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ANNALES
DE MATHEMATIQUES

PURES ET APPLIQUEES.

ANALISE TRANSCENDANTE.

Mémoire sur les fucultes numériques ;

Par M. Kramp , professeur , doyen de la faculté des sciences
de l'académie de Strasbourg.

[a Sa S Vi Vi Vo Via Via Vo )

1. DANS mon Analise des réfractions astronomiques ( chap. 1II.
n.°® 142 et 203 ) j'ai enseigné A trouver la valeur numérique de
toute faculté quelconque, par des séries convergentes a volonté ;
mais les méthodes que: jai indiquées , pour parvenir & ce but, peu-
vent étre considérablement simplifiées. Je donne le nom de Facultés
aux produits dont les facteurs constituent une progression arithmétique,
tels que .
a(a~+r)(a—t-2r)..... [a+(m—1)r] ;
et , pour désigner un pareil produit, jai proposé la notation

amr,
Les facultéds forment une classe de fonctions trés—-élémentaires, tant
que lear exposant est un nombre entier, soit positif seit négatif;
mais , dans tous les autres cas , ces mémes fonctions deviennent
absolument transcendantes. (*)

(" La théorie des Facultés numériques , que M. Kramp désigne aussi sous la
‘dénomination de Factorielles, et qui reviennent encore & ce que Vandermonde
a appelé Puissances du second ordre , n'ayant encore élé développée jusquici
que dans un trés-petit nombre d’ouvrages, mous croyons convenable de donmer

Tom. 1ll. R



2 FACULTES

2. Jobserve que toute faculté numérique quelconque est constam-
ment réductible 4 la forme trés-simple

ici une idée succincle de ces sortes de fonclions , ¢t des notaions par lesquelles
on les désigne,

Dans Vexpression

a™"'=g(a4r)(at2r)eee.. [a-(m—1)r] ,
o est ce qu'on appelle la base de la faculté, r en est la différence, etm en esc
Vexposant ; il est clair quon a, en renversant Pordre des facteurs’,

o™ =[a-(m—1)r]™".
Dans le cas ot r==0, la faculté se réduit évidemment 4 une simple puissance ;
ainsi on a
ame =g"
Au moyen d’'un multiplicateur choisi d'une maniére convenable , on peut chan-
ger, & volonté, soit la base soit la différence d’une faculléd. Le principe de cette

transformation réside dans les équations suivantes , qui se vérifient d’elles-mémes
par le simple développement ,

(SR (F)

Si l'on derit équation identique
a'la’4-r).... (a4 (m—1)r] [a’+m7] coen [a’—}-(m-l—n—x)r]
={a/(e+r)i... [a'Fm—1)r]} < a’—{-mr) oes [a/+mr+/n-1)r] 3

suivant la notation des facultés, il v‘xendra
g/mnr — pmir >< (a"—’\'&-mr)"b' :
ou en posant mtn=p , dolt n==p=—m , et a’+mr_.a » ol a'==a<=emr , et
renversant , cetle equatlon deviendra :
{ ez omir = Ly Plr ;
la—mr ™", gP- "t ={ge—mr)! :
faisant alors p==m , et réduisant, il viendra
. . olr—- 1
ainsi toute faculté dont Dexposant est zéro vaut Uunité.

Si, dans la méme équation, on fait p==0, en observant que, d’apres ce qul
précéde , (a-—mr)‘”' 1, il viendra

1 1
a=mlr._.‘ —_

- - - e -

(a—mrymit (gepymi=r >
ce qui fournit 'interprétation des facultés dont Pexposant est négatif. On trouvera aussi que

e 1 1
oM — —_

(admry™=r T (gfrymic .




NUMERIQUES. 3

1l =1.2.3 ..., ...m
ou 2 cette autre forme plus simple
m!
si lon veut adopter la nctation dont j'ai fait usage dans mes
Elémens d’arithméiigue universelle , n.° 28g.
On a, en effet ,
a™"' =a(a+-r)(a—-2r).....[a+{m—1)r]

Sa—pm 2 i i. 2 “ ‘ b
=1 (r +1>< . +~>[;—+(m-—1)]
a a a
) 1.2.3.....<7—1>7.....[7+<m-—1)]
a

=r, N

1.2.34.4,. ( -._1)
r
a . .
(——_‘_m_—]:)!
r

t
: a™ " =ala—r)(@—2r)(a—3r)..... [a—(m—1)r]

(i) (2 ) [2 ]

Nous terminerons par un rapprochement entre les notations de Vandeimonde
et celle de M. Kramp. Vandermonde fait

m
a.(a—1)(a—2).....(a—m41)=[4] ,
d'olt il suit qwen rapprochant les deux notations, on a

m
[o] =(a—m-pryrs=ams,
Si, aprés avoir changé @ en @/, on pose a/=—m-f1=a, d'olt a/=a-}m==1,on
obtiendra cet aulre rapprochement

m
[e+m—1]=a™* =(a-}m—1)m- ",

Toutes les facultés pouvant étre exprimédes en fonction d'autres facullds dans
lesquelles la base et la différence sont également Lunité, et ces derni¢res devant,
en conséquence , se représenter fréquemment dans les calculs ; M. Kramp , dans son
Arithmétique uniperselle , a proposé de-les écrire simplement comme il suit ;

1.2.3 . 4veee.cm==1™ =m!.

.

J. D, G, .



4 FACULTES

r.2.3..... (;——-m>[£’--—(m+x}__]....<_:._,>i:_
123(—;_,”)

a
(——m )!
\N T
ce qui donne les deux expressions littérales qui suivent

a a
(—+m—1>! (-—
r r

lesquelles ont lieu quels que soient @ et 7. (*)

3. Les facultés numériques étant ainsi réduites , dans tous les
cas, a la forme bien plus simple y!, qui n’est fonction que d’une
seule variable ; il suffira de connaitre les valeurs numériques de ces
derniers produits , pour les y compris entre les simples limites
zéro et plus un, pour pouvoiren déduireimmeédiatement toutes les autres.
En effet , désignant par m -une fraction comprise entre 0 et -1,
et par 2 un nombre entier quelconque , on voit que tous les nombres
possibles , positifs ou négatifs , rentrent dans la forme m—-n, Or,
nous avons

(mn)! =1 =t (g )1 =m ! (1),

amlr —

(*) Ces deux formules, qui reviennent entiérement au méme , dans le cas d'un
exposant entier, doivent éire soigneusement distinguées, dansle cas d’un exposant
non entier. Si'on imagine une courbe ayant r pour abscisse et les facultés a™I" pour
ordonnées , cette courbe cessera d’étre continue & r==o0 ; et celle qui aurait pour ordon-
nées les facultés a™-" ne sera pas la continuation de la premiére : bien qu’en cet
endroit elles aient une tangente commune , et le méme rayon osculateur, Les absurdités
apparentes auxquelles j'ai été conduit, dans mon Analise des réfractions, viennent
de ce que, par un excés de confiance dans la loi de continuité , j’ai passé trop
légérement de 7 posilif & » négatif , en étendant A celui-ci ce qui wavait été
démoniré que pouf Pautre.
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I m!
T .
(emem) ! == 1M = —_— = ™

d’ott Pon voit que la détermination des facultés (m~+n)! ne dépend
que de celle de ! et des facultés (m—1)"* et m""' , & exposans
entiers. L’application aux cas particuliers donne, en supposant tou-
jours 72 moindre que l'unité,

m!
(1~4m)! =(~+m)m! , (—14m)! = —
’ !
(c+m)! =1 +m)(e+m)m! , (—2+m)! =—m(:’l-;m) ,
m!

(B34m)! = (14m)(2~4-m)(3tm)m! , (—3+4m)! =

.
4 00 0 006 0689 06 e c0C 808 2808000 000 s 9 *+ 9 8888095000800 000 08 0 @

m(1=——m) (2=—=mn) ’

4. Frappé de ces idées, M. Bessel , professeur d’astronomie 3

Konigsberg , aconstruitune table des logarithmes briggiens des fractions
px-1]1

V=
depuis #=1 jusqud x=2, 2 dix décimales , avec leurs premiéres,
deuxiémes et troisitmes différences , qu’il a bien voulu me
communiquer , par une lettre du 7 mars de la présente année 1812.
Ajoutant aux logarithmes de la table de M. Bessel celui de ¢/ 2=, qui est
0,39908 99342 , ~

on aura les logarithmes des produits 3!, entre y=o0 et y==1. Ces
produits sont égaux & l'unité, pour y=o et y=1. Ils parviennent
. a leur minimum vers y=0,46; on a alors a peu prés y! =0,885604. Pour
calculer ces logarithmes, l'auteur a employé une méthode particu—
liére , différente de la mienne , sur laquelle nous reviendrons plus loin.

Il est presque superflu d’avertir que tous les logarithmes de la
table ont une dixaine de trop a leur caractéristique. (*)

(") Voyez la précédente note.
(**) 1l parait, par la marche des quatritmes différences , qu'on ne peut guére

compter sur le 10.° chiffre décimal des logarithmes de ceite table.
J. D. G.
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TABLE des Logarithmes des valeurs que prend la facu!

5. Valeurs de Log.y'§ Dilférences L Différences 1I. | Différ, III.
0,00 0,00000 00000 — 247 120693 - 7 04106 — 10030
0,01 9,99752 87307 — 240 08337 - 6 94076 — 9770
0,02 9,69712 78720 — 233 14511 - 6 84306 — 9517
0,03 9,99279 64209 — 2206 30205 -~ 6 74789 — 9275
0,04 9,99053 34004 — 219 55416 - 6 65514 — go42
0,05 9,95803 78083 — 212 8990z -+ 6 56472 — 8813
0,06 9,98620 88686 — 206 33430 ~ 6 47659 — 8397
0,07 998414 55256 — 199 85771 -+ 6 39062 — 8389
0,08 9,98214 69485 — 193 46709 ~t 6 30673 — 8183
0,09 9.98021 22776 — 187 16036 <4 6 22490 — 7987
0,10 997834 ob740 — 130 93546 “+ 6 14503 — 7799
0,11 9,97653 13194 — 174 79043 -+ 6 ob704 — 7616
0,12 9,97478 34151 — 168 72339 - 5 99088 — 7438
0,10 997309 61812 — 162 73251 —+ 5 91650 — 7263
0,14 997146 88561 — 156 81601 -+ 5 64383 — 7102
0,19 9,96990 06960 - 150 97218 - 5 77281 — 6940
0,16 1 996839 og742 | — 145 19937 | 4 570341 | — 6789
0,17 996693 89805 — 139 49596 =+ 5 63552 — 6635
0,18 9,95554 40209 — 133 86044 -+ 5 56917 — 64&qg
0.19 9-96420 54165 — 128 29127 -4 5 50428 — 6352
0,20 9,96292 20033 — 122 78699 + 5 44076 — 6212
0,21 9,96169 4633q — 117 34623 -+ 5 37864 — 6680
0,22 9,96052 11716 — 111 96759 | = 5 31784 — 5954
0,23 9,95940 14957 — 106 64975 -~ 5 25830 — 5855
0,24 9,95833 49982 — 101 39145 -+ 5 20005 — 5709
0,25 9,95732 1083 — 96 19140 + 5 142096 — 5589
0,26 9,95%35 9169-7/ — 91 04744 =+ 5 08707 — 5476
0,27 9,95544 86953 — 85 96257‘, -4 5 03231 — 5363
0,28 9,95458 go716~ — 80 92906 + 4 97368 — 5260
0,29 9,()5377 97810 — 75 95058 ~+ 4 92608 — 5153
0,30 95302 02772 — 71 02430 ~+ 4 87455 — boba
0,31 3,25231 00542 — 66 14975 + 4 82403 — 4953
0,32 0,95164 85367 — 61 32572 + 4 77450 — 4859
0,33 9,95103 52793 — 56 55122 + 4 '22591 — 4764
0,34 9,95046 97673 — 51 82531 “+ 4 67827 — 4674
0,35 94995 15142 — 47 14704 -+ 4 63153 — 4587
0,36 8,34828 00438 — 42 51551 <+ 4 58566 — 4499
0,37 9,94905 48887 — 37 92985 ~+ 4 54067 — 44'{9
0,38 | 9.94867 55902 | — 3338918 | 4 4 49648 | — 4334
0,39 9,94834 16984 — 28 89270__» -+ 4 45314 — 4258
. 0,40 9,94805 27714 — 24 43956 ~ 4 41056 — 4179
0,41 9:94780 83758 — 20 02900 -+ 4 36877 — 4104
0,42 994760 80858 — 15 66023 4= 4 32773 — 4033
0,43 994745 14835 — 11 33250 -+ 4 28740 — 3961
0,44 994733 81588 — 7 04510 + 4 24779 — 3889
0,45 9,94726 77075 — 2 79731 -4~ 4 20890 — 3824
0,46 994723 97344 -+ 1 41159 4 4 17066 — 3759
0,47 9,94725 38503 - 5 58225 + 4 13307 — 3692
0,43 9,94730 96728 4+ 9 71532 4 4 09615 — 3630
0,49 9.94740 68260 —+ 13 81147 ~ 4 0bg85 — 3570
0,50 l 9.94754 49407 -+ 17 87132 ~ 4 02415 — 3509
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» pour toutes les valeurs de y , depuis y=o jusqui y=r1.

¥ Valeurs de Log. y ! Diftérences I. Différences 1I. | Différ. J1L
0,50 § 9,94754 49407 § + 17 87132 [ o 4 02415 | — 3309
0,51 9,94772 3b33g -4 21 89547 ~+ 3 98gob — 3451
0,52 9,94794 26086 -+ =25 83453 ~ 3 95455 — 3396
0,53 9,94820 14539 4 29 83908 ~+ 3 92059 — 3336
0.5 B 994849 98447 | -+ 33 75967 | + 3 88723 | — 3286
0,55 9,94083 74414 -+ 37 bjbgo ~+ 3 85437 — 3232
0,56 9,94021 39104 ~~ 41 boiay ~} 3 82205 — 3179
0,57 9,94962 89231 4 45 32332 -+ 3 79026 — 3130
0,53 9,95008 21563 -+ 49 11358 - 3 75896 — 3080
0,59 9.95057 32921 -+ 52 87254 -4 3 72816 — 3031
0,60 9,95110 20175 -+ 56 6oo7o ~+ 3 69785 — 2986
0,61 9,95166 80245 -~ 6o 29855 -+ 3 6b799 — 2837
0,62 9,99227 10100 -+ 63 gb65% - 3 633862 — 2894
0,63 993291 06754 -+ 67 60516 ~+4 3 60968 — 2849
0,64 9,93358 67270 4+ 71 21484 -+ 3 58119 — 2806
0,65 9,95429 88754 -+ 74 79603 -+ 3 55313 — 276b
i 0,66 9,9{)50{2. 68357 -+ 78 34916 -+ 3 52547 — 2721
0,67 995583 03273 -4 81 87463 -+ 3 49826 — 2683
0,68 9.95664 90736 -+ 85 37289 4 3 47143 7| — 2643
0,69 9,95750 28025 4 88 84432 + 3 44500 — 2605
0,70 995839 12457 -+ 92 28932 4+ 3 41895 — 2566
0,71 999931 41389 -+ g5 70827 -+ 3 39329 — 2529
0,72 9,96027 12216 -+ g9 10156 ~ 3 36800 — 3495
0,73 9,96126 22372 ~+ 102 46956 -~ 3 34305 — 2457
0,7% 9,96228 69328 -} 105 81261 -+ 3 31848 — 2421
0,79 9,96334 50589 4 109 13109 + 3 29427 — 2393
0,76 | 9,96{,{;3{ 63698 4 112 42536 -] 4= 3 27034 — 2354
0,77 996556 06334 ~+ 115 69570 -+ 3 24680 — 2321
0,78 9,96671 75804 ~~ 118 94250 "o} 3 22359 — 2294
0,79 9,96790 70054 ~ 122 16609 -+ 3 20065 — 2257
0,30 9,96912 86663 4 125 36674 -+ 3 17808 — 2231
0,81 9,97038 23337 4 128 54482 4~ 3 15577 — 2197
0,32 997166 77819 - 131 70059 - 3 13380 — 2170
0>8‘j' 997298 47873 -+ 134 83439 -+ 3 11210 - 2140
o,f?:; 9,97433 31317 -+ 137 94649 - 3 ogo7o — 2112
0,895 9,97571 25966 4 141 03719 -+ 3 06958 — 2083
0,86 9,97712 29685 -+ 144 10677 =4 3 04875 - 2058
0,87 997856 40362 -~ 147 15552 ~ 3 02817 — 2028
0’28 9.98003 55914 -}~ 150 18369 -~ 3 00789 — 2005
0,59 9,98153 74283 - 153 19158 -+ 2 98784 - 1977
0:90 998306 93441 - 156 17942 + = 96807 — 1952
0,91 9,98%63 11383 - 159 14749 ~+ 2 94855 — 1928
0492 9,98622 26132 - 162 ogbo4 ~+ 2 92927 - 1903
0,92 9,9%784 35736 + 165 02531 ~+ 2 qroz4 ~ 189
0,04 9,98949 38267 ~+ 167 93555 4+ 2 89145 — 1856
0,99 9,99117 31822 -+ 170 82700 ~+ 2 87289 — 1832
0,96 9,99288 14522 -+ 173 6a98g -+ 2 85457 — 1811
0,97 990461 83511 ~ 176 55446 ~+ 2 83646 — 1787
0,93 9,99638 39957 4 179 3g0g2 ~ 2 81839 — 1765
0,99 9.99817 79049 # ~F 182 20951 ~+ 2 8oogi — 1746
1,00 ! 0, 00000 60000 ~+ 185 o1043 ~+ 2 78348 — 1723
— —
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5. Dans Vouvrage déji cité { chapitre 1L, 3¢ ) jai prouvé que,

% étant unc fraction positive plus petite que 7, on a

SR
oy
Tang]m—:--:!—-—————-—— 5

!

mais, suivant les réductions enseiguées ci-dessus, on a

el

e _ =10 2k G

]l\‘ ~= — s R
1) (h—1)! 1424 nt ?

(-—]l\:‘*! _ (—7)! - 12l . (1=—2)! .
/ (—h=H!  a=—2h (;—)} ?

d’olt résulte

h(t=—h) ICE NARNETEI AT

Tang.he= .
(D) (s — fl(1—m)!

Ainsi, silon demandaitla tangente de 66°.35/ , onaurait 2==0,37 ,

1 —h=0,63 , %+]l=0787 ; 1—~=0,13 ; d'ot

0,37%0,63 0.87!0,13!

Tang.66°.36'=

0,57%0,13  0,0710,631
Voici le calcul :

Log. 37  =1,66820 17241 ,
TLog. 63 =1,79934 05495 ,
Comp. arith. Log. 87  =8,06048 07474 ,

Comp. arith. Log. 13  =8,88605 66477
Log. 0,87! =q,67856 40362
Log. 0,13! =9,9730g 61812
Comp. arith. Log. 0,37! =o0,05094 51113

Comp. arith. Log. 0,62! =0,04708 93246

Log. tang. 66°.36/ =0,36377 43220

6.
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6. 1l a été prouvé, dans le méme ouvrage que

W

Sinm=z  (-m)n-ml+1 (—n)m-n—t

Sinnwz  (—m)nm—z (-m)m-ni+1 2

faisant »=1:, et faisant ensuite successivement m=4 et m=1~4h,
il viendra

1

Sin.% T a—hy 0,5 0,5)!
Slm= [ N
¢ h)f"‘l*t hl(r—h)! 4
Cosdmm WAL 4G=WG 4D 5! 5!
AL T — f—
(—imh=? (2 —h) ! (Eho! i

et, comme il est prouvé que

GCl=0Od)=y=,
ces formules pourront étre écrites comme il suit:

. h(1—h) (2—hY(2P)
Sin b= e o= G G T

Ainsi , moyennant la table que nous venons de donner , on trou-
vera facilement , et jusqua dix décimales, le sinus, le cosinus et
la tangente de tout angle proposé.

7. L’intégrale

Semietde s

prise depuis f=o0 jusqu'd /=co étant édgale &
I%I‘ (L”.) '
——— = n -
m m 2

le logarithme de cette intégrale, pour toutes les valeurs de = et
de 7, se trouvera facilement par le moyen de la table,
8. L'intégrale

Sy (—y)ydy

prise depuis y=o0 jusqud y=1, étant égale &
Tom. 111,

¥
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!
rulr e n .
- 2

mn+1ir mu=1ir

en employant les réductions qui ont éé enseigndes , on trouvera pour
Pexpression de cetie intégrale

m

n! ——-—1)!
r

— <
m

r.( ——-—{—-n\‘.
r )

formule facile & calculer au moyen de notre table.

g. Venons présentement au calcul de cette table ; soient B, , B, ,
Bs, By ,....\es nombres de Bernoulli , a partir du second , en sorte
qéon ait B,=-}%, B,=—m5, ..... (*). Dans l'ouvrage cité ,
jal employé¢ la notation I'y, poar désigner la série

(*) On sait quc ccs nombres se déduisent les uns des autres au moyen de
la formule

n n n—I n np—I n—:2
n — N
‘ —1 Bn'—!—x“"v-Bx"'_le . - —— —, — 1
(=) H 12 3 1 a3 ¢
n n—1 n—2 n—3
+ —I . N . 5 . 4 5— LR}

. [ I .o . . . N
en y faisant successivement n égal 2 1, 2, 3, 4,....; voiciles dix qui suivent
le premier , avec leurs valeurs approchées, en décimales

4

n-{-1

B, =+ & =+ 008333 33333 33 ,

B, = 5 ==— 0,00833 33333 33,
B, =+ 5+ =+ o0,003g6 82539 68 ,
B, =— i =— 0,04666 66666 67 ,
B,.=+ 5 =+ o075y 37575 76 ,
B,,=— ;24 =— o0,02109 27960 g3 ,
B,,—+ & = 0,08333 33333 33,
B, ,=— 51 =— 0,44325 g803q 22,
B, ;= 228 =} 3,05395 43302 70 ,
B, =128 mmee 9645621 25212 12 .

J. D. G.
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By By By’ By ivins
Cette série, lorsque y est une petite fraction, est tellement conver-
gente que les trois et méme les deux premiers termes suflisent pour
en trouver la valeur numérique jusqua neuf décimales. Souvent
méme on pourra faire simplement I'y=28,y=;y. On trouve le I'
d’un nombre quelconque r par la formule qui suit:
Tr=T ———m—Toga™ 4 m— 4 — \) Log.(1~{-mr)
1-4-mr o ! 2 r ) ’
dans laquelle 72 désigne un nombre quelconque, pris & volonté ; on
peut le prendre égal & 4, 5 ou 6, tout au plus. Jai prouvé de
plus que
Pi=1—:Log2= , 2= (1—Log.2) ;
et qu’on a ensuite
I
Fm—_l_—l- =TI"1~+m~+-Log™'—(m-}; Log.(m-1) ,
2
2m--1

Ainst les I de toutes les fractions de 'une ou de lautre des deux

=I2-4m~+Loga™*—mLog.(2am-1) .

formes générales » m désignant un nombre entier ‘quel-

2
m--1 ’ Zrm
conque , se réduisent , dans tous les cas, & une simple addition de
logarithmes hyperboliques.
1o. Si Ton applique au cas de e=1, r=1, les formules de
Vouvrage cité, on aura
I

Log. nat. (—l-y)!:—y—!—(y+f)Log.(I—}—y)—-FI-I—I‘.;:& ,

Log. mat. (—)! =-hy—(—2Log(1—p) = T14+T. 2
( Refr. ast. chap. I, 181 ). La variable y sera, dans tous les

cas, une fraction moindre que 'unité. Si toutefois la série qui donne

I I
I' =—et I' — ne parait pas converger assez tét , on prendra, &
1=y

1ty
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volonté , un nombre entier. 2, de 4 a4 6, ce qui saffira pour trouver
jusqua 8 décimales le logarithme qu'on demande. On aura alors,
moyennant les formules des n.° 195 et 204 de l'ouvrage cité :

Log. mate (+y)!=—l—y—Log.(1-Fy)H '+t +y)Log.(t4~+ty)—T1+4T

Log. nat. (—y)'=—h-4-y—Log.(1—y)"* 4 (24 —y)Log.(1+~—y)—T1 4T
Moyennant ces dernidres formules, le calcul des produits (—y)!, et
par conséquent aussi celui de toutes les facultds numériques a ex-
posans fractionnaires , ainsi que celui des autres fonctions qui pourront
y étre ramenées , me parait réduit a sa plus grande simplicité, (*)

(*) On peut encore parvenir au but par la méthode suivante. On sait que, x
#lant un nombre quelconque, on a

[ 3 r Bz B4 B6

Log.(x! ):;Log.azr-{-xLog.x-}-;Log.x—-M{ e — e 3?;——5—;’-—.} H
M étant le module. ( Voyez Lacnoix, Traité élémentaire de calcul différentiel
etc., 2.2 édit., pag. 595 ; ou Traité des différences et des séries, pag. 142 ).

Soit fait, dans cette formule, x==N-}y, N étant un nombre entier arbitraire,
mais quil conviendra de prendre au moins égal 4 10, ety étant la fraction comprise
entre o et 1 pour laquelle on cherche la valeur de Logy!. En subsiituant dans
la formule ci-dessus , on obtiendra la valeur de Log.(IN-4-y)}. Mais par les formules
de M. Kramp, on a
N4 L=y L DN

dou

(N4!
pl= —
(y+)N*
et, en passant aux logarithmes,
Log.y ! =Log.(N4~y) ! —=Log.(yf-1)NI*
Logy ! =} Log.am4- N4y} )Log.(N-y)—Log (y-4-1) ¥t
B B B
-—Mi(N+y)-— e L --} .
, N4y)  3NHy? SOy
Au surplus, la méthode de M. Kramp parait beaucoup plus expéditive; et nous

windiquons celle-ci que pour ceux de nos lecteurs & qui les principes sur lesquels
repose la premiére ne seraient point familiers,

donc

J. D. G.

I

1+hty

1
14+h—y

?



