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114 FACULTES

ANALISE TRANSCENDANTE.

Second meémoire sur les facultés numeriques; (*)

Par M. Krane , professcur , doyen de la faculté des
sciences de Tacadémie de Strasbourg.

[a Tia Sa Vo Vip Vg Vi Vi V)

I. LES produits dont les facteurs procedent suivant une progression
arithmétique , et que j’ai nommdés Facultés numériques , wont pas
¢té inutiles au progrés de Vanalise. lls ont servi 4 exprimer , par
un seul terme, et & trouver , d’'une maniere fort simple , les valeurs
numériques de toutes les fonctions transcendantes qui dépendent du
cercle, aussi bien que quelques classes , trés-nombreuses, d'intégrales
définies. 11 s’en faut de beaucoup que cette mine soit épuisée. Le
langage de Vanalise transcendante a ¢té borné, jusqu’ici , aux seules
idées de fonctions exponentielles et de fonctions circulaires ; et il est
naturel de considérer cette extréme pénurie, comme une des causes
_principales de Vimpossibilité ot nous nous trouvions de résoudre le
plus grand nombre des problemes qui se présentaient 3 nous. Les
facultds numériques viennent, fort & propos, pour enrichir ce lan-
gage , et pour étendre ainsi le domaine de la science.

2. Jai prouvé, dans un premier mémoire, que toute faculté était
réductible 3 la forme trés-simple ' ou 4!

.

; mais, comme les
facultés de cette derniére forme ne dispensent pas de la considération

des autres ; afin de faire correspondre une difiérence de dénomination

4 une différence de symboles , jappellerai, & Vavenir, Factorielles

les fonctions de la forme générale @V, et je réserverail exclusivement

le wom de Facultés numériques , ou simplement de Facultés , pour

(") Voyez la page premicre de ce volume.
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désigner les fonctions de la forme 171* ou y!, auxquelles se réduisent les
premiéres , dans le cas particulier o l'on 2 ¢=1 et 7r=1.

3. La factorielle &™" ou a(a—i—r)(d—}—zr)(a—{—?;r).........(a—&;mr-——r)
peut toujours étre développée en une série de la forme

a™tAam " r+Bamqtri ... M.

Jai fait voir ailleurs (*) que, dans le cas d’un exposant infiniment
petit, les coefficiens 4, B, C,..... devenaient ces nombres méme
dont T'usage , dans le calcul sommatoire , a été remarqué par leur
illustre inventeur Jacques Bernoulli. Mettant dm a la place de m,
et désignant par —B,dm , —B,dm, —B,dm,.... les valeurs que
regoivent les coefficiens 4, B, € ,...., dans le cas d'un exposant
infiniment petit, on aura
=B, ,
=B ,—28, ,
=B,—3B,4-38, ,
=B,—4B,+6B,—4B, ,

win BIM ww ou

et en général
I

2 At - S r
—=Bi——B.+~ " B, Bt =B,

En faisant le calcul de ces nombres , on verra que tous ceux d’un

n  Ne==] 7m—=2

I 2 3

indice impair , tels que B, , B;, B,.... sont égaux i zéro, 4
b g

Vexception du premier B, qui est ;; et que tous ceux d’un indice
pair ,savoir B, , B, , B¢ ,....sontalternativement posziifs et négatifs.
Leurs valeurs sont

B,=+43%, By=—;, Bi=—;, By=—yrs,een..

4. Les nombres de Bernoulli nous ménent naturellement aux
deux fonctions que jai désignées par Az et I'z. La premitre As,
par laquelle nous exprimons la série

B +-B,1*-B,i1*+B ...,
sert & trouver la premiére dériver de la factorielle &'", dans Jaquelle
nous regardons ’exposant y comme la variable de la fonction. En faisant,

pour abréger , a4ry=¢, on a

(* Yoyez Elémens &’ arithmétique uniperselle , page 360, n.°5 557 et sulvans,
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pay=a"" (LogimAT ). ()
La seconde I'z, par laquelle nous représentons la série
B,t4B, 04 Bst5-F1By7. ...,
est liée avec la premiere, par I'équation linéaire trés-simple
B i+t oli= Az

Elle est essentielle pour trouver le logarithme naturel de la facto-
riclle &1, On a, en effet,

- t 1 t r r
Log.(a" ).—.:——_y(:—-—Log.a)—}—( —— >Log.—a- —-T - ~+r -
5. Le logarithme naturel de la factoriclle &V que, povr sbréger,

nous représenterons simplement par ¥ , est remarquable par la
forme de ses dérivées successives. On a d’abord

. pLog Y:Log.t—,/x-:— :

sur quoi on peut remarquer que c’est Uexpression de la somme de
fractions
r r r

r
a a+r+a+zr+”“+_ ?

i—r

T . e
augmentée de Log.a-—A—; . Si ensuite , pour abréger, on désigne
rll

simplement par 2_{'7 , la somme infinie de fractions

ri rit i it

—i’.; + (t+r)n + (f+.ﬁl‘)"+ ([+jr)“+ s 000 o
on aura , en faisant toujours &*V'=1,

DLogX=-4 = =

i2
. r3
D’Log. T =— 23 5
é
D"Log.Y:—}- 6= ';;' 9

(*) La letire D est employée ici comme signc de dérivation ; en sorte
qu'en géuéral
d.(x)

pOZ)= o
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D’Log. ¥ =— 242:—: ’

6
D“Log.Y:—-}—xzoZ % ,

[l
L L R PR PP S

6. Ces sommes de fractions se trouvent facilement, par les for=
mules connues. On a, en effet,

r2 r r2 r3 rs 7! )
2 o=ct o428 s+ 4B+ 6B+,
r3 r2 r3 ré rb r8
S—=—+4— 438, — - —
8 T a2 | o3 +3B. 7 +roB, &6 218, e
ré r3

e 343

+Z 44B, Z 4208, 2 456, 2

- — 20 - —_— P

214 L ‘t7+ 619+' ’
v

® ¢ 8 0 o o ¢ 8 o ¢ 0 s & 2 8 20 & ¢ e s s " e s P s 8 8 B s s P e 8 s s s s 8 aw

Toutes ces séries peuvent étre regardées comme convergentes 3

volonté , attendu qu'on n’aura qu'a calculer & part quelques-uns
des premiers termes de = -:71i , et employer ensuite la formule, pour
trouver la somme des autres. Lorsque , dans ces formules, on suppose
3 7 une valeur imaginaire, on est conduit & une suite de théorémes
du plus grand intérét dans l'analise , et sur lesquels nous reviendrons
en son lieu.
7. En désignant par la série
Ay:l—By’+Cy3+Dy‘—F. ceees .

ordonndée suivant les puissances de I'exposant 3, le logarithme naturel
-de la factorielle &’!", les coefliciens 4, B, C, D,..... seront ce
que -deviennent les dérivées de ce logarithme, dans le cas de y=o,
ou de 7=a, respectivement divisées par 1, 2, 6, 24, 120,....
On aura ainsi

A=Xog a——Ai— N
B=4:31,
az

73
— b3 —
C=—32,



118 " FACULTES
D=~ p .
ak

T r5
E=“?2;?’

De Log.@'" on passe facilement 4 cctte factorielle elle-méme ; et,
si l'on représente par

1~+-A'y-+By*4-C’ 3-—l—-l)/_y“‘—-i--.... .
la série qui Vexprime, on aura

A'=4,

2B/'=AA'4-2B ,

3C'=AB'4-2BA4-3C ,

4D/ =AC'4-2BB'4-3CA'44D ,

8. On peut remarquer , au sujet des nombres de Bernoulli , que
les séries que nous allons désigner, et dont nous ferons un usage
fréquent , dans le calcul sommatoire, sont toutes parfaitement som-
mables. En faisant, pour abréger, ¢¥=z, on a

yz Ii' ys 13, — 1y
.B . . . —_— el —¢ :
: + 4'123.4 B 1.2.3.4.5.6 ... =Log. 7

3 5 I
B.. L ) l__ A L IO T
g +B4 1.2.3 B 1.2.3.4.5 =+ ¥ + 2 x—1
2 4 I x
-B B . — . Y T ——
? + LA +B° 1,2.3.4 + +y2 (x=—1)2 ?
3 5
B, L 4B, X 4B, 2 S G o)
4" g +Bs 1.2.3 5y 1.2.3.4.3 = y3+ (x—13
2 6 x(x2-fx4-1)
B, 4B, L 4B, 2 = —
¢ ¢ 1.2 +F, 1.2.3.4 Foe =t y‘f (x—1)
B.. X 1B, y3 B ¥ ___ 2 a(xdd1 131 Te1)
¢ ¥ 123 +5.. 1.2.3.4.5+“"— ¥ (x=—1)%
B ~+B,. ;7; “+B,.. 9“4 +....=+Ii)__x(x4+26x3+66x2+26x+I)
2 1.2.3.4 6 (x—1)6 ’
y 720  x(x54-57x44-30203-4-302224-5 x+1)
i B — - e o 7
T tBieT 8, 112545+ -+ ——

et ainsi des aatres. La loi que suivent les coefficiens des polynémes
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fonctions de # qui entrent dans les seconds membres se présente
assez naturellement ; on a, par exemple, pour le dernier

=5.1 -} 2.26
302:4 26— 3.66 s
~ 302=3.66-4 4.26 ,

5n=2,26+4 5. 1 ;
et ainsi des autres. La seconde de ces séries a été donnée par EULER
( Inst. calculi differentialis , part. 11-, chap. vi, §. 163. ). De
celle-ci j’ai déduit la premiére, par intégration, et les autres, par
des différentiations successives.
9. Si, dans la premitre de ces séries , on suppose y=20y/ =1,
on est conduit A celle qui suit:

Log.§%=432.%-—~ 168 +6436 ——;—[E)-é '..;..‘

Cette série, peu connue , est peut-étre la plus convergente de toutes
celles qui font connaitre le logarithme du sinus d’un angle proposé.
La sapposition de 4 imaginaire , appliquée aux autres séries , conduit
aussi & des théorémes fort intéressans.

10. Ayant trouvé le logarithme naturel de la factorielle ”I" égal &

£
—y(1—Log.a)+ <-i——- -i—)Log.—a- -r f- -+I :— R

la lettre #z désignant toujours e-f7y, il importe d’examiner ce que
devient cette expression , dans le cas d’un exposant imaginaire. Soit
donc y=p-+ig , la lettre  désignant la racine quarrée de moins un ;
on aura

Log (ap-i-x‘?lr) P+l9')<L0g ‘2""1)"!'(,0"" o + +lq )LOg at-pr-igr
r
—-—F "';' +F a+pr+iqr .
Ici, si lon fait
k= (a4pry4-(g7)*
—_ g .
Tang.p= prwndl

o aura
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J+P7’+l'qr = ]{(COS.¢+I'Sin.¢> »
Log.(a—+pr--igry= Log. k-}-i¢ ,

le logarithme de oP " prendra donc la forme d’un bindme M-4-/N .
dans lequel on aura

k
M =p(—1+4Log.q) —-l—(,v — -I——}— 2 ) Log. - —q@-—l" :-

r
+B,.—E Cos.¢+B4 5o Cos a¢+B6 =3 Cos 5e-..

a k
N:q(-—-x-—l—Log.a)—{— (p—— z +—) ¢+qLog.—

T
—B,. ISm@—B4 o Sm 3o—B. rTI;;_‘-Sm S5¢—4.e.

les deux séries sont convergentes a volonté.
11. Ayant ainsi
Log.(of V)= M4IN
il est visible qu’on aura
Log(a” "y =—iN ;
ce qui donnera
Log. (aP+iﬂ'><aP~i91r) =2
abP-+iar
Log.m =2/N ;

2

d’ott on conclura
al+iq|r

T =¢ ¥ =Cos.2 N-+7Sin.2 N.
=

Dans le cas, trés-fréquent, de p=o, lequel donne
2 5.2 qr
B =a~-¢r* | Tang.e= -

on aura
M= (— — > Log.— ——q@-l" +B - Cos¢+B4- COS Se+..,

N=gq (——I+Log.a)+< ~— -2—) ¢+qLog. ;—- —B,.Z-Sln.qb—-,34.§-3- Sin3gp—.... ;
et par suite

Log.a =M4iN ,

LOg.d-imr:M—-iN ;
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aig.”' .
—_ =27 N,
4 a"iqlr

12. Quelles que soient la base ¢ etla différence 7, la factorielle
@', dans les deux cas de 7 positif et de négatif, qui doivent toujours
étre soigneusement distingués, sera réductible & la faculté 21t | pour
laquelle nous avons proposé la notation trés—simple 4!, devenue
nécessaire , par l’usage tres-fréquent de ce genre particulier de fonc—
tions , dans la plupart des opérations de haute analise. Nous avons

d’'ol

Log.aidr><a=ig"=2M , Log.

observé , dans un premier mémoire , que le passage des factoriclles
aux facultds s’exécutait au moyen des deux formules

a a
) ()
ayl'=<_r_.__._}__—ry ; Nr= N7 L .
= TG
r
La supposition de a=1 , 7=1 donne aux formules précédemment
calculées une trés-grande simplicité. On a alors
1
Log.y! =—y-+(y~+ 1 )Log.(1-y)—TI'1 +F;_-IT)’ ,

formule qu’on peut rendre convergente 4 volonté, en y introduisant
un nombre entier arbitraire %, qu’il suffira de prendre de 4 A 6,

1l viendra ainsi
Log.y!=—h—y—Log.(14-y)"* +(Z41 +y)Log.(1+/~+y)—T14-T" I +,I,+), .
\

Sur quoi on doit observer qu’il s’agit toujours ici de logarithmes

naturels.
13. Si, dans cette supposition de a==r=1, l'exposant y prenait

la forme du binéme imaginaire p—7g , en posant alors

k= (1 g2, Tn.:——q—;
(t47)+g, Tango= =
i Cos. Cos 3
M=—p+(p-+:)Log.k—go—T1+B, —%Sf—{—5’4 ;—;f—{- R
Sin.¢ Sin. 39

—_—e 5

N=—g+4(p+1)o+gLog.t—B, i Py P

il viendrait

Towm. 111,
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Log.(pHig) =M-41N , I_og.(p——z'(/jlzg‘;_f-_ﬂ\r,
Posant, de plus, p==0, ce qui doune
I*=1-4*, Tange=yg

Coscp Cos.30
M=!Logk—qo—T1+4-DB, ~+-B, o Gy,

i Sm.¢ Sin.3¢
= - g+ :o-tqlogi—B, A —F, v ceene s

on aura

Log(4+/g)!=M—+iN , Log({—~ig)l=M—IN ,
ce qui donnera encore
N . ) .
Log.(+4ig)! < (—ig)!=20 , Log Eilz]/)‘ 27N.
14. Le logarithme de y! pouvant toujours étre développé en une
série de la forme

Ay4-By*+Cy’~+Dy*+..... ,

on aura dans le cas actauel de a=r=1,

— A=A1 =B,+B,4+B,+Bi+.. ,
FoB=1+4 1+ : + L 4=+ +2B,+ 4 B,~+ 6 B+
—3C=1+ i+ 5 = =14 :4-38,+108 4 21 B+
+4D=14+%+ 5+ =5 =14 1+4B 4208 ,4 56 B ...,
—5E=14 L4+ =5+ =i+ 1458, 4-358 ;4126 B ¢~.... ,
A ClF=14} 54 254+ =+ =+ +6B,456B 42528 +.... ,

....................

al=
ol

L

L

Les valeurs numériques de toules ces sommes de puissances sont
connues et calculées ; quant A celle de Ar, elle est

0, 57721 56649.....

On sait de plus que les sommes & indice pair sont réductibles aux
puissances paires de = ; dou Von obtient
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w2
B=—+42RB,.— ,
1.2
D=—2RB,. -,
1.2.3.4
6
F=—42By —————
¢ 123,456
B il
= —2 L —
3 1.2.3.4.5.6.7.8 7

@ ¢ 4 8 5 8 20 0 65 o Ve 0 a e s a0

Quant aux autres coefficiens 4, C, E ,.... I'analisc ne neus offre pas
les mémes moyens de les obtenir ; il faudrait, pour y parvenir,
interpoler la série des nombres de Bernoulli, d’aprés une loi pro-
bablement fort simple , mais que nous ne connaissons pas encore.
15. Ayant
Log.(-4+)!=Ady+By*+Cy+Dy‘+..... ;
on doit avoir ‘
Log.(—y)!=—dAy~+By*—Cy*4-Dy*—..... ;
de 1a résulte
Log.(4y ! X} (—y)l=2By*4-2Dy‘+2Fy*~.... ;
" en changeant y en Iy, on aura de méme
Log (iy)! < (—iy)!=—-2By*+-2Dy*—oI'y*+. .. ..
16, On a vu (8) que
2 % -6 x -1
Br%;+Brgg4+ﬂ@;£iafhmzlme;eJ:
En remplagant y par Zy , on aura, aprés les réductions connues,

. y Al _~7f_+ =Loo.< 2 g 2 )
=B 12 +B, 1,2.3.4 Bs. 1.2.3.4.5.6 O\ ¥ 2

. . . ,
Les réductions appliquées aux valeurs des logarithmes de (—y!(—7)!
et de (4iy)!(—Zy,! quon vient de trouver, conduisent aux deux
théorémes trés-importans qui suivent :
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THEOREME 1. (+ni(—y)i= Si:f,j-

THEOREME II.  (=iy){(—iy)= 2my

e Y—e="y "

Les principes généraux étant posés , proposons-nous la solation
générale des deux problémes qui suivent :

17. PROBLEME 1. Evaluer numériquement le produit

22 } ! 22 } g a2 x2 g .
T e e I 1— I B 0 s
g a> % (a+-1)2 (a-2r)2 % (a4-3r)*

continué & linfini ?

Solution. Ce produit se décompose dans ceux-ci
a—x a=—=x-}r a=—x-}-or a—x~-3r :
a ' adr " adar T agsr U7
atx  adxd-r  adxdor adx4-3r )
z agr . atar . a3 )
dans mon Analise des réfractions , je les ai réduit respective-
ment a

i .’ilr
(a=x) " (a4-x) 7

x 2 X ?
(infinr) " (infinr) T

ce qui rend le prodait cherché égal au simple produit des deux
factorielles '

xlr x
r =
(d-—ﬂ’) H] (d+x) '
il nereste donc plus qu'a réduire ces factorielles aux facultés , ce qui

se fait a l'aide des formules ci-dessus (12). En posant , pour abréger,
(2

r
.
H

;‘-———12 , on trouvera
x - ' x xl x
— - -—r
(a—x)" :____f_'..__.__r T, (et = 3

ST
(=7) (75 )



NUMERIQUES. 125

d’olt on conclura
=0, _i]r FLA!
(a—x) ].(zz—{-x) = p- \f
(=20 5)
la solution du probléme proposé sera donc réduite 4 la détermination

des trois facultés f1, <f._-) (f+ ) dont on trouvera les

valeurs numénques toutes calculées , dans la table donnée & la page 6 de

~

ce volume. (*)
18. PROBLEME 1I. Evaluer numériquement le produit

{ -+ a? -+ (a—r)> =+ (a-2r)® S -+ (a43r)2y "
continué & linfini ?

. . . a .
Solution. En continuant de faire ——1=#, il suffira de rem-
r

placer z par 7z, dans la formule qu’on vient de trouver. Le produit

demandé deviendra égal a

(*) Depuis I'impression de la table de M. Bessel , nous nous sommes apergu que

M. Legendre dans ses Exercices de caleul intégral ( Paris, 1811), avait publié
une table du méme genre, et nous venons d'apprendre qu'une pareille table venait
aussi d’étre calculée par M. Gauss. Voild donc trois géométres du premier ordre
qui , faute de moyens rapides de communication, ont consommé un temps précieux
en de pénibles calculs , pour parvenir aux mémes résultats.

M. Legendre, dans sa table , désigne par a=—1 ce que M. Kramp représente
par y, et par I' ce que M. Kramp désigne par y!. Celle table, calculée par une
méthode analogue a celle qui a été indiquée dans la note de la page 12 de ce volume,

ne contient les logarithmes de la faculté y! qu’a sept décimales seulement, et encore

la septiéme décimale n’y est pas loujours exacte ; on n’y trouve pas non plus les

différences des logarithmes qu'elle renferme ; mais ces logarithmes y sont calculés
pour les valeurs de y de milliéme en milliéme , ce qui rend & la fois les inter-
polations plus faciles et moins fréquemment nécessaires. Les délails dans lesquels
entre M. Legendre , sur le calcul de cette table, et sur la nature, les propriétés

et les usages des nombres qu'elle renferme , sont dailleurs du plus grand intérét.
J. D. G.
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S

“EXREY

Les logarithmes des deux facultés da dénominateur sont réductibles
aux formes M—iN et M+IN, ce qui rend le logarithme de lear
produit égal & 2M. 1l serait fort A desirer que quelque calculateur
courageux voulut calculer les bindmes M—-/N=TLog.iy)!, pour
toutes les valeurs de ¥ depuis o jusqua 1, de méme que nous
devons 3 M. le professcar Bessel une table des logarithmes de 4!,
dans le cas d'une base réelle. En attendant, la séric (13), qui a
l'avantage d’étre convergente a volonté, nous fourdit un moyen trés-—
expéditif de trouver la valeur numérique de 2M,

logarithme du
produit <j—?)'<f—-\— 1—?— >!. 1l faudra ,' pour en faire wusage ,

déterminer Vangle ¢ et le coefficient # de maniére qu'on ait

2 . a*~f-x2
Tang.o= — 2= el
ce qui donne
. a
rCos.p °
et on aura
Cos.0 Cos.3

M= ——-+1+(— —_ —>Log - o—I14B, ~+:B4 ;m?—}—-...,

19. Appliquant la sclation de ces deux prob?émes au cas parti—

culier de @=r==, qui donne f=o0, et qui rend (15) la variable
X

— >
y=-=, dot wy=x

, on sera conduit aux théorémes trés-connus,

démontrés par EULER ( Inirod. in. anali. infin., 1.¥¢ partie, n,°s 156
et suivans. ) ; savoir :

o ¢
Sm.tp-:p(r z,—z)<l_ o <1-—-§;— ey



NUMERIQUES, 127
¢Pomep=®
— =¢ l+-—-\(+ )<1+-——>

20. Si dans (17) on fait 4= 2| r=x , on aura, d'un coté,

2

le produit

(I—-ﬁ‘:) I—-ﬁf-)(]___ 4-’1"3 b2
@2 q=z2 25zr~ 49@-2 ) tee

continué a linfini , lequel, par consequent » scra égal a ce que
devient la fraction

f1/1

GOl

par cctte supposition qui donne .

f=—%=—1+;! y
x 1 x — I X ’
Srr=—itr= —(5-1),
X . x — X —;'x:_
=7 =i = 1+<2 r).
La faculté f! devientainsi 2(;)! =/ = La faculié f—-—--%c- )! deviendra

(G-2)

>

1
20 w

o

2

(16) } } .

— — -

2 2

Sin. ( = — ) Cos.x

. : 1o . )
Apres avoir employé toutes ces réductions, on sera conduit au théoréme

I X I X
et le produit des deux facultés (-——-—+ —)1 et (_. -— >! sera
2 w @

trés-connu ,
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Cos.¢z=<1—— 4e° >( MJ)(I-E)
Q=2 20@2

21. Et si, dans cette derni¢re formule, on change ¢ en 7¢, elle
deviendra

= () ()

formule connue depuis 1’analise d’Euler.
22. Les formules (17) et (1g) nous conduisent ‘aux deux théorémes
qui suivent

h(1—Ph)

W\ — -
]Z.(I ]l>_ Sinda
s G—n(G4h)
AN Mae— 22
IRy B il w2

Ces deux formules, qui sont identiques entre elles, procureront &
ceux qui voudront s’occuper de la construction d’une table des facultés,
pour les fractions décimales comprises entre o et 1, l'avantage pré-
cieux de diminuer leur travail de moitié, en ne les obligeant a le
pousser que jusqu'd /=;==0,5; ce qui donnera, en outre, une
grande convergence a la série qu’on est obligé d’employer pour le
calcul de cette table. En changeant 2 en 7% , on aura pareillement

h —ih
) (1—iB) = S _,,L -3
zh)( +z7z) 2(L4-h2)
LAy AN = o= 2 T .
(i) SR 20

23. Le théoréme suivant mérite d’étre remarqué; il concerne le
produit zly! de deux facultés dans lesquelles la somme 2~y des
exposans est un nombre entier quelconque, pair ou impair.

Dans le cas d'une somme paire, soient z=a~+h, y=a—5h , et
par conséquent x-}y=2a ; la lettre @ pourra alors désigner un nombre
entier quelconque , ‘et Z une fraction moindre que l'unité. Cela
posé, on a

(a+2)!
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(a2 = (Al (1
(@a—h)=(—=n)(1—A"
(@R = (N 1A (2G4 o (0T
(a—PN= (=) (1—F)(2—D)(B4E) oo e (a—P) ;

on aura donc (16)
h=
A= e (L=l (=) (9= 1) . . (@2 Fs?),

Dans le cas d’'une somme impaire , solent poséds
z=a+i+L , y=a+i—ik,
ce qui donnera
a4y =2a-41 ;
@ pouvant désigner un nombre entier quelconque. On aura alors
al=(a A BI= (ARG B
P=(ab iRl (AR A

ou

2

al= (RN AD G (P4 )

: 13 f (1=}, 2atr 5.
PGB ) e (B )

2
donc (22)
&

Cos.hw

pA z5 2 49 2 - ( +I)1‘ 2
iyl e (£ F) (2 Y e )(;4).....{ = {
Si, dans le cas de -y pair , % se change en 7%, ce qui donnera
toujours x-y=2&, a étant un nombre entier quelconque , il viendra
2h=
alyl= (1224472 (9F+22) .« (@52) .

LI

Si le méme changement arrive , dans le cas de #~Fy impair , en sorte

Tem. 111, 18



‘3o FACULTES

qu'on ait toujours x-+y==za-+1, @ étant un nombre entier quel-
conque , il viendra

a 28 3 49 2 (2d+1) s)
Byl e GG ) A S
24. L’analise que nous venons de dévclopper n’est nullement bornée
au cas proposé; ct si I'on demandait soit la valeur du produit

Y I
514—a"§2‘—ktw+m"5 -ch+mf‘l‘4'w+dn""”’
soit celle du produit

S _ f:_l_ s _ ant 2% _ alt %S _ ant

U U @ U T et SO Gt

continué A ['infini, on la trouverait encore, en suivant rigoureuse-
ment les mémes principes.

25. Jusqu’ici nous avons supposé que les facteurs de nos factorielles
constituaient toujours une progression arithmétique du premier ordre
c’est-a-dire , une progression ayant ses premiéres différences cons-

tantes ; et ces sortes de fonctions peuvent étre appelées Factorielles
du premier ordre. On peut aussi imaginer une suite de facteurs

constituant une progression arithmétique du second ordre ; c’est-a-dire,
une progression ayant ses secondes différences constantes, telle que

a ,

a+b ,

a+t-264c ,

a-+30+3c ,

a-+-4b6+46¢ ,

a-+-5b410c ,

8 s 06 00 o s

Le terme qui répondrait & lindice 7 serait alors

n—1 n—1 n—3
a4t b+ —C.
4 I 2
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Un semblable produit pourrait &tre appelé Factorielles du second
ordre ; ct, pour peu quon suive le développement de la plupart
de nos séries , on verra que ces factorielles, de méme que celles
des ordres supérieurs , c’est-a-dire, celles dans lesquelles se sont
les différences d’'un ordre plus élevé que le second, qui sont cons—
tantes , doivent se rencontrer trés-fréquemment. Heureusement toutes
ces factorielles sont réductibles & celles du premier ordre, moyennant
une décomposition analitique fort simple. On peut toujours , en
effet , pour le second ordre, déterminer les deux premiers termes
A, A’, et les deux premiéres ditférences 7, 7/, de manictre que le
terme général
I Ne==1 N=—=2

7 =
x
devienne équivalent au produit
[ [ A=) 7] 5
indépendamment de l'indice z. Il faudra, pour cela , résoudre les
trois équations
AAd'=a , Ar'4+A'r=b—:ic, rr’=:ic ; (*)
on aura alors
e=AA ,
atb= A4 r) (A4 1) ;
at2b+4-c=(A42r)(A'4-21) ,

en sorte que la factorielle proposée du second ordre deviendra le
simple produit

A’n[r P A/n]rl

(*) Les inconnues A, A',r, r/ de ces trois équations étant au nombre de quaire,
on pourra disposer de Fune d’elles pour rendre les valeurs des autres les plus

simples possibles,
J. D. G.
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de deux factorielles ‘du premier ordre, et rentrera, comme telle,
dans la théorie qui vient d’étre développée. (*)

B

o

* Ce que M. Kramp appelle ici Factorielles de différens ordres esl ce que
Vandermonde avait déjA appeld Puissances de différens ordres, avec celle dif-
Férence seulement que les factorielles de lordre » sont des puissances de lordre
n-1. Ainsi , suivant le langage de M. Kramp, les puissances du premier ordre,

c’est-a-dire , les simples puissances que Ion considére dans les élémens, sont des
factorielles de l'ordre zéro.

J.D. G.



