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RESOLUES. 237

Solution du probléme enoncé & la page 128
de ce volume.

Par un ABonngi, (JerconvnvE

Enoncé. Deux points étant donnés , déterminer I'équation la plus
générale des courbes planes qui, passant par ces deux points , sont
telles que l'espace mixtiligne compris entre l'arc qui s’y termine et
sa corde, soit équivalent & une surface donnée ?

Solution, Soit P et P’ ces deux points, et rapportons-les & deux
axes rectangulaires ou obliques ; soit alors (2,4 ) les coordonnées du
\Premier ‘, et («,p )-celles du second.

On connaitra ainsi le trapéze compris entre la droite qui joint ces
deux? points, leurs ordonnées et I'axe des  ; et l'aire de ce irapéze
sera ;(b—g)(a—a).

Puis donc que P'on connait aussi laire du” segment compris entre
Tarc qui se termine & ces deux points et sa corde , on doit connaitre
également l'aire du quadrilatére\mixtiligne compris par I'arc de courbe,
les ordonnées des deux extrémitds de cet arc et I'axe des abscisses :
Yaire de ce quadrilatére étant la somme ou la différence de laire
du trapéze et de celle du segment. .

Soit donc représenté cette derniére quantité par k*, et soit désigné
par ¥, /', ¢, trois fonctions absolument arbitraires , mais nécessaire~
ment différentes, de Vabscisse « ; soit enfin désigné par ¥/, 7, ¢/, les
coefficiens différentiels ou fonctions-primes de ces fonctions , I'équa-
tion demandée sera:

{FamF ) (f'a@ a—f ! 2/ a)4-( fa—f) (¢ aF tmmt uF'a)}-(9a—0a) (Faf ta—F"af 1a)} y
= {2 (f1a @/ amef 1@ 0) - (famf ) (B @b @ ) (@@ =) (Bf 'a— | ‘a)]F'%
b (k3@ aF t—/aFa) (P ——020) (BF/ a4~ ) (Fa—TF ) (0@ a—p9'a) | i
e {k%F’a 2 flg—Faf 'a)F-(Fa—F ) (Bf 'a=bf )4 fa— fo) (bF’as—-ﬁF’a)}(b’x. ™

€*) On propose de couvrir I'analise qui a pu conduive & ce résultat,



232 QUESTIONS PROPOSEES,

T effet, 1.2 il est facile de se convainere que cette équation est
également satisfaite par les valeurs #=a , y=4, et par les valeurs
x=u, y=p , ct quainsi la courbe quelle exprime passe par les
deux poknts donnés.

2.° Il n'est pas plus difficile de se convaincre qu’en substituant
la valeur de y, tir¢e de cette équation , dans la formule /ydx, et

intégrant , entre ==« et #=«, on obtiendra A* pour résultat , ainsi
quil était encore exigé.




