
KRAMP
Analise transcendante. Second mémoire sur les facultés numériques
Annales de Mathématiques pures et appliquées, tome 3 (1812-1813), p. 114-132
<http://www.numdam.org/item?id=AMPA_1812-1813__3__114_0>

© Annales de Mathématiques pures et appliquées, 1812-1813, tous droits réservés.

L’accès aux archives de la revue « Annales de Mathématiques pures et appliquées » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMPA_1812-1813__3__114_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


II4

ANALISE TRANSCENDANTE.
Second mémoire sur les facultés numériques ; (*)

Par M. KRAMP professeur, doyen de la faculté des

de l’académie de Strasbo-Lirg.

FACULTÉS

i. LES produits dont les facteurs procèdent suivant une progression
arithmétique , et que j’ai nommés Facultés numériques , n’ont pas
été inutiles au progrès de Fanatise. Ils ont servi à exprimer , par
un seul terme , et à trouver , d’une manière fort simple , les valeurs

numériques de toutes les fonctions transcendantes qui dépendent dit
cercle , aussi bien que quelques classes , très-nombreuses , d’intégrales
définies. Il s’en faut de beaucoup que cette mine soit épuisée. Le
langage de l’analise transcendante a été borné, jusqu’ici, aux seules
idées de fonctions exponentielles et de fonctions circulaires ; et il est

naturel de considérer cette extrême pénurie , comme une des causes

principales de l’impossibilité où nous nous trouvions de résoudre le

plus grand nombre des problèmes qui se présentaient à nous. Les

facultés numériques viennent., fort a propos , pour enrichir ce lan-

gage , et pour étendre ainsi le domaine de la science.
2. J’ai prouvé , dans un premier mémoire , que toute faculté était

réductible à la forme très -simple Iy|I ou y! ; mais, comme les

facultés de cette dernière forme ne dispensent pas de la considération
des autres ; afin de faire correspondre une différence de dénomination
a une différence de symboles j’appellerai , a l’avenir Factorielles
les fonctions de la forme générale ay|r , et je réserverai exclusivement
le nom de Facultés numériques , ou simplement de Facultés , pour

(*) Voyez la page première de ce volume.
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désigner les fonctions de la forme Iy|I ou y!, auxquelles se réduisent les
premières, dans le cas particulier où l’on a a=I et r=I.

3. La factorielle amlr ou a(a+r)(a+2r)(a+3r).....(a+mr-r)
peut toujours être développée en une série de la forme

J’ai fait voir ailleurs (*) que, dans le cas d’un exposant infiniment

petit , les coefficiens A , B , C, ..... devenaient ces nombres même
dont l’usage , dans le calcul sommatoire , a été remarqué par leur
illustre inventeur Jacques Bernoulli. Mettant dm à la place de m ,

et désignant par -B 1 dm, 2013B2dm , -B 3dm , .... les valeurs que
reçoivent les coefficiens A , B , C ,...., dans le cas d’un exposant
infiniment petit, on aura 

et en général

En faisant le calcul de ces nombres , on verra que tous ceux d’un
indice impair , tels que BI , B3 , B5,.... sont égaux à zéro , à
l’exception du premier BI qui est I 2 ; et que tous ceux d’un indice

pair , savoir B2 , B4 , B6 ,.... sont alternativement positifs et négatifs.
Leurs valeurs sont

4. Les nombres de Bernoulli nous mènent naturellement aux

deux fonctions que j’ai désignées par At et rt. La première 039Bt,
par laquelle nous exprimons la série

sert à trouver la première dériver de la factorielle ay|r , dans lqeuelle
nous regardons l’exposant y comme la variable de la fonction. En faisant,
pour abréger , a+ry=t , on a

(*) Voyez Elémens d’arithmétique universelle , page 36o , n.os 557 et suivans.
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La seconde rt, par laquelle nous représentons la série

est liée avec la première , par l’équation linéaire très-simple

Elle est essentielle pour trouver le logarithme naturel de la facto-
rielle ay|r. On a , eu effet 

5. Le logarithme naturel de la factorielle ay|r que, pour abréger,
nous représenterons simplement par Y, est remarquable par la

forme de ses dérivées successives. On a d’abord 

sur quoi on peut remarquer que c’est l’expression de la somme de
fractions

augmentee de Log.a-039Br a p Si ensuite , pour abréger , on désigne

simplement par 03A3rn tn , la somme infinie de fractions

on aura, en faisant toujours ay|r=Y ,

(*) La lettre D est employée ici comme signe de dérivation ; en sorte

qu’en général
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6. Ces sommes de fractions se trouvent facilement, par les for-
mules connues. On a , en effet

Toutes ces séries peuvent être regardées comme convergentes il
volonté attendu qu’on n’aura qu’à calculer à part quelques-uns
des premiers termes de 03A3 rn tn , et employer ensuite la formule, pour

trouver la somme des autres. Lorsque , dans ces formules, on suppose
à r une valeur imaginaire , on est conduit à une suite de théorèmes

du plus grand intérêt dans l’analise , et sur lesquels nous reviendrons
en son lieu. 

7. En désignant par la série

ordonnée suivant les puissances de l’exposant y, le logarithme naturel
de la factorielle ay|r , les coefficiens A , B , C, D ..... seront ce

que deviennent les dérivées de ce logarithme , dans le cas de y=o,
ou de t=a, respectivement divisées par i, 2 , 6 , 24 , I20,.....
On aura ainsi
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De Log.03B1y|r on passe facilement à cette factorielle elle-même ; et,
si l’on représente par 

la série qui l’exprime , on aura

8. On peut remarquer , au sujet des nombres de Bernoulli , que
les séries que nous allons designer, et dont nous ferons un usage

fréquent , dans le calcul sommatoire , sont toutes parfaitement som-
mables. En faisant, pour abréger, ey=x , on a

et ainsi des autres. La loi que suivent les coefficiens des polynômes
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fonctions de x qui entrent dans les seconds membres se présente 
assez naturellement ; on a, par exemple, pour le dernier

et ainsi des autres. La seconde de ces séries a été donnée par EULER

( Inst. calculi differentialis , pârt. I I , ehap. VI , §. I63. ). De
celle-ci j’ai déduit la première, par intégration, et les autres, par
des différentiations successives.

9. Si, dans la première de ces séries, on suppose y=2~-I,
on est conduit à celle qui suit :

Cette série , peu connue, est peut-être la plus convergente de toutes
celles qui font connaître le logarithme du sinus d’un angle proposé.
La supposition de y imaginaire , appliquée aux autres séries, conduit
aussi à des théorèmes fort intéressans.

I0. Ayant trouve le logarithme naturel de la factorielle 03B1y|r égal à.

la lettre t désignant toujours a+ry , il importe d’examiner ce que
devient cette expression 3 dans le cas d’un exposant imaginaire. Soit
donc y=p+iq , la lettre i désignant la racine quarrée de moins un ;
on aura

Ici, si l’on fait

fin aura
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le logarithme de ap+iq|r prendra donc la forme d’un binôme M+iN ,
dans lequel on aura 

les deux séries sont convergentes à volonté.
il. Ayant ainsi

il est visible qu’on aura

ce qui donnera

d’où on conclura

Dans le cas, très-fréquent, de p=o, lequel donne

on aura

et par suite

d’où
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I2. Quelles que soient la base a et la différence r , la factorielle
ay|r , dans les deux cas de r positif et de r négatif, qui doivent toujours
être soigneusement distingués, sera réductible à la faculté Iy|I , pour
laquelle nous avons proposé la notation très-simple y !, devenue
nécessaire , par l’usage très-fréquent de ce genre particulier de fonc-
tions, dans la plupart des opérations de haute analise. Nous avons

observé, dans un premier mémoire , que le passage des factorielles
aux facultés s’exécutait au moyen des deux formules

La supposition de a=I , r== 1 donne aux formules précédemment
calculées une très-grande simplicité. On a alors

formule qu’on peut rendre convergente à volonté , en y introduisant
un nombre entier arbitraire h , qu’il suffira de prendre de 4 à 6.

Il viendra ainsi

Sur quoi on doit observer qu’il s’agit toujours ici de 
B logarithmes

naturels.

13. Si , dans cette supposition de a=r=I , l’exposant y prenait
la forme du binôme imaginaire p+iq , en posant alors

il viendrait 

Tom. III. I7
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Posant , de plus, p=o, ce qui donne

on aura

ce qui donnera encore

I4. Le logarithme de 03B3! pouvant toujours être développé en une
série de la forme

on aura dans le cas actuel de a=r=I ,

Les valeurs numériques de toutes ces sommes de puissances sont

connues et calculées ; quant à celle de 039BI , elle est

o, 5772I 56649 .....
On sait de plus que les sommes à indice pair sont réductibles aux
puissances paires de 03C9 ; d’où l’on obtient
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Quant aux autres coefficiens A , C, E, .... Fanatise ne nous offre pas
les mêmes moyens de les obtenir ; il faudrait , pour y parvenir
interpoler la série des nombres de Bernoulli, d’après une loi pro-
bablement fort simple, mais que nous ne connaissons pas encore.

15. Ayant

on doit avoir

de là résulte

en changeant y en i03B3 , on aura de même

16. On a vu (8) que

En remplaçant 03B3 par i03B3 , on aura, après les réductions connues 

Les réductions appliquées aux valeurs des logarithmes de (+y)!(-y)!
et de (+iy)!(-iy)! qu’on vient de trouver , conduisent aux deux

théorèmes très-importans qui suivent :



I24 FACULTES

THÉORÈME 1.

THÉORÈME II.

Les principes généraux étant posés , proposons-nous la solution

générale des deux problèmes qui suivent :

17. PROBLÈME I. Évaluer numériquement le produit

continué à l’infini ? 
Solution. Ce produit se décompose dans ceux-ci

dans mon Analise des réfractions , je les ai réduit respective-
ment à

ce qui rend le produit cherché égal au simple produit des deux
factorielles 

il ne reste donc plus qu’à réduire cesfactonellesaux facultés , ce qui
se fait a l’aide des formules ci-dessus (I2). En posant , pour abréger ,

a -I=f , on trouvera
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d’où on conclura

la solution du problème proposé sera donc réduite à la détermination

des trois facultés f! , (f-x r)! , (f+x r)! dont on trouvera les

valeurs numériques toutes calculées , dans la table donnée à la page 6 de
ce volume. (*) 

18. PROBLÈME Il. Évaluer numériquement le produit

continué à l’infini ?

Solution. En continuant de faire a r-I=f , il suffira de rem-

placer x par ix, dans la formule qu’on vient de trouver. Le produit
demandé deviendra égal à

(*) Depuis l’impression de la table de M. Bessel, nous nous sommes aperçu que
M. Legendre dans ses Exercices de calcul intégral ( Paris, I8II ) , avait publié
une table du même genre , et nous venons d’apprendre qu’une pareille table venait
aussi d’être calculée par M. Gauss. Voilà donc trois géomètres du premier ordre

qui, faute de moyens rapides de communication , ont consommé un temps précieux
en de pénibles calculs , pour parvenir aux mêmes résultats.
M. Legendre, dans sa table , désigne par 03B1-I ce que M. Kramp représente

par y, et par r ce que M. Kramp désigne par y!. Cette table, calculée par une
méthode analogue à celle qui a été indiquée dans la note de la page 1.2 de ce volume
ne contient les logarithmes de la faculté y ! qu’à sept décimales seulement, et encore

la septiéme décimale n’y est pas toujours exacte ; on n’y trouve pas non plus les

différences des logarithmes qu’elle renferme ; mais ces logarithmes y sont calculés

pour les valeurs de y de millième en millième , ce qui rend à la fois les in ter-

polations plus faciles et moins fréquemment nécessaires. Les détails dans lesquels
entre M. Legendre, sur le calcul de cette table , et sur la nature , les propriétés
et les usages des nombres qu’elle renferme , sont d’ailleurs du plus grand intérêt.

J. D. G.
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Les logarithmes des deux facultés du dénominateur sont réductibles

aux formes M-iN et M+iN , ce qui rend le logarithme de leur
produit égal à 2M. Il serait fort à désirer que quelque calculateur
courageux voulut calculer les binômes M+iN=Log.(iy)! , pour
toutes les valeurs de y depuis o jusqu’à I , de même que nous

devons à M. le professeur Bessel une table des logarithmes de y! ,
dans le cas d’une base réelle. En attendant , la série (13), qui a
l’avantage d’être convergente à volonté , nous fournit un moyen très-

expéditif de trouver la valeur numérique de 2M, logarithme du

produit (f-ix r)!(f+ix r)!. Il faudra pour en faire usage ,

déterminer l’angle ~ et le coefficient k de manière qu’on ait

ce qui donne

et on aura

I9. Appliquant la solution de ces deux problèmes au cas parti-
culier de a=r=- , qui donne f=o , et qui rend (I5) la variable

y=x , d’où, 03B3=x , on sera conduit aux théorèmes très-connus

démontres par EULER Introd. in. at2ali. infin., 1.,re partie, n.os I56
et suivans. savoir :
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20. Si dans (17) on fait a= 2, r= , on aura , d’un côté , 
leprodutt

continué à l’infini , lequel, par conséquent , sera égal a ce que
devient la fraction

par cette supposition qui donne

La faculté f! devient ainsi 2(I 2)!. La faculté (f-x r)! deviendra

et le produit des deux facultés (-I 2+ x )! et (I 2=x )! sera

(I6)

Après avoir employé toutes ces réductions, on sera conduit au théorème
très-connu ,
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2I. Et si , dans cette dernière formule , on change ~ en i~ , elle
deviendra

formule connue de puis l’analise d’Euler.

22. Les formules (17) et (19) nous conduisent aux deux théorèmes
qui suivent

Ces deux formules, qui sont identiques entre elles, procureront a
ceux qui voudront s’occuper de la construction d’une table des facultés,
pour les fractions décimales comprises entre o et i , l’avantage pré-
cieux de diminuer leur travail de moitié , en ne les obligeant à le

pousser que jusqu’à h=I 2=0,5 ; ce qui donnera , en outre, une

grande convergence à la série qu’on est obligé d’employer pour le
calcul de cette table. En changeant h en ih, on aura pareillement

23. Le théorème suivant mérite d’être remarqué ; il concerne le

produit x!y! de deux facultés dans lesquelles la somme x+y des
exposans est un nombre entier quelconque , pair ou impair.
Dans le cas d’une somme paire , soient x=a+h , y=a-h, et

par conséquent x+y=2a ; la lettre a pourra alors désigner un nombre
entier quelconque , et h une fraction moindre que l’unité. Cela

posé , on a

(a+h)!
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ou

on aura donc (16)

Dans le cas d’une somme impaire , soient posés

ce qui donnera

a pouvait désigner un nombre entier quelconque. On aura alors

ou

donc (22)

Si , dans le cas de x+y pair, h se change en ih , ce qui donnera
toujours x+y=2a , a étant un nombre entier quelconque , il viendra

Si le même changement arrive , dansle cas de x+y impair , en sorte
Tom. III. I8
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qu’on ait toujours x+y=2a+I , a étant un nombre entier quel-
conque , il viendra

24. L’analise que nous venons de développer n’est nullement bornée
au cas proposé ; et si l’on demandait soit la valeur du produit

soit celle du produit

continue à l’infini , on la trouverait encore , en suivant rigoureuse-
ment les mêmes principes.

25. Jusqu’ici nous avons suppose que les facteurs de nos factorielles
constituaient toujours une progression arithmétique du premier ordre ;
c’est-à-dire , une progression ayant ses premières différences cons-
tantes ; et ces sortes de fonctions peuvent être appelées Factorielles
du premier ordre. On peut aussi Imaginer une suite de facteurs

constituant une progression arithmétique du second ordre ; c’est-à-dire ,
une progression ayant ses secondes différences constantes , telle que

a ,

a+b ,

a+b+c ,

a+3b+3c ,
a+4b+6c ,
a+5b+I0c ,
.....

Le terme qui répondrait à l’indice n serait alors
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Un semblable produit pourrait être appelé Factorielles du second

ordre; et , pour peu qu’on suive le développement de la plupart
de nos séries , on verra que ces factorielles , de même que celles

des ordres supérieurs , c’est-à-dire , celles dans lesquelles se sont

les différences d’un ordre plus élevé que le second, qui sont cons-

tantes, doivent se rencontrer très-fréquemment. Heureusement toutes
ces factorielles sont réductibles à celles du premier ordre, moyennant
une décomposition analitique fort simple. On peut toujours , en

effet, pour le second ordre , déterminer les deux premiers termes

A, A’ , et les deux premières différences r, r’ , de manière que le

terme général

devienne équivalent au produit

indépendamment de l’indice n. Il faudra, pour cela , résoudre les
trois équations

on aura alors

en sorte que la factorielle proposée du second ordre deviendra le

simple produit

(*) Les inconnues A, A’, r , r’ de ces trois équations étant au nombre de quatre,
on pourra disposer de l’une d’elles pour rendre les valeurs des autres les plus
simples possibles.

J. D. G.
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de deux factorielles du premier ordre, et rentrera, comme telle,
dans la théorie qui vient d’être développée. (*) 

ANALISE TRANSCENDANTE.

Examen d’un cas singulier , qui nécessite quelques
modifications dans la théorie des maxima et des
minima des fonctions de plusieurs variables ;

Par M. J. F. FRANÇAIS , professeur à l’école impériale de
l’artillerie et du génie.

SOIT

et soient posés, pour abréger

Les conditions que l’on prescrit ordinairement , pour le maximum
ou le minimum de la fonction z, sont 

(*) Ce que M. Kramp appelle ici Factorielles de différens ordres est ce que
.Vandermonde avait déjà appelé Puissances de différens ordres, avec cette dif-

férence seulement que les factorielles de l’ordre n sont des puissances de l’ordre

n+I. Ainsi , suivant le langage de M. Kramp, les puissances du premier ordre,
c’est-à-dire, les simples puissances que l’on considère dans les élémens, sont des
factorielles de l’ordre zéro.

J. D. C.


