant la transversale en L ; en faxsant toujours abstraction
des signes, on aura, si m est pair,

PLI .PL; -PL; LTI PLm=r./m 2

et si 7 est impair,
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PL,.PL,.PL, ...PL,=PL . ym—s ,

Corollaire I1. Si la transversale est tangente au cercle circonscrit
en P ; en prenant, 4 partir de P, l'arc PS,E=mPS, , menant
au cercle, par E, la tangente EL, rencontrant la transversale en
L; onaura, toujours abstraction faite des signes, si 7 est impair,

PL,.PL, .PL, ..PL,=PL.ro—: ;
et, si m est pair,

PL..PL,.PL, .o PL,=EL .;m=* .

Corollaire I11. Enfin , la transversale étant supposée passer par
le centre du polygone; si par 'un M des points ol cetie droite
coupe le cercle inscrit, on méne & ce cercle une tangente perpen-—
diculaire & la transversale ; et si, aprés avoir mené le rayon CA,
paralléle & cette tangente , et pris 'arc AT/E=m . AT/ =m:=—MT’),
on meéne le rayon CFN par le miliea F de Varc AT'E, et pro-
longé jusqu’a la rencontre de la tangente en N; on aura, en faisant

encore abstraction des signes, si 2 est impair,
~

PL,.PL, .PL, ...PLa=CN. (2r/)"=" ;
et, si m est pair,

PL,.PL,.PL, .PL,=CN . (2r)"=* . (¥

/

(M 11 serait curieyx de rechercher si les polygones étoilés de M. Poinsot , ou
méme ceux qui ont €té considérés par M. Argand, 4 la page 189 de ce volume ,
ne jouissant pas de quelques propridtds analogues ; en supposant toutefois , pour
ces derniers, ou que leurs sommets sont uniformément distribués sur une ecir-
conférence de cercle, ou que leurs cOtés sont tangens 4 un méme cercle , et
ont leurs points de contact avec lui uniformément distribuds sur la circonlérence.

J. D, G.



