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Singular Perturbations for a Class of
Degenerate Parabolic Equations with Mixed
Dirichlet-Neumann Boundary Conditions

Marie-Josée Jasor
Laurent Lévi

Abstract

We establish a singular perturbation property for a class of quasi-
linear parabolic degenerate equations associated with a mixed Dirichlet-
Neumann boundary condition in a bounded domain of RP, 1 < p <
+00. In order to prove the L'-convergence of viscous solutions to-
ward the entropy solution of the corresponding first-order hyperbolic
problem, we refer to some properties of bounded sequences in L*°
together with a weak formulation of boundary conditions for scalar
conservation laws.

1 Introduction

This paper is devoted to the study of the singular limit, as € goes to 0, for
the class of second-order degenerate equations

Orue + Divg (B(t, x)p(ue)) + ¥(t, x,u) = eAd(uc) in 0, T[xQ,e >0, (1.1)

where () is a bounded domain of R?, 1 < p < 400, with a Lipschitz boundary
I and T a positive real. Moreover, B is a vector field on ]0,T[x, ¢ is a
non-decreasing function and ¢ is a C!-class function with

¢ >0,Li({x eR,¢'(x) =0}) =0, (1.2)

where £, refers to the Lebesgue measure on R”, p > 1.
Equations (1.1) are associated with the mixed boundary conditions:

ue = up, on |0, T[xTe, Vo(ue).v =0 on |0, T[x(I'\Te), (1.3)
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M.J.JASOR, L.LEvI

where v is the outward unit vector defined a.e. on I' and T, is a part of '
with a positive dI'-measure.

In petroleum engineering within the context of a secondary recovery pro-
cess, the Dead Oil isothermal model leads us to consider a two-phase (oil-
water) flow incompressible and immiscible through a porous medium (the
reservoir rock €2) and a partitioning of its boundary I" in three open separated
areas ['. (with a positive d['-measure), Iy (with a non-negative dI'-measure)
and 'y and corresponding respectively to the water injection wells, the oil
production ones and the waterproof walls of the deposit with:

r=r.ur,ur,uor,,r.nr, =0.

Then the oil-reduced saturation is the solution of an (1.1)-type equation
reladocumentclassted to boundary conditions (1.3), where ¢ denotes the oil
flood ratio, (—B) is a pressure gradient, for example the global pressure P
introduced by G.Chavent & P.Jaffré [6], which is the solution of a linear
parabolic equation with the mixed Neumann-Robin boundary conditions

dVPv=f onl.,, VPvr=0only,dVPv=-\P onl, (1.4)

where d is a positive constant, f a given smooth stationary filtering velocity
at the injection wells and A the permeability coefficient at the production
wells satisfying:

f>0onTl.,dl' —meas{z €T, f(x) >0} >0,
A >0 on Ly, dl' — meas{zx € 'y, \(z) > 0} > 0.

A detailed presentation may be found in G.Gagneux & M.Madaune-Tort’s
book [10].

As (1.1) is written, the capillary pressure between the oil and water phases
has been taken into account through the function ¢. Usually, these capillary
effects are negligible in favor of transport ones, meaning that ¢ is small; the
case when € is equal to zero signifying that the capillary effects are com-
pletely neglected. Hence, our aim is to compare both models whether the
viscous parameter € is positive (and (1.1) is a quasilinear degenerate parabolic
equation) or nul (and (1.1) is an hyperbolic first-order quasilinear equation).
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SINGULAR PERTURBATION FOR A PARABOLIC DEGENERATE EQUATION

We can summarize the properties obtained in this work through the next
theorem whose proof will be developed in the following sections:

Theorem 1.1:

(i) For any positive €, the degenerate parabolic-hyperbolic equation (1.1) asso-
ciated with the mized Dirichlet-Neumann boundary conditions (1.3) and the
initial data ug has an unique solution u..

(1) When € goes to 07 the sequence (uc)eso gives an L'-approzimation of
the weak entropy solution to the quasilinear first-order hyperbolic problem
formally described by:

Owu + Divg(B(t, x)p(u)) + ¥(t, z,u) = 0 in ]0, T[x€Q, (1.5)
uw = ur, on an unknown part of |0, T[xI" but including |0, T[xT., (1.6)
u(0,.) = ug on €. (1.7)

Numerous works have been achieved on the study of the behavior of the
viscous sequence (u¢)e~o as € goes to 07, especially when the diffusion term
is linear [3, 18] or for an homogeneous Dirichlet boundary condition [12] and
even for obstacle problems [15, 16, 17, 20]. However, few works have dealt
with the particular framework considered here. In fact, this paper refers to
the study in [13] when B is stationary and sufficiently smooth to obtain local
a priori estimates for the sequence (uc)eo in the space of bounded func-
tions with bounded variations on ]0, T[x€2, by using weight-functions non-
increasing along the characteristics of the linear operator v — B.Vv. But
since these smoothness conditions are not generally satisfied by the pressure
gradient VP, we try to release in this paper the assumptions on B bearing
in mind that here B is time-and-space depending and considering that due
to the concept of Young measures 7, 8, 18, 21| a uniform L*-estimate of
approximate solutions is sufficient to characterize the e-limit of (1.1,1.3).

Thence our first objective is to prove the existence and uniqueness of the
solution u, to (1.1, 1.3) associated with the initial datum . With this view
we introduce, for each value of the parameter § in ]0, 1], a regularized prob-
lem obtained by turning the nonlinearity ¢ into ¢s = ¢ + dIdg. We establish
a priori estimates of s that are independent from ¢ so as to provide an
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existence result for the degenerate problem. In fact, the mathematical con-
text considered here only permits to obtain J-uniform Hilbertian estimates
for ¢s(ues) and in order to establish the uniqueness proof for (1.1,1.3) an
assumption on the local behavior of o ¢~! is necessary. Namely, we assume
that

@ o ¢t is Lipschitzian on [¢p(—M(T)), p(M(T))],

with a constant M ;

ot (1.8)

where M (T') is defined by (1.9).

Our second objective is to pass to the limit when € goes to 07. The maxi-
mum principle ensures that the sequence (uc)e~o is bounded in L>(]0, T'[x ).
Accordingly, the behavior of bounded sequences in L> and its consequences
that we owe to R.Eymard, T.Gallouét & R.Herbin [8] permit to pass to
the L*°-weak star limit. This provides the desired singular perturbations
property: as e goes to 07 the sequence of viscous solutions (u)e=o gives
an L'-approximation of the solution u to the hyperbolic first-order problem
(1.5,1.6,1.7).

Remark:The main feature of this paper is to deal with some mixed Dirichlet-
Neumann boundary conditions on |0, T[x0€2. The nonhomogeneous condi-
tions are given by the physical model but they are not essential to compre-
hension.

Of course all the results exposed here still hold in the situation of Dirichlet
data for the same kind of operator. Especially the singular perturbations
property stated in theorem 3.1 applies with the same smoothness assumption
on the boundary data and with the same mathematical tool. Concerning the
existence and uniqueness of theorem 2.1, the hypothesis (1.8) falls given that
that every weak solution in the sense of theorem 2.1 fulfills implicitly an
entropy inequality which is chosen as the starting point for the uniqueness
(see [10]). It is also possible to weaken (1.2) and consider a strong degenerate
operator for which ¢ > 0, £1({z € R,¢'(x) = 0}) > 0, assuming thereby
that ¢! is not a function necessary. In this special context we need to refer
to a weak entropy formulation for the second-order problem which is the state
of the art at the moment (see [4],[5],[9],[19]...). At our knowledge there is no
result concerning the existence and uniqueness of the weak entropy solution
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SINGULAR PERTURBATION FOR A PARABOLIC DEGENERATE EQUATION

to a strongly degenerate parabolic-hyperbolic operator associated with mixed
Dirichlet-Neumann boundary conditions.

1.1 Main notations and hypotheses on data

For any t of 0,7, Q; denotes the cylinder |0,¢[x knowing that Qr = Q.
Similarly 3, =]0,¢[xI" and ¥7 = X. Thus, in the rest of this paper we assume
the following hypotheses are fulfilled:

e B ais vector field of (IW1°°(Q))P, this regularity being actually given when
one follows the Kruskov uniqueness method for first-order quasilinear equa-
tion [14]. Furthermore we suppose that Div,B = 0, which is not restrictive
given that (1.1) involves a reaction term.

e Let us define:
I' ={0€X B(o)r <0} withdl'(l'_) >0

and thus, as a result of (1.4) with VP = —B, I'; is an open part of I" such
that

I'_ CT. and dT'(T,) > 0.

It is important to notice that I'_, which is the part of I' corresponding to
the inward characteristics for the linear hyperbolic operator v — B.Vv, may
be considered independent from the time variable ¢. Indeed, the physical
model considered shows that, due to (1.4),

Bv=—f/donT..

® g is a measurable and bounded function 2.

e up, is smooth enough to reduce (1.3) to an homogeneous Dirichlet boundary
condition on ]0,T[xI. by means of a translation procedure. Namely, it is
sufficient to assume that ur, is the trace on ]0,T[xI" of a function wr, of

HY(Q) N L>*(Q) such that dyur, and d;¢(ur,) belong to H*(Q).
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Let us observe that these assumptions ensure the existence of a time-
depending function M : ¢ — M (t) defined for any ¢ of [0, 7] by

’
e €Mt

-1
M (t) = maz(||lur, || Loy, [[uoll L)) e + T!W(h%@“ﬁ(@ (1.9)
¥

e ¢ is a non-decreasing Lipschitzian function on [—M (T'), M(T')] with a con-
stant M.

e ¢ is an increasing W T>°(—M(T), M(T))-class function such that (1.2)
holds. Let us note that these hypotheses only entail the continuity of ¢—*.

We remind that ¢ o ¢! is Lipschitzian on [¢(—M(T)), p(M(T))] with a

constant Ms;owl'

e ¢ belongs to Wh*(Q x R), M}, =ess  sup  |0,3p(t, z,u)|

(t,x,u)eQXR

Eventually, we introduce "sgn,", the Lipschitzian and bounded approxi-
mation of the function "sgn', given for any positive parameter A and for all
positive real x by:

sgny(x) = min (; 1) and sgny(—z) = —sgna(x).

2 The vanishing viscosity method

In order to take the e-limit in (1.1), we seek a priori estimates for the sequence
(tte)e>o- This is the purpose of the next theorem which is the first main result
of this paper:

Theorem 2.1: For any positive €, the parabolic degenerate equation (1.1) has
a unique solution u. associated with initial datum ug and boundary condition
up, on Ue. Precisely, u. belongs to L>(Q), ¢(u.) and dyu. are respectively
elements of L*(0,T; HY(Q)) and L*(0,T;V"), and

for a.e. t of 10,T] uec = ur, a.e. onT,,

ess lir(gr / lue(t, x) — up(x)|dz = 0. (2.1)
t—
Q
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In addition, u. satisfies the variational equality for a.e. t of 10,T] and for
any v of V:

< Opie, v > — /go(uE)B(t,:b).Vvd:U—l-/(p(ue)vB(t,v).ydv
Q T

+ e/ngS(ue).Vvdx—l—Q/i/}(t,x,ue)vdx = 0. (2.2)

Q

where < .,. > stands for the duality brackets V'-V. What is more, for any
positive €,
||ue||L°°(Q) S M(T)7 (23)

where M(T) is defined through (1.9).

2.1 Proof of theorem 2.1: uniqueness property

The uniqueness proof for the solution of parabolic degenerate equations have
been achieved by many authors, principally for the Cauchy-Dirichlet problem.
Various techniques have been used to avoid the difficulties owing to the lack
of regularity of first-order partial derivatives for a weak solution and to the
nonlinear context considered. At the moment, the state-of-art consists in
considering a strongly degenerate problems where ¢ is only non-decreasing.
Following the original ideas of J.Carrillo [5] many works dealt with entropy
formulation for parabolic degenerate problems (see [4, 9, 11, 19] and the
corresponding references). Then the uniqueness proof refers to the Kruskov
method [14] classically used to study the uniqueness of the weak entropy
solution to quasilinear conservation laws by splitting the time and the space
variables in two.

In this work, as we take into account a mixed Dirichlet-Neumann bound-
ary condition, we have at our disposal the works of M.J.Jasor [13] where
B is stationary and those of G.Gagneux & M.Madaune-Tort [10] for varia-
tional inequality. In each case, in order to deal with the convective term, the
function ¢ o ¢! is supposed Holder-continuous with an exponent of at least
1/2. However, given that here B is time depending, we have been forced
to assume that ¢ o ¢! is Lipschitzian on a bounded interval of R. In this
weakly degenerate framework, the next statement holds:
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Proposition 2.2: Suppose that (1.8) holds and let u. and v, be two weak
solutions to degenerate equation (1.1) corresponding respectively to the couple
of boundary data (ug,ur,) and (v, ur,). Then, for a.e. t of |0,T:

/ (ue(t, z) — vc(t, ) dx < / (up — o) dx Mt

Q Q

PrOOF: The demonstration draws its inspiration from that presented in
[10] by splitting only the time variable in two. Let us briefly describe the
mathematical tools: let { be an element of D, (0,7) and for any positive pu,
let p,, be the standard mollifier with support in [—u, +4]. For any ¢ and ¢ of

10, T'[, we consider
. t+1 t—t
st =<5 (5.

with p sufficiently small such that ¢, belongs to D, (]0,T[x]0,T7).

In order to simplify the writing, we drop the index e temporarily and
we add a tilde superscript to any function with the variable . Thus, in
variational formulation (2.2) for w written in the variables (¢,x) we may
choose the test-function sgny (¢(u) — ¢(0))¢, and in the one satisfied by v
and written in the variables (Z,z), the test-function —sgn} (¢(u) — ¢(7))(,.
Then we integrate on the time variables over |0, T'[x]0, T'[. By adding up and
taking into account the positiveness of the diffusive terms, it comes:

/

- / / {o(u)B — @(0)B}.Vsgnt (¢(u) — o(0))Cudadtdt
0 Q

< Oy — 050, sgni (¢p(u) — §(0)) > (,dtdt

ot~

+ /{90 o(0)B}.vsgny (¢p(u) — ¢(0))C dodtdt

/\

O\H O\’ﬂ

/{w (t,z,u) — Y(t, z,9) sgni (¢p(u) — ¢(0)) dodtdt.  (2.4)
Q
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SINGULAR PERTURBATION FOR A PARABOLIC DEGENERATE EQUATION

In order to pass to the limit with respect to A and then to p in (2.4), let
us develop the following transformations in the right-hand side:

e For the duality brackets V'-V, thanks to an adaptation of the Mignot-
Bamberger Lemma [2], one gets an integration-by-parts formula which pro-
vides the next integral:

0
+ /sgnj(qﬁ(u) — ¢(7))dr0(,, | drdtdt.

When the A-limit is taken, it comes:

T
- / /(u — )T (04, + 0iC, ) dxdtdt.
0

Q

e For the second line:

/ / {p(u) = ¢(B)}B.Vsgnt (6(u) — 6(3))Gudadtdi

/ / P(0){B — B}.Vsgn{ (¢(u) — ()¢, dxdtdt.
0 Q

Thus, thanks to hypothesis (1.8) and to the Sacks Lemma, the first term goes
to 0 with A. For the second one a Green formula is used since (1.8) ensures
that () belongs to L?(0,T; H'(£2)).

Finally, when A goes to 0%, by expressing the time-partial derivative of
¢, and taking the monotonicity of ¢ into account, it comes:

/ { (u— ) ¢ py+ Vp(9).{B — B}sgn™ (u — ﬁ){pu} dxdtdt
10,7[xQ
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+ / {o(u) — @(9)}B.vsgn™ (u — 0)(p,dodt

10,T[x%

< M, / (u — ) Cp, dadtdt.

10,T[xQ

Let us note that due to the partitioning of I' and to the monotonicity of
© the boundary integral is non-negative. Then, by referring to the notion of
a Lebesgue point for an integrable function, we may take the p-limit in the
previous inequality. As the second term in the left-hand side goes to 0, it
follows:

- /(u —v)"('dzdt < M), /(u — )" ¢dxdt,
Q Q

for any ¢ of Dy(0,T) and by density, for any ¢ of W' (0,T) with ¢(0) =
¢(T) =0.

Now the conclusion is classical: it uses a piecewise linear approximation
of g, with ¢ given outside a set of measure zero. Thanks to the definition of
initial condition (2.1) for v and v, and to the Gronwall Lemma we complete
the proof of theorem.

|

Remark: The Lipschitz condition for ¢ o ¢! is only needed to transform the
second line of inequality (2.4). When B is stationary an Holder condition is
sufficient to transform the convective term in (2.4) (see [10],[13],..)

2.2 Proof of theorem 2.1: existence property

The equation (1.1) being nonlinear and degenerated in the sense (1.2), we first
introduce some auxiliary non-degenerate problems by turning ¢ into ¢+01dg,
for each value of the parameter ¢ in ]0, 1]. Thus we look for estimates of u, s
that are independent from § (the latter will fix the regularity of u.) and from
€ as soon as possible (the latter will specify the behavior of the sequence
(te)e=0, as € goes to 07). First and foremost, if we refer to G.Gagneux &
M.Madaune-Tort’s book [10], the next statement holds:
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Lemma 2.3: For any positive € and § the non-degenerate parabolic problem:
find ues in W(0,T; H'(Q); L2(2)) N L>(0,T; H(Q)) satisfying for any v in
HY(Q), v, =0, the variational equality for a.e. t in ]0,T],

/ (Orttes + Div A B(t, ) p(ucs)} + (t, z, uc 5)) vda
Q

= —¢ / Vs(ues).Vudr, (2.5)

Q
and the boundary conditions,

ues =ud, dS-a.e. on I, (2.6)
e 5(0,.) = uf a.e. onQ, (2.7)

has a unique solution.
What is more, if u.s and ves are two solutions associated with the bound-
ary data (ug,u‘%e) and (v§,v}.), then for any t of [0,T):

/(ue,g(t,x) —ves(t,x)) dx

Q

(1Bl M. / (ud, — ol )*do + / ) — d(2)) Hdr)eMit. (2.8)
Q

(Ze)t

In addition, és(u.s) belongs to L*(0,T; H¥?>71(Q)) for any positive 1.
Lastly for any positive € and § and for any t in [0,T):

lues(t, )| < Ms(t) for a.e. x in S,

where Ms(t) is given by

M/t

’ e v — 1
M;s(t) = max(||up, || zoe(s), [[udl L))" + ant’ ,0)]| =)
¥
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In formulations (2.6,2.7) of boundary conditions, the smooth data uf.
and u are defined by first introducing a.e. on @ the function ugp, in the
same spirit as in [18]:

uor, (t,r+ sv) =ur,(t,r) fort €]0,T[,r € T,0 < s <min(t,0),
uor, (t,x) =ur, (t,z) for min(dist(z,I"),0) <t <T,x € Q,
uor, (t,x) = uo(x) for —o0 <t < min(dist(z,I'),6),z € Q,

uor, (t,z) =0 elsewhere .

Then let us define for p in Q:
W)= [ wor Bhosto - D)
Rp+1

where p;s is the usual mollifier. Let us now denote by u‘%e and u the restriction
of u), to ¥ and {0} x Q respectively. Observe that

(ud )s>0 and (uf)s=o are uniformly bounded in the respective L*-norm,

5lir(§l+ uy = ug in L(Q).

Remark:
i) Owing to the smoothness of .4, one has a.e. on Q:

Oytie 5 + DivgAB(t, 2)p(ues) } + (t, @, e s) = €eAps(tes). (2.9)
In this way, Ag¢s(ucs) belongs to L*(Q) and V¢s(ucs) is an element of

L*(0,T; H(div,2)). So, Vs(ues).v = 0 in L*(J0, T[xI\I'.) and a.e. on
0, T[xT'\T..

ii) It is essential to mention that by considering in the definition of M;(t)
the respective L>™-norm for the sequences (u‘%c)bo and (u))s=o, the € and §
uniform estimate holds for every ¢ of [0, 77:

|ues(t,x)| < M(t) for a.e. x in S, (2.10)

where M (t) is given by (1.9).
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On the one hand, we assume in this work that the vector field B is unsta-
tionary. Consequently it is well-known that in this situation, an L!-estimate
of Oyucs (in terms of differential ratio or continuity modulus) is linked to an
L'-estimate of Vu,s, and conversely (see for example S.N.Kruskov [14] for
the Cauchy problem or [3, 12] for the Dirichlet one). On the other hand, we
release the smoothness assumptions on B and ug as much as possible; thus,
even if B is independent from ¢, we may not refer to F.Mignot & J.P.Puel’s
weight-functions [20] associated with the operator v — B.Vv in order to
obtain, as in [13], an L'-local estimate uniformly with respect to € and § for
Vues. This explains why we solely focus on Hilbertian estimates for ¢g(u. s)
that are in fact based on an energy inequality. With this view, we introduce
an arbitrary sequence (i, )nen in |0, 7] which converges to zero as n goes to
+00. Thus, for a fixed n,

Lemma 2.4: Then there exists a constant ci, independent from n and § in
10, 11 /2[, such that:

equ)zS(ue,5>”%Q(MMT;LQ(Q)p) < c, (2.11)
Hatue’éHLZ(umT;V/) < ¢, (2.12)
ellvit - Mnatq’é(ue,é)H%?(M,T;H(Q)) < ¢, (2.13)

where ®5(r) = /(d)g(T))lﬂdT and V denotes the Hilbert space
0

V={ve Hl(Q),v‘pe =0},
1/2

used with the H*-equivalent norm: ||v|y = /[Vv]2d:r
QO

Some commentaries - These uniform a priori estimates are established by
taking advantage of the regularity of ur,.
i) As for (2.11), we choose the test-function v = ucs — ufp, in (2.5) and we

integrate over |u,, T[. We just mention that the convective term is written

by developing the partial derivatives. Then if we denote F'(r) = / o (T)7dr,

0
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the Green formula, the partitioning of I' and the monotonicity of ¢ ensure

/ B.VF(us)dzdt < / B.vVE(u}, )dxdt

|, T[XxQ Jtn, T[xTe

ii) As for (2.13), we consider the L?(]u,, T[xQ)-scalar product between (1.1)
and e(t — 1) 0{ ps(te,5) — ds(uf p.) } that is an element of W (j,, T, V, L*(Q)).
To transform the diffusion term, we establish a Green formula thanks to the
density of D([pn, T]; X) into W(p,, T; X; L*(2)), where X is the Hilbert
space

X={veV Ave LQ(Q),/Avwdx = —/Vv.de:r,Vw eV},
Q Q

used with the scalar product ((u,v))x = /Vu.Vvdx + / AuAvdx and the
Q

Q
associated norm.

The other terms are bounded thanks to a Cauchy inequality and estimates
(2.10,2.11).
iii) As for (2.12) we refer to the definition of the L*(u,,T;V')-norm and we
use (2.10,2.11).

Remark:When B is stationary then an L'-uniform estimate of time-differentials
ratio holds. Indeed, this particular context ensures - tanks to (2.8) - the ex-
istence of a constant ¢(d) such that for any h of |0, 7] and any ¢ of [0,T — h],

|’u675(t + h, ) — us,(;(h, .)HLI(Q) < C(&)h,

the dependence with respect to d been released as soon as Aug and Ad(ug)
are bounded Radon measures on 2.

The estimates of lemma 2.4 ensure that the family (/T — pn¢s(we,s))sejo, |
remains at least in a bounded set of W1t (Ju,, T[x2). The compactness em-
bedding of the latter space into L'(Q) and the continuity of ¢~! provide
the existence of a measurable function u, . and a subsequence - still denoted
(ueﬁ)(ge]o’%n[ - such that when ¢ goes to 0T, (u&,;)(;e]o’%n[ goes to u, . for every

(t, ) in (Jpn, T[XQ)\N,, with LPTH(N,) =0
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Let us denote N' = |J N, and let u, be the L®(Q) weak-x limit of
neN
(Ues)s>0 up to a subsequence. Then, as § goes to zero, (ucs)s>0 goes to u,

for every (t,z) in Q\N, and so in L9(Q), 1 < ¢ < +oo. What is more
due to (2.11) and (2.12) and to the fact that ¢; does not depends on n,
(Vs(tes))o=o0 and (Opuc5)s>0 weakly converge up to a subsequence respec-
tively toward Vo (u.) in L*(0,T, L*(2)?) and dyu. in L*(0,T,V"). Hence:

Proposition 2.5: The degenerate problem (1.1,1.3) has at least a weak so-
lution ue associated with the initial data ug in the sense (2.1). This solution
belongs to L>=(Q), with ¢(u) in L*(0,T; H'(Q)) and dwu. in L*(0,T;V"),
and is characterized by the variational equality (2.2).

PROOF:  There is no difficulty in establishing variational equality (2.2).
We use the continuity of ¢! and for the boundary term the continuity of
the trace operator from H*(Q) into L*(T") for 1/2 < s < 1. So let us focus
on weak formulation (2.1) for the initial condition. The demonstration is
inspired by that presented by F.Otto in [18] for the case of weak entropy
solutions to quasilinear scalar conservation laws. Here, we take in (2.5) the
test-function v = sgny(ucs — k)a¢ where a and ¢ are respectively elements
of D;(] —o0,T|) and D () and k belongs to R. By integrating with respect
to t from 0 to T', it comes:

Ue,§
— / /sgn,\(T—kz)dT (@adwdt—/F,\(ugg,k)B.VCadxdt
Q k Q

b [ ot us)sgna s~ Wacdode
Q

e/ k/qﬁf;(T)sgn,\(T—k:)dT ACadzdt

Q
< sgna(T — k)dr | Ca(0)dx
A
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where,
v

F\(v,w) = /sgn,\(T —w)y'(7)dr.

w

Thus, when § and then X tend to 0%, an integration by parts with respect
to t provides :

T

—/ /|u6 — k|¢dz 4+ 0.(t) | /(t)dt < / lug — k|Ca(0)dz, (2.14)

0 Q Q

/ ( / ~lp(ue(r 2)) — (k)| B(r, ).V
Q 0

+ (T2, ul(T, ) sgn(uc(T, x) — k) — €|(uc(r, x)) — ¢(k)|Al]dr)dz.
In this way, the time-depending function ¢ — [ |u, — k|Cdz + 0(t) is

with:

Q
identified a.e. with a non-increasing and bounded function, so it has a limit
when ¢ goes to 07, ¢t €]0, T[\O, L£1(O) = 0. As 0, goes to 0 with ¢, it comes

ess lirél+ / |ue — k|¢dx < /|u0 — k|(dz,
t—
Q

Q

for any function ¢ of D, (Q2) and any real k. As a consequence, owing to
F.Otto’s reasoning in [18] we may announce:

ess hm /|uE (t,x) x)|dx </\u0 x)|dz

for any K of L>(2). Condition (2.1) follows, which completes the proof.

Remark:

i) Since ¢(u.) belongs to L*(0,T; H'(Q)) and 9;¢(u.) to L*(a, T; L*()) for
any positive a, then ¢(u,) is a function of C ([, T; L*(2))NCs([ev, T]; H(2)).
Thus we may define a trace for u.(¢,.) on I, for every ¢ €]0, T, through:

trace(u)(t,.) = ¢~ (trace(d(uc))(t, .)).
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In this sense, u. = ur, on ..

ii) When B is independent from the time variable then the estimate of time-
differential ratio pointed at the previous remark ensures, through the Ascoli
Lemma, that the sequence (ucs)s=o converges toward u. in C([0,T]; L*(12)).
In this situation, the initial condition for u, can be strongly formulated under
the form: u.(0,.) = up a.e. in Q.

iii) The previous existence result for u. doest not require any smoothness
assumption for ¢ o ¢~L.

To complete this paragraph, let us remark that the uniqueness property
for u, ensures that the whole sequence (u,s)s>0 gives an approximation of u..
Therefore, given the e-uniform estimate (2.10) satisfied by wu.s one has (2.3)
for .

Remark: If the vector field B is independent from t and if data are smooth
enough (namely as soon as A¢(ug) and Awg are bounded Radon measures
on ) then the L'-estimate of time-differential ratio pointed previously holds
for u. uniformly with respect to 0, which gives an a priori estimate of the
sequence (u)eso in BV (0,T; LY(Q)).

3 A singular perturbations property

We now focus on the behavior of the sequence (uc)eso as € goes to 07 that
is precisely to prove that the sequence of solutions to parabolic degenerate
equations (1.1)~0 associated with the couple of boundary data (ug, ur,) pro-
vides an L!'-approximation of the solution to the corresponding first-order
problem (1.5,1.6,1.7). This property of singular perturbations extends that
of M.J.Jasor [13] obtained in the special situation when B is a smooth sta-
tionary vector field so as to reason within the framework of bounded functions
with locally bounded variations on Q).

We first recall that a mathematical formulation for (1.5,1.6,1.7) is pro-
vided by bearing in mind that for a general first-order quasilinear equation,
it is classical to refer to an entropy criterium that warrants uniqueness. With
this view we refer to the works of F.Otto in [18], chapter 2, which introduce
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a new formulation of boundary conditions for quasilinear hyperbolic equa-

tions, which generalize to L>°(Q)-solutions those of C.Bardos, A.Y.LeRoux

& J.C.Nedelec [3], only aviable for solutions with bounded variation on Q.
Thus, we denote

F(u,v) = lp(u) — ¢ (v)],
L(u,v,w) = |u—v|0w + F(u,v)B.Vw — sgn(u — v)(t, z, u)w.

We thus say:
Definition: A measurable function u is the entropy solution to (1.5,1.6,1.7)

if it satisfies:
i) the inner entropy condition, for all £ in D (]0,T[x2) and for any real k,

/.C(u, k,&)dxdt > 0, (3.1)
Q
i) the initial condition,
ess lil(l)n |u(t, z) — uo(x)|dz =0, (3.2)
t—
Q

i11) the boundary condition in the weak sense

ess lir(r)li F(u(o + Tv),ur,, k)B(o).v{de > 0, (3.3)

2

for any real k and any function ¢ of L} (X) where, for any real a, b, c,

2F (a,b,c) = F(a,b) — F(c¢,b) + F(a,c)

Remark: If it can be proved that for a.e. ¢ of |0, T, u(t,.) has bounded vari-
ations on €2, then (3.3) is equivalent to the classical formulation of boundary
conditions owing to C.Bardos, A.Y.LeRoux & J.C.Nedelec [3], which is re-
duced in our particular context for a.e. ¢ of |0, 77 to:

VEk € Z(ur,, ), l¢(yu) — @(k)|B.v > 0 dl-a.e.,
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where ~, is the trace of u on I' in the sense of bounded functions with
bounded variations on §2. Thus, by considering the definition of I'_, we may
note that ¢(v,) = ¢(ur,) a.e. on I'_ and since ¢ is non-decreasing, the
Dirichlet condition is fulfilled as soon as ¢ is not constant.

Here the next statement holds:

Theorem 3.1: When € goes to 07, the family (uc)eso of solutions to de-
generate equations (1.1)~o associated with the couple of boundary conditions
(uo, ur,) strongly converges in L9(Q), 1 < g < 400 and a.e. on @ toward
the weak entropy solution w of first-order problem (1.5,1.6,1.7).

Before we must remind some properties of bounded sequences in L*°.

3.1 Bounded sequences in L~

Let O be an open bounded subset of R? (¢ > 1) and let (uy)n>0 be a bounded
sequence in L>®(Q). Clearly, for any continuous function h there exists h in
L*>(Q) such that for a subsequence,

h(u,) — h weakly in L=(0O).

Since the works of L.Tartar [21] and J.M.Ball [1] one has been able to de-
scribe the composite limit A. Actually, thanks to the properties of the weak-*
topology on the space of Radon measures, and to the properties of the gen-
eralized inverse of the distribution function linked to a probability measure,
the next compacity result holds (see [8]):

Proposition 3.2: Let (uy,)n,~0 be a sequence of measurable functions on O
such that:

Then, there exists a subsequence (uf(n))n>0 and a measurable function w in
L>(]0,1[x O) such that for all continuous and bounded functions h on Ox|—
M, M,

V¢ € LY0O), lim /h(w,uf(n))§dw: / h(w, m(a, w))daédw.

n—-+oo

o 10,1[x0O
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Such a result - or the equivalent within the context of Young measure
- has found its first application in the approximation through the artificial
viscosity method of the Cauchy problem in R? for scalar conservation laws,
when only a uniform L*-control of approximate solutions holds (see [7, 21]).
It has also been applied to the numerical analysis of transport equations since
”Finite-Volume” schemes only give an L*-estimate uniformly with respect
to the mesh length of the numerical solution (see e.g. [8, 9]...). Here, we refer
to this concept when the approximating sequence is the sequence of solutions
to viscous equations (1.1)s¢ associated with data (ug, ur, ).

3.2 Proof of theorem 3.1

Owing to (2.3) there exists a subsequence extracted from (u)e~o - labelled
(te)eso - and a measurable and bounded function 7 on |0, 1[x @ such that for
any continuous and bounded function f on Qx| — M, M]|

lim [ f(t,z,u)édxdt = f(t,z,m(a, t, x))dadzdt,
e

e—0t
10,1[xQ

for any £ of L'(Q).

In fact, in order to establish the proof of theorem 3.2 we are going to
demonstrate that the function 7 is an entropy process solution to (1.5,1.6,1.7),
namely that 7 fulfills relations (3.1, 3.2, 3.3), where the integrations with re-
spect to the Lebesgue measure on @), €2 and X are respectively turned into
integrations with respect to the Lebesgue measure on |0, 1[x@, ]0, 1[x and
10, 1[x 3.

Indeed by following the F.Otto’s works [18], we may prove that if 7 and
w are two entropy process solutions of (1.5,1.6,1.7) in the sense of definition
3.1, then for a.e. t of |0,T7:

t

/ / ’W(Ol,t,.f) _W<6,t,x)’dadﬁdl'dt =0.

0 @x]o,1[?

Thus, as mentioned in [8] the two processes m and w are equal, for a.e. (¢, )
on @, to a common value u(t, z), which does not depend on « or 3 in |0, 1].
In addition, u is a measurable and bounded function on ¢ and is namely
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the weak entropy solution of (1.5,1.6,1.7). Lastly, as a consequence of the
uniqueness property, the whole sequence of approximate solutions strongly
converges to u in L4(Q), 1 < ¢ < +o0 and a.e. on () (see e.g. [8] of [7] within
the context of measure-valued solutions).

Remark: The uniqueness proof of an entropy process to (1.5,1.6,1.7) refers
to the classical Kruskov method [14]: it split the time and the space variables
in two. As pointed out in the introduction, we then need some smoothness
assumptions on B in order to pass to the limit with mollifiers at once in the
convective term and in the boundary ones (by using Otto’s techniques).

(i) Entropy inequality (3.1) and initial condition (3.2) for m

We take advantage of the approximation properties of u. through (uc s)s>o
to provide an entropy inequality for u., in which we can pass to the limit with
respect to €. So, let us come back to the regularized problem (2.5,2.6,2.7).
By multiplying a.e. on @ equation (2.9) with the function sgn,(ues — k),
k € R, and by taking into account that a.e. on @)

Ue,§

sgna(tues — k) Ads(ucs) < A / sgna(T — k)gs(T)dr
%

and,
sgn(tues — k) Divy(o(tes)B) = Divg(Fy(ues, k)B)

where,
v

Fy(v,w) = /sgn)\(T —w)'(T)dr.

Then, by letting I)(u) = /sgn,\(T — k)dr, one has a.e. on Q,
k

at]/\(ue,é) + D?;’UI(F)\(U;Q& k)B) + w(t> z, ue,§)sgn)\(ue,6 - k)

Ue, s

< €A /sgn,\(T— k) (T)dr
k
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In this way, for any function ¢ of D (] — 00, T x Q),

_ / (I (1 s)ONC + Fi(te 5 K)B.VC — (b, 2, e 5)sgma(ues — k)C} dardt

Q
< e sgnx(T — k)g5(T)dr | Aldzdt + | In(uf)C(0, z)dx.
T z

Thence, we pass to the limit with respect to § and then with respect to € -
the first term in the right hand side of the above inequality being bounded by
eC®! thanks to (2.3). Lastly the A-limit through the dominated convergence
theorem gives

= / E(W,k,{)dadxdtg/\uo—kC(O,x)dx, (3.4)
10,1[xQ Q

for any ¢ of D4 (] — 00, T] x Q). So, one gets (3.1) for 7. Moreover F.Otto’s
ideas [18] ensure that if (3.4) holds, then for any function K of L*>°(2),

t—0

ess lim sup / |m(v, t, 2) — K(2)|dadz < / lup(z) — K(x)|dx.
Q

10,1[x$2

Initial condition (3.2) for 7 follows with K = uy.

(ii) Dirichlet boundary condition (3.3) for «
The demonstration is based on F.Otto’s original proof [18]. With this

view, we introduce for any [ of N the family of boundary entropy-entropy
flux pairs (H,, @) defined by:

o\ 1/2
Hy(a,b,c) = H}(a,c) = <(dz’st(a,I[b, c))? + (;) ) - %

and

Qi(a,b,¢) = Q(a,c) = / O H " (95(7), ds(c)) (1)dr,

hence (Q;)ien converges uniformly as [ goes to +00, to F(a, b, ¢) for any non-
negative 9. Again, we take advantage of the approximation properties of
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ue through (ucs)s=o to come back to regularized problem (2.5,2.6,2.7). By
multiplying equation (2.9) with 81Hf‘5(w)(¢5(u515), os5(k))CE, where ¢ belongs
to Hy . (€), € to D (]0, T[xRP), w and k to R, and by considering that a.e.
on @ (to simplify the writing we drop the indexe e temporarily)

0L H ™ (6(u), (k) Ad(w) < Divg [0 HI™ (6(u), d(k)) Ve (w))

and,
O H ™ (¢(u), ¢(k)) Divg(0(u)B) = Divy(Q,B)
1t comes:
_/ ( / OH " (95(7), b5 ())dT)OEC + QF (ue 5, k)B.VEC
Q k
~0uH" " (85(11cs), 65Dt 2, ucs)GE | dadt
<

/ Q¥ (ues, k)B.V(Eddt — € / VIH? ™ (¢5(ueys), ds(k))E).VCdadt
Q Q

+ 26/Hz%(w)(%(ue,a),¢5(7€))V§.V§dxdt
Q

+ e / HP ) ($5(ues), ds(k))CALdadt. (3.5)

Q
Owing to the converge properties of the sequence (ucs)s>0 toward u., we
may pass to the 0-limit in (3.5) and in order to take the e-limit - that is to

control the right-hand side of (3.5) - we consider the particular choice for the
function (: for any positive €,

M . +eL
) = 1 - exp (2= ) (3.6)
€
where for any positive parameter p small enough,

| min(dist(z,T), 1) for x € Q
s@ =1 - min(dist(x,T'), u) for x € RP\Q,
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with L = sup |As(z)|. That way (see [18]), for any ¢ of W' (RRP)
0<s(z)<p

M4 /]V§€|Lpdx < E/VQC Vdr + (M, 41 + Le)/gpda (3.7)

Q r

Therefore, considering that a.e. on )

QE(ue k)| = / OLHP™ (, d(k)) (0 1) (r)dr]
o (k)
< M, HE(6(u), 6(F)),

and using weak differential inequality (3.7) with ¢ = H? (w)(gb(ue), o(k))E, we
obtain a majoration of the right-hand side of (3.5) through:

/ H™ (k) VE NV Cdadt + € / H™) (d(ue), d(k))C AL dxdt

H(Mjogs + L / 1 (6, ). 6(0))do

b

Thanks to (2.3) and as (. goes to 1 in LY(Q) and €V(, goes to 0 in
(L'(Q2))? we may pass to the limit when € tends to 0F. For any function ¢ of
D, (]0, T[xRP), it comes:

/ / HH ™ (B(7), 6(k))dTDuE + Q¥ (m, k)B.VE

101[xQ \k

— O H ) (p(r), o)) (t, x, 77)5} dadzdt
> M

pog=1 / HY ((ur,), d(k))édo.

b

When one refers to F.Otto’s works [18], p. 115, lemma 7.34, and uses the
smoothness of vector field B, this inequality implies that for any ¢ of L>°(X)
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and & of LL (X)),

ess lim Qiu(m(a, 0 + 1v),(, k)B(0).védado

T—0~

10,1[xX

> o, / Hi(é(ur,), 6(C), 6(k))édo.

Boundary condition (3.3) for 7 follows with { = wr,, which completes the
proof of theorem 3.1.

Remark: In the special situation of an homogeneous boundary condition on
I'., the demonstration of boundary condition (3.3) for 7 can easily be estab-
lished without referring to assumption (1.8). Indeed, in this particular con-
text, for any ¢ of D, (]0, T[xRP) and any real k, the function 0 H} (u. s, k)¢
belongs to W (0,T,V, L?(Q2)); so it can be taken as a test-function in varia-
tional formulation (2.5) for u.s. We integrate with respect to t over [0, 77,
we use the convexity of 2 — 9, H}(z, k) to have a majoration of the diffusive
term and to transform the convective one, we note that:

/ Div{p(ucs)BYO HY (ues, k)¢ = — / Q5 (ues, k)B.V{dxdt
n / Qi (ues, F)BwCdo,  (3.8)
b

where

a

Qi (a,b) = / () HO (. b)dr.

0

Due to the partitioning of I' and to the monotonicity of ¢, we observe
that the boundary integral in the right-hand side of (3.8) is non-negative.
That way, passing to the limit with respect to § and then with e provides:

/ (H (7, k)0i¢ + Qf (m, k)B.VC — ¢(t, z, m)0 H} (7, k)() dadzdt > 0.

10,T[xQ
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Thus, for the same reasons as before,

ess h%{ / Q; (r(a, 0+ 1v),k)B(0).védado > 0,

10,1[xX

any function ¢ of L! (X). Boundary condition (3.3) for 7 follows when [

goes to +00

References

1]

J.M. Ball. A version of the fundamental theorem for young measures.
In PDEs and Continuum Model of Phase Transition, pages 241-259.
Springer-Verlag, Berlin, 1995.

A. Bamberger. Etude d’'une équation doublement non linéaire. J. Func.
Anal., 24:148-155, 1977.

C. Bardos, A.Y. LeRoux, and J.C. Nedelec. First-order quasilinear equa-
tions with boundary conditions. Commun. in Partial Differential Fqua-
tions, 4(9):1017-1034, 1979.

R. Burgers, H. Frid, and K.H. Karlsen. On a free boundary problem
for a strongly degenerate quasilinear parabolic equation with an appli-
cation to a model of pressure filtration. Web Site Conservation Laws
http://www.math.ntnu.no/conservation/, 2002.

J. Carrillo. Entropy solution for nonlinear degenerate problems. Arch.
Rat. Mech. Anal., 147(2):269-361, 1999.

G. Chavent and J. Jaffré. Mathematical Models and Finite Elements for
Reservoir Simulation. North Holland, Amsterdam, 1986.

R. J. Diperna. Measure-valued solutions to conservation laws. Arch.
Rat. Mech. Anal., 88(3):223-270, 1985.

R. Eymard, T. Gallouet, and R. Herbin. Existence and uniqueness of
the entropy solution to a nonlinear hyperbolic equation. Chin. Ann. of
Math., 16B(1):1-14, 1995.

294



SINGULAR PERTURBATION FOR A PARABOLIC DEGENERATE EQUATION

9] R. Eymard, A. Michel, T.Gallouet, and R.Herbin. Convergence of a
finite volume scheme for nonlinear degenerate parabolic equations. Nu-
mer. Math., 92(1):41-82, 2002.

[10] G. Gagneux and M. Madaune-Tort. Analyse mathématique de modéles
non linéaires de l'ingénierie pétroliére, volume 22 of Mathématiques &
Applications - SMAI Springer-Verlag, Berlin, 1996.

[11] G. Gagneux and E. Rouvre.  Formulation forte entropique de
lois scalaires hyperboliques-paraboliques dégénérées. Ann. Fac. Sci.
Toulouse, X(1):163-183, 2001.

[12] M. J. Jasor. Behaviour of a class of nonlinear diffusion-convection equa-
tions. Adv. in Math. Sci. and Appl., 5(2):631-638, 1995.

[13] M. J. Jasor. Perturbations singulieres de problemes aux limites, non

linéaires paraboliques dégénérés-hyperboliques. Ann. Fac. Sci. Toulouse,
VIII(2):267-291, 1998.

[14] S. N. Kruskov. First-order quasilinear equations in several independent
variables. Math. USSR Sb., 10(2):217-243, 1970.

[15] L. Lévi. Singular perturbations of unilateral problems arising from the
theory of flows through porous media. Adv. in Math. Sci. and Appl.,
9(2):597-620, 1999.

[16] L. Lévi. Strong variational formulations for bilateral obstacle problems
for parabolic degenerate equations and singular perturbations proper-
ties. Technical Report 26, Université de Pau et des Pays de 1’Adour,
Laboratoire de Mathématiques Appliquées ERS 2055 - CNRS, 2001.

[17] M. Madaune-Tort. Un résultat de perturbations singulieres pour des
inéquations variationnelles dégénérées. Annali di Matematica pura et
applicata, IV(CXXXI):117-143, 1982.

[18] J. Malek, J. Necas, M. Rokyta, and M. Ruzicka. Weak and Measure-
Valued Solutions to Evolutionary PDE’s, volume 4 of Applied Mathe-

matics and Mathematical Computation, chapter 2. Chapman and Hall,
1996.

295



[19]

[20]

M.J.JASOR, L.LEvI

C. Mascia, A. Porreta, and A. Terracina. Nonhomogeneous dirich-
let problems for degenerate parabolic-hyperbolic equations. Arch. Rat.
Mech. Anal., 163(2):87-124, 2002.

F. Mignot and J.P. Puel. Un résultat de perturbations singulieres dans
les inéquations variationnelles. In Lecture Notes in Mathematics, Singu-
lar Perturbations and Boundary Layer Theory. Springer-Verlag, 1977.

L. Tartar. Compensated compactness and applications to partial dif-
ferential equations. In R. J. Knops, editor, Nonlinear Analysis and
Mechanics: Heriot- Waitt Symposium. Pitman Advanced Publishing Pro-
gram, 1979.

MARIE-JOSEE JASOR LAURENT LEVI

UNIVERSITE BLAISE PASCAL UNIVERSITE DE PAU

LABORATOIRE DE MATHEMATIQUES LABORATOIRE DE MATHEMATIQUES
AprprLIQUEES UMR 6620 CNRS AprpPLIQUEES ERS 2055 CNRS

24 AVENUE DES LANDAIS BP 1155

63117 AUBIERE CEDEX 64013 Pau CEDEX

FRANCE FRANCE

jasor@math.univ-bpclermont.fr laurent.levi@univ-pau.fr

296



	Introduction
	Main notations and hypotheses on data

	The vanishing viscosity method
	Proof of theorem 2.1: uniqueness property
	Proof of theorem 2.1: existence property

	A singular perturbations property
	Bounded sequences in L
	Proof of theorem 3.1


