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ATTRACTION DES SPHEROIDES. 273

~ MECANIQUE.

Meémoire sur lattraction des spheroides elliptiques
homogeénes ;

Par M. J. Prana , professeur d’astronomie a l'académie de
: Turin.

[a Tla “ Vi Vo S Vi i T

1. L’ON trouve , dans le premier volume de la nouvelle édition de
la Miécanigue analitique de M. Lagrange ( pages 113—114 ),
Pénoncé d’un procédé trés-ingénieux , pour former la série qui donne
Pattraction des ellipsoides homogenes , sur les points extérieurs X
leur surface. J’ai remarqué que ce procédé peut étre démontré, d’une
maniére assez directe et simple, en transformant les coordonnées de
la sarface du corps attirant, conformément & ce qui a été pratiqué
par M. Yvory , dans son excellent mémoire , sur lattraction “des
ellipsoides homogenes. (*)

2. Soient # , y , z les coordonnées d’'un point quelconque de
Vellipsoide ; dM=dxdydz I’élément de sa masse ; et @, &, ¢ les
coordonnées du point attiré. En posant

V’_ dmr
]V e—mrF—pte—ar

Pon sait qu'il suflit de connaitre la valeur de 77, pour en conclure

(") Voyez les Transactions philosophiques , pour 1809 , ou le Nouveau bulletin
des sciences , par la société philomatique , tome III, n.° 62 , 5.e année , no=
vembre 1812, page 176, Voyez aussi le n. 64 du méme recueil, page 216.
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par la simple différentiation , les attractions paralléles aux axes. (*)

Soient , pour plus de simplicité,

T=[(e—2)+(b—y) 4 (c—2)]+ ; X =ax+t+bytcz
r=v aFbigc B=\/qyogaa
d’ott o
T=[(r*-+R*)—=2X]"7 ;
ou, en développant la valeur de T,

-3
z

- S 13 - '
T=(r4-B) 3 (AR 2 XAl (o B X

Maintenant, si on congoit que l'on ait développé les radicaux
qui entrent dans cette série, il est évident que l'on réduira la valeur
de 7 A& une suite de termes de la forme Aamyn.zt, dans lesquels

. . . X .
‘A sera une fonction rationnelle et entiére de ¢, &, c, —. Il suit
r

de 1a que, pour former la série qui exprime la valeur de 77, il
est nécessaire d'avoir une f{ormule propre & donner la valeur de
Vintégrale

Samyr2dT

étendue % toute la masse de lellipsoide. Or , il est clair qu'en
plagant Porigine des coordonnées au cenire de Pellipsoide , I'on aura
Sz y"2dM=0, toutes les fois que 'un des exposansm , n, /sera
impair , puisque les mémes ¢lémens s’y trouveront, avec des sigues
contraires. Donc , il faudra commencer par supprimer , dansla valeur
précédente de T, tous les termes multipliés par des puissances im-~
paires de X; et il faudra ensuite , par !a méme raison, rejeter du
développement des paissances paires de X tous les termes non compris
dans la forme A.z*my*".z*L En désignant par X/, X/¢, X/6 .. =
ce que devienuent par la les valeurs de X2, A%, X6 ....;onaura, .
dans le cas présent, :

(") Voyez la Méeanique céleste, tome I, page 136, et tome Il , page 13,
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7 -z . -1 1.3.5.7, -2 -
(4) T=(~+B) ’+£(f’+ﬁ”) ‘.z=.X/’+z'g%f’+R’> e e

3. Cela posé , cherchons une formule propre & donner la valeur

de l'intégrale
S xrmyrr ot dadydz=P ,

étendue i la masse entiere de lellipsoide.

En intégrant d’abord , depuis 2=~—2" jusqu’s x=-}2/, il viendra

2
2m=~1

Les valeurs de 2/, y, z, qui entrent dans cette intdgrale, doivent
dtre considérées comme appartenant & la surface de I’ellipsoide ; en
conséquence , elles sont lides entre elles par 1’équation

P=— ff.x’2m+l. ym. zzl. dady.

xl2 yz z2
T T T s T

ks

k, k/, i/ désignantles demi-diamétres principaux de lellipsoide. II est
évident que l'on rend cette équation identique , en posant

a/=kSin.0 ; y="~'Cos.eSin.¢ ; z=%"/Cos.tCos.9. ™)

L’on pourra donc introduire les variables ¢ et ¢, & la place des
variables 4 et z, en prenant , conformément au principe connu ,

dydz=—£~'%"Sin.¢Cos.0.ded¢ ; ¢

d’olt résulte, en substituant

P=_2 = At rein 2 Cos 2T Sino™ Cos. o7 ded
2m-41

Pour peu que l'on examine maintenant la forme des expressions
des variables 2/, ¥ , z, en ¢ et ¢, I'on comprendra sans peine
qu'en intégrant , d’abord depuis p==0 jusqu’a ¢=200°, et ensuite

(") Ceest principalement sur cette transformation que repose le beau travail

de M. Yvory.
(**) Voyezle Traité du calcul différentiel et du calcul intégral de M. Lacroix ,

tome II, page =203, n.® 528.
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dépuis 4=o jusqua ¢=100° , l'on obtiendra la valeur de f//z*™.

yrrztldadydz relative & la moitié antérieure de Vellipsoide , et qu’en

conséquence il suffira de doubler le résultat obtenu entre ces limites ,

pour que lintégrale proposée soit étendue & la masse entitre du corps.
Commencgons lintégration par rapport & . 1l est facile de prouver

que l'on a en général

fdcp.Sinirpzn . Cos. ¢2l=2n;18m.¢"‘"+‘ :Cos. ¢ 21_1—!—:):11 fd¢.Sin.¢2n+2. Cos.?’zl-m‘2 ;
mais, en intégrant depuis ¢=0 jusqu’ad #=200° , le premier terme
de cette intégrale devient toujours nul; donc l'on aura, en conti-
nuant cette transformation,

an . 2l ale—1  2l==3 al—5 1 . a2n-al
.‘\. . . . = . . sens d¢ n. H
JSdo.Sin.e.Cos.0 ansd1 2n-43  a2nb  andal—: fdeSin-o ?

Or, par les formules connues, on trouve , entre les mémes limites ,
. on~f-2l 1.3.8.7..(2nd2l—1)
Sdogin o ST men ey
2.4.6.8....(an~f-210)

en nommant = le rapport de la circonférence au diametre.
Donc . s '

.2 ) Do (2l— B (andeal—1

Sde. Sin.e”". Cos.<p2 = L2l 1) o + ),,,- ;
(2n==1) (2n=4-3) 0. (2n~=2l—1) 2.4 (at2i)

ou bien, en réduisant,

. 2n 2l .3.5:...(2n—1 1350 (27=—=1)]
(1) fdeSine™” . Cos. 0= U )
2.4.6....(2n~4-21)
Pour effectuer. Vintégration par rapport & 4, remarquons que l'on
a, en général,

i e am2 B SOV Sin.g2m--1 Cos,g2n-+2l412
fd@.S;n.ﬂ + . Cos.6 . +2 :+‘ —— :
o - : am—j-2n~f-2/-43
o 2 . am 2n-2ld-1 :
.. "*"'"“"—j‘“‘"""‘/dé.Sln.é .C.s. 0 et .

am~-2n-4-20-4-3 ’
mais, entre les limites 6=0, ¢==100°, le presiier torme du second
membre de cette équation devient toujours nul; dunc ion aura, cn
continuant cette transformation ,
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am~}-2 Cos 2n+zl+1 (2m4-1)(2mem1)eeeeinns 1 fd0.Cos °n+2l+1
T (amr2n2l4-3) (zm—2nt2l4-1) (2 n+2l.+5)

or , par les formules connues, on trouve, entre les mémes limites,

2n+2l+1

J/de.Sin.s

4.6. al
/d6.Cos.s + : GenteD
De

2,
3 Feves .(2n+2l+1)

partant

[1.3.5u2mf~1)1[2.4.600n (22011

3.5.7u(2m4-2n~4-2l4-3)

(2) sdo Sin.92m+2.‘cos. 92"+2l+1=

En doublant le produit des formules (1) et (2), et posant

— Y
M= 3 JEE .

on obtient enfin

2 35w (em=1)11.3.5...(27==1)][1.3.5...(al—~—1)] an ,,21
B z‘zm 2n 2l _[1 2] .
B) Sz " 2 au= T S M

Ce beau théoréme est dd & M. Lagrange. (*)

4. BReprenons actuellement la valeur de 7 donnée par la série (A),
et remarquons qu’en conséquence du théoréme renfermé dans fa
formule (B) , la valeur de #’=/7TdM scra exprimde par une suite
de la forme

V:M(A/z”"./i/“‘.lz”’[-%-A/J:f wml fran prralig. L, D
o A, A’,.... représentent des fonctions rationnelles et entitres de
1 . , vV . . A
6,5, c, —.Or, il est démontré que o doit toujours étre une
r

fonction des excentricités de Pellipsoide (**), donc il doit nécessaire-
ment exister , entre les coefliciens A, A/, A7,.... des rapports

. 14
tels qu’ils réduiront la valeur précédente de 5 4 cette forme :

L)

(*) Voyez les Mémoires de l'académie de Berlin , anunées 1792let 1793 , page 262.
" Voyez la Mécanique céleste.

Tom. 1. 39
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‘ 1% =B(;f/z_k=)P@~a—lf=)‘1+Bf(;i/=.,_/z=)f”(zf//2-—22)4'+. -
11 suit de 1 que Déguation
Bk R b2l A=BI R — 2 B — B
= AL M T e U] J A 1

doit étre identiquement vraie. Cette identité ne cesse pas de subsister,
en faisant A=o0, dans les dcux membres de I'équation ; ainsi, l'on aura

! 2 20! 28

(Ci B _*_B/,I{/zi’". ;{(/27 +..=A/]i/_j‘-]£//2ﬁ+l4//'7£/ )

en nommoant A4, , A,, A, ,... les coefliciens des termes qui,
dans le second membre de l’dquation précédente , sont indépendans
de k. La formaule (B) nous fait voir que, pour obtenir les termes
qui, dans la valeur de ¥, sont indépendans de %, il sufit de poscr '
2=o, dans la valeur de 7', donnée- par la série (A). Il est évident
gue ,-par ce moyen , cette série revient & celle guc on obtiendrait
!,en développant le radical

I

\/ Qb2 2o 25y — 20 2y P22 ?

suivant les puissances de 4 et z, en conservant seulement les termes
-de la forme H.y*m.z", L’intégrale d’un tel terme est, en vertu de

la formule (B),

[1.3.5..(2m==1)1[1.3.5(2n—1)]
5.7.9e..(2m~}-2n--3)

an

MEL™™ ™"

et, d’aprés I'dquation (C), si 'on change, dans ce résultat , k* et
k/7* respectivement en k/*—Fk* et k/*—k* la fonction

[1.3.5....(cm==1)][1.3 5....¢C2an—1
5.7.9u.(2m~}-2n-}-3)

d . MH-(k/z’kz)m(k//z_kzx)n ,
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appartiendra au développement de la valeur de #7. Clest en cela que
consiste le procédé enseigné par M. Lagrange.

Turin, le 3 janvier 1813.
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